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Publishing information about graphs

Many types of data can be represented as graphs
* “Friendships” in online social network
* Financial transactions
* Email communication
* Health networks (of doctors and patients)
 Romantic relationships

Privacy is a
big issue!




Who’d want to de-anonymize a social network graph?
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Some published attacks

— Social networks

[Backstrom Dwork Kleinberg 07,
Narayanan Shmatikov 09, Narayanan Shi Rubinstein 12]

— Computer networks
[Coull Wright Monrose Collins Reiter 07,
Ribeiro Chen Miklau Townsley 08]

Can reidentify individuals based on external sources.



Differential privacy (for graph data)
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/Differential privacy [Dwork McSherry Nissim Smith 06]
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An algorithm A is edifferentially private if

PriA(G)eS] <ete PrlA(GT )ES]

for all pairs of neighbors &, ¢ and all sets of answers S:
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Two variants of differential privacy for graphs
e Edge differential privacy

Two graphs are neighbors if they differ in one\edg\é

e Node differential privacy '

Two graphs are neighbors if one can be obtained from the other
by deleting a node and its adjacent edges.



Differentially private analysis of graphs
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* Two conflicting goals: utility and privacy
— Impossible to get both in the worst case

 Want: differentially private algorithms that are
accurate on realistic graphs

— differentially private (for all graphs)
— accurate for a subclass of graphs



Graph statistics

e Number of edges

e Counts of small subgraphs & W %

(e.g., triangles, A-triangles, A-stars)

e Degree distribution
A Imction of nodes of degree d

.t

e Distance to nearest graph with a certain property

>
Degree d

e (Cut sizes

e Joint degree distribution



Edge differentially private algorithms pre-2013:

graph statistics and techniques

e number of triangles, MIST cost [Nissim Raskhodnikova Smith 07]
— Smooth sensitivity

e degree distribution [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09,
Karwa Slavkovic 12, Kifer Lin 13]

— Global sensitivity and postprocessing
e small subgraph counts [Karwa Raskhodnikova Smith Yaroslavtsev 11]
— Smooth sensitivity; Propose-Test-Release [Dwork Lei 09]
e cuts
— Random projections, global sensitivity [Blocki Blum Datta Sheffet 12]
— Iterative updates [Hardt Rothblum 10, Gupta Roth Ullman 12]
e Kronecker graph model parameters [Mir Wright 12]
— Postprocessing of [KRSY’11]



Other de[mitions

Edge private against Bayesian adversary (weaker privacy)
e small subgraph counts [Rastogi Hay Miklau Suciu 09]

Node zero-knowledge private (stronger privacy than DP)

e average degree, distances to nearest connected, Eulerian,

cycle-free graphs (privacy only for bounded-degree graphs)
[Gehrke Lui Pass 12]

— Sublinear-time algorithms + global sensitivity
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Today: 2013

New techniques [Blocki Blum Datta Sheffet 13, Kasiviswanathan Nissim
Raskhodnikova Smith 13, Chen Zhou 13, Raskhodnikova Smith]

— achieve node differential privacy
— give better edge differentially private algorithms

e Guarantees for resulting algorithms
— node differentially private for all graphs

— accurate for a subclass of graphs, which includes
e graphs with sublinear (not necessarily constant) degree bound
e graphs where the tail of the degree distribution is not too heavy
e dense graphs

— good performance in experiments on real graphs for simple
statistics
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Today

e Node differentially private algorithms for releasing
— number of edges

— counts of small subgraphs &) w %

— degree distribution
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Today

e New techniques
1. Truncation + smooth sensitivity [BBDS'13, KNRS'13]
2. Lipschitz extensions [BBDS'13, KNRS'13]
3. Recursive mechanism [Chen Zhou 13]

e Unifying idea: projections” on 'graphs” with low sensitivity
— Generic reduction to privacy over bounded-degree graphs
truncation + smooth sensitivity [BBDS'13,KNRS’13]
— Releasing number of edges and subgraph counts
Lipschitz extensions via max flow and LP [KNRS’13]
— Releasing degree distribution
Lipschitz extension via convex programming [Raskhodnikova Smith]
— Releasing subgraph counts
Recursive mechanism [Chen Zhou 13]
13



Basic question
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How accurately
can an edifferentially private algorithm release f(G)?
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Challenge for node privacy: high sensitivity

e Global sensitivity of a function fis
df=max—(node neighbors ¢,¢' [/ (G)—f(GT

I

e Examples:

» fl—(G) is the number of edges in G.
» fIA (G) is the number of triangles in G.

afl— =n.
afin =(n/2 ).



