Differential Privacy for Graphs and Social Networks

Sofya Raskhodnikova

Penn State University, on sabbatical at BU for 2013-2014 privacy year

Publishing information about graphs

Many types of data can be represented as graphs

- "Friendships" in online social network
- Financial transactions
- Email communication
- Health networks (of doctors and patients)
- Romantic relationships

image source http://community.expressorsoftware.com/blogs/mtarallo/36-extracting-datafacebook-social-graph-expressor-tutorial.html

Privacy is a big issue!

Who'd want to de-anonymize a social network graph?

Some published attacks

Social networks

[Backstrom Dwork Kleinberg 07, Narayanan Shmatikov 09, Narayanan Shi Rubinstein 12]

Computer networks

[Coull Wright Monrose Collins Reiter 07, Ribeiro Chen Miklau Townsley 08]

Can reidentify individuals based on external sources.

Differential privacy (for graph data)

Differential privacy [Dwork McSherry Nissim Smith 06]

An algorithm A is *e*-differentially private if

for all pairs of neighbors G, G and all sets of answers S:

 $Pr[A(G) \in S] \leq e \uparrow \epsilon Pr[A(G \uparrow) \in S]$

Two variants of differential privacy for graphs

Edge differential privacy

Two graphs are **neighbors** if they differ in **one edge**.

Node differential privacy

Two graphs are **neighbors** if one can be obtained from the other by deleting *a node and its adjacent edges*.

Differentially private analysis of graphs

- Two conflicting goals: utility and privacy
 - Impossible to get both in the worst case
- Want: differentially private algorithms that are accurate on realistic graphs
 - differentially private (for all graphs)
 - accurate for a subclass of graphs

Graph statistics

- Number of edges
- Counts of small subgraphs

Degree distribution

- Cut sizes
- Distance to nearest graph with a certain property
- Joint degree distribution

Edge differentially private algorithms pre-2013:

graph statistics and techniques

- number of triangles, MST cost [Nissim Raskhodnikova Smith 07]
 - Smooth sensitivity
- **degree distribution** [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09, Karwa Slavkovic 12, Kifer Lin 13]
 - Global sensitivity and postprocessing
- small subgraph counts [Karwa Raskhodnikova Smith Yaroslavtsev 11]
 - Smooth sensitivity; Propose-Test-Release [Dwork Lei 09]
- cuts
 - Random projections, global sensitivity [Blocki Blum Datta Sheffet 12]
 - Iterative updates [Hardt Rothblum 10, Gupta Roth Ullman 12]
- Kronecker graph model parameters [Mir Wright 12]
 - Postprocessing of [KRSY'11]

Other definitions

Edge private against Bayesian adversary (weaker privacy)

small subgraph counts [Rastogi Hay Miklau Suciu 09]

Node zero-knowledge private (stronger privacy than DP)

- average degree, distances to nearest connected, Eulerian, cycle-free graphs (privacy only for bounded-degree graphs)
 [Gehrke Lui Pass 12]
 - Sublinear-time algorithms + global sensitivity

Today: 2013

New techniques [Blocki Blum Datta Sheffet 13, Kasiviswanathan Nissim Raskhodnikova Smith 13, Chen Zhou 13, Raskhodnikova Smith]

- achieve node differential privacy
- give better edge differentially private algorithms
- Guarantees for resulting algorithms
 - node differentially private for all graphs
 - accurate for a subclass of graphs, which includes
 - graphs with sublinear (not necessarily constant) degree bound
 - graphs where the tail of the degree distribution is not too heavy
 - dense graphs
 - good performance in experiments on real graphs for simple statistics

Today

- Node differentially private algorithms for releasing
 - number of edges
 - counts of small subgraphs
 - degree distribution

Today

- New techniques
 - 1. Truncation + smooth sensitivity [BBDS'13, KNRS'13]
 - 2. Lipschitz extensions [BBDS'13, KNRS'13]
 - 3. Recursive mechanism [Chen Zhou 13]
- Unifying idea: ``projections'' on ``graphs'' with low sensitivity
 - Generic reduction to privacy over bounded-degree graphs
 truncation + smooth sensitivity [BBDS'13,KNRS'13]
 - Releasing number of edges and subgraph counts
 Lipschitz extensions via max flow and LP [KNRS'13]
 - Releasing degree distribution
 Lipschitz extension via convex programming [Raskhodnikova Smith]
 - Releasing subgraph counts
 Recursive mechanism [Chen Zhou 13]

Basic question

How accurately can an ϵ -differentially private algorithm release f(G)?

Challenge for node privacy: high sensitivity

Global sensitivity of a function f is
 ∂f=max+(node)neighbors G,G' |f(G)-f(G↑')|

Examples:

- $> f \downarrow$ (G) is the number of edges in G.
- $\triangleright f \downarrow \Delta$ (G) is the number of triangles in G.

$$\partial f \downarrow - = n.$$
 $\partial f \downarrow \triangle = (n/2).$

Challenge for node privacy: high sensitivity

Global sensitivity of a function f is
 \$\partial f = \text{max} \tau (\text{node}) \text{neighbors } G, G1' \ |f(G) - f(G1') |

- Local sensitivity, $\max_{\tau} G \mathcal{T}'$: **neighbor** of $G \mid f(G) f(G \mathcal{T}') \mid$, is also high.
- New measure of sensitivity [Chen Zhou 13]

Down sensitivity is $\max_{\mathcal{T}} G \mathcal{T}'$:**subgraph neighbor** of $G \mid f(G)$

"Projections" on graphs of small degree [BBDS'13,KNRS'13]

Let \mathbf{G} = family of all graphs,

GId = family of graphs of degree $\leq d$.

Notation. ∂f = global sensitivity of f over G.

 $\partial \mathcal{I}df = \text{global sensitivity of } f \text{ over } G \mathcal{I}d$

Observation. $\partial \mathcal{M} f$ is low for many useful f

Examples:

- $\rightarrow \partial l d f l = d$ (compare to $\partial f l = n$)
- \rightarrow $\partial \downarrow df \downarrow \triangle = (d/2)$ (compare to $\partial f \downarrow \triangle = (n/2)$)

Idea: "Project" on graphs in $G \downarrow d$ for a carefully chosen d << n.

Method 1

Truncation + smooth sensitivity

Method 1: reduction to privacy over **G**\$\display\$

KNRS'13

Input: Algorithm B that is node-DP over $\mathbf{G} \downarrow d$

Output: Algorithm A that is node-DP over G,

has accuracy similar to B on "nice" graphs

- Time(A) = Time(B) + O(m+n)
- Reduction works for all functions f

How it works: Truncation T(G) outputs G with nodes of degree >d removed.

- Answer queries on T(G) instead of G
 - via Smooth Sensitivity framework [NRS'07]
 - > via finding a DP upper bound ℓ on local sensitivity [Dwork Lei 09, KRSY'11] and running any algorithm that is (ϵ/ℓ) -node-DP over $G \downarrow d$

Method 2

Lipschitz extensions