Challenge for node privacy: high sensitivity

e Global sensitivity of a function fis 1‘ t g ”
A% Sdm e
df=max—(node)neighbors G,¢T [/(G)—-f(CGT iﬂf@ﬁ;’ 'llr'"
)l ¥ A
_\!//\‘\ll'l\li.’ ff 7
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* Local sensitivity, max—¢7 : neighbor of & [/(G)—f(GT )/, is
also high.

e New measure of sensitivity [Chen Zhou 13]

Down sensitivity is max—¢7 :subgraph neighbor of & //(()
AR

Idea: project onto graphs
with low down sensitivity.

2 2 A
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“Projections” on graphs of small degree [BBDS 13,KNRS'13]

Let G = family of all graphs, g

Gld = family of graphs of degree <.
Notation. df = global sensitivity of fover §.
adld f = global sensitivity of fover Gid .

Observation. ddd fis low for many useful /
Examples:
J

> Oldfl- =d (compareto dfl— =n)—
> old fla = (d]2 ) (compare to dfla = (nf2))

/
————Goal: privacy for all graphs——_

Idea: “'Project” on graphs in G for a carefully chosen d << n.



Method 1

Truncation + smooth sensitivity



Method 1: reduction to privacy over Gld

9

z
Input: Algorithm B that is node-DP over GJd

Output: Algorithm A that is node-DP over g,
L has accuracy similar to B on “nice” graphs

J

e Time(A)=Time(B) + O(m+n)
e Reduction works for all functions /°

How it works: Truncation T(G) outputs G
with nodes of degree >4 removed.

e Answer queries on T(G) instead of G
» via Smooth Sensitivity framework [NRS’07]

high df

r

J

74

» via finding a DP upper bound Zon local sensitivity [Dwork Lei 09, KRSY’11]
and running any algorithm that is (¢/f )-node-DP over G{d

ThTG) |

query f

.f"(T (6))+ noise (ST (6)-dld f)

(T S (ST (G)
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Method 2

Lipschitz extensions



Method 2: Lipschitz extensions [8sps'13,KNRS'13]

A function £ is a Lipschitz extension

of ffrom Gid to G if
> /' agrees with fon Gid and

\. > adf=adldf J

e Release /' via GS framework [DMNS'06]

high df
af =adld f

J

74

e There exist Lipschitz extensions for all real-valued fns [BBDS'13]

e Lipschitz extensions can be computed efficiently for

— degree distribution [RS]

21




Lipschitz extension of fl— : flow graph

For a graph G=(V, E), define flow graph of G:

Add edge (z,7) iff (x,v)€E £.
viflow (G) is the value of the maximum flow in this graph.

Lemma. »dflow (G)/2 is a Lipschitz extension of fJ— .

22



Lipschitz extension of fl— : flow graph

For a graph G=(V, E), define flow graph of G:

Add edge (z,7) iff (x,v)€E £.
viflow (G) is the value of the maximum flow in this graph.

Lemma. »dflow (G)/2 is a Lipschitz extension of fJ— .
Proof: (1) wiflow (G) =2/fJ— (G)for all GEGd
(2) dviflow =2 -dld fl—
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Lipschitz extension of fl— : flow graph

For a graph G=(V, E), define flow graph of G:

viflow (G) is the value of the maximum flow in this graph.
Lemma. »dflow (G)/2 is a Lipschitz extension of fJ— .
Proof: (1) wiflow (G) =2/fJ— (G) for all GEGd

(2) dviflow =2-dld fl— =2d

24



Lipschitz extensions via linear programs

For a graph G=([n], E), define LP with variables xJ7" for all triangles

7 M7=A of GTE#xIT
Maximize
0<xl7<1 for all triangles 7
STve V(1) TExT <(
dr2) for all nodes v

bﬂld y,
JA
vILP (G) is the value of LP.

Lemma. 2JLP (G) is a Lipschitz extension of fIA .

e If we use dinstead of (df2 ) as a bound, get a function with GS
0.

— It is a Lipschitz extension from a large set that includes Y4 .

25
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Lipschitz extension for a

function that outputs a vector



Lipschitz extension of degree distribution

yla convex programming (RS]

d

M
flv = flow (&)
into vertex » flow graph of G

)

Can we use fJv as a proxy for degree of »?
Issue: max flow is not unique.
Want: unique flow that has low global sensitivity.

27



Lipschitz extension of degree distribution

yla convex programming (RS]

d

flv = flow
into vertex » flow graph of G

o let A(x)=x(2d—x). ,
Idea: maximize Y{v A(fIv) instead of Y v flv.
e Let ¢ be the flow maximizing YJv A(fiv), x

and /7« be the vector of s-out-flows in ¢. d

e fTx isunique, since /s strictly concave.
e |t can be computed in poly time [Lee Rao Srivastava 13].

28



Lipschitz extension of degree distribution

yla convex programming (RS]

e If GEGId, then flvT* = deg(v) for all 7,
since /2 is strictly increasing on [0, 4d]. d

* Lemma. £J1 global sensitivity df T+ <3d.

29



Lipschitz extension of degree distribution

yla convex programming (RS]

Lemma. /1 global sensitivity df T+ <3d. 4
Proof sketch: Consider g=@gdnew —gplold.

g is a union of simple s-£paths and cycles of several types:

1. s-t-paths and cycles using els. Contribute <2dto [flnew —
2. s-t-paths using elz. AdldT+ [I1

3. Cycles using elt. 0

4. Remaining paths and cycles. Do not exist.

30



Releasing degree distribution: summary

1. Construct flow graph of G.

2. Compute s-out-flows fT* .

3. Release vector /T, with Lap(3d/€ ) per coordi | ol
4,

Use post-processing techniques by [Hay Rastogi Miklau Suciu 85, Hay Li
Miklau Jensen 09, Karwa Slavkovic 12, Kifer Lin 13] tO remove some noise.

31



Method 3

Recursive mechanism



Method 3: recursive mechanism chen zhou 13]

Strateqy for releasing real-valued functions (&)
e Define functions X{J (G) with global sensitivity J.

As in projection methods,
» Xl (G)</(6) and
» X10 (G)is closer to f(&) for larger 4.

e Release XYJ (G) for a carefully chosen d'via Laplace
mechanism.

33



Defining X160 (6G)

e Given graph G, define sequence in #7T+ :
0=HI0 (C)<HI1 (G)<..<HIn (C)=f(G).
E.g., Hll (g)=min—Bsubgraphs GT of G of sizei f{
GT).
e Hli’s must beinterleaving: Adi (GI2 )SHII (GI1 )<HL+1 (
GI2)

forallr 4. 4§ o §4 CGY2 and=0,1, 3% 4 1
¢l LS t i:@ ", G2 \%1’#"
& Y ] : /‘:\/\ \1}“,}1;\/4
,! ———————— e s = AN

e Define X6 (G)=min+0<=:/<n (Al (G)+(n—1)0I).
Lemma. X6 (G)=/f(6) for o=2max—+i (Hi+1 (G)-HIi (()).

34



Global sensitivity of X0 (6)

e Hli’s mustbeinterleaving: ALi (G2 )<HIi (GI1 )SHIAH1 (
GI2)

for all neighbors ¢J1 c¢Y2 and /=0,1,...,7.
e Define X6 (G)=min+0</<n (Al (C)+(n—1)0I).
Lemma. Global node sensitivity of X{J is 0.
Proof: Consider neighbors ¢41 c G2 .
1. Want to show: X{o (GJ2 )<XIJ (GI1 )+0.
Let /7+ be the index that minimizes the expression for X (

GJ1).
X0 (GI2 )<SHILiT+ (GI2 )+ (n+1—iTx)O
<HIliTx (GI1 )+ (n—1iTx )o+o=XI0 (G2 )+ 0.
2. Similarly, can show X4J (GJ1 )<XIJ (GI2 ).

35



Computationally efficient recursive mechanism

Recall: X46 (G)=min—0</<n (Al (G)+(n—10i)0).

E.g., /i (G)=min—Bsubgraphs GT 0_ J
GT).

Idea: Use an LP-relaxation of Z!:.
E.g., for fJA (the number of triangles):

J

Output: X0 (G) in global sensitivity framework.

36



Summary

e New techniques
1. Truncation + smooth sensitivity [BBDS'13, KNRS'13]
2. Lipschitz extensions [BBDS'13, KNRS'13]
3. Recursive mechanism [Chen Zhou 13]

e Unifying idea: projections” on 'graphs” with low sensitivity
— Generic reduction to privacy over bounded-degree graphs
truncation + smooth sensitivity [BBDS'13,KNRS’13]
— Releasing number of edges and subgraph counts
Lipschitz extensions via max flow and LP [KNRS’13]
— Releasing degree distribution
Lipschitz extension via convex programming [Raskhodnikova Smith]
— Releasing subgraph counts
Recursive mechanism [Chen Zhou 13]
37



Experimental evaluation



Experiments for the flow and LP method |Lu]
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CA-AstroPh 18,772 396,220 504 0.34 10,222
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Other experimental results

[Lu] showed that truncation is less accurate than flow and LP-
based methods.

[Chen Zhou 13] provide experimental evaluation on random and
real-world graphs.

e (Mostly) better accuracy than in [KRSY’11] for edge-DP algs.

e Comparable (slightly better?) accuracy on smaller graphs than
in experiments of [Lu] for node-DP algorithms.

e Longer running times.

e Not enough experiments to compare the two node-DP
methods.

40



Conclusions

e We are close to having edge-private and node-private
algorithms that work well in practice for basic graph statistics.

e |nteresting projection techniques that might be useful for
design of DP algorithms in other contexts.

41



Open questions

e New techniques:

— Can special-purpose LP-solvers make them more efficient?

— To which other queries do they apply?

— What'’s the best way to choose the degree/sensitivity cut off?
e Specific queries:

— Releasing cuts with node-DP

— Releasing pairwise distances between nodes with DP

42



Open questions (continued)

e DP synthetic graphs
e Simultaneous release of answers to many queries
e What are the right notions of privacy for graph data?

e What are the right ways to state utility guarantees?
— Some proposals in [KRSY’13, KNRS’13, Chen Zhou 13]

e Social networks have node and edge attributes. What queries
are useful?

e Hypergraphs (that capture relationships such as “people
appearing on the same photo”)
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“Projections” on graphs of small degree

Let G = family of all graphs, G
Gld = family of graphs of degree <.
Notation. df = node GS.f over .

dld f= node GSIf over Gid.
Observation. ddd fis low for many useful / Q
Examples:

J

> Oldfl- =d (compareto dfl— =n)—
> old fla = (d]2 ) (compare to dfla = (nf2))

/
————Goal: privacy for all graphs——_

Idea: “'Project” on graphs in G for a carefully chosen d << n.
44



Graph statistics

e Number of edges

e Counts of small subgraphs
(e.g., tri%es, kMS, 3

e Degree distribution
e Joint degree distribution
e (Cuts

Joint Degree Distribution for A4

16
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Our contributions: algorithms

e Node differentially private algorithms for releasing

— number of edges
— counts of small subgraphs & w %
(e.g., triangles, A-triangles, A-stars)
— degree distribution
e Accuracy analysis of our algorithms for graphs with not-too-

heavy-tailed degree distribution: with @-decay for constant a>1
Notation: & = average degree

A
P(d)= fraction of nodes in G of degree >d Frequency
A graph G satisfies a-decay if <tT—
forall £>1: P(t-d)<tT—a

— Every graph satisfies 1-decay Degrees

— Natural graphs (e.g., “scale-free” graphs, Erdos-Renyi) satisfy a>1
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Our contributions: accuracy analysis

e Node differentially private algorithms for releasing

— number of edges
— counts of small subgraphs & w %
(e.g., triangles, A-triangles, A-stars)

— degree distribution

e Accuracy analysis of our algorithms for graphs with not-too-
heavy-tailed degree distribution: with @-decay for constant a>1

[A graph G satisfies a~decay if forall £>1: P(t-d )<tT—a ]

~

— number of edges
— counts of small subgraphs - (1+o(1))-approximation
(e.g., triangles, A-triangles, A-stars) )

— degree distribution } [/Ale,a (G)—DegDistrib(G)///1 =0(1)
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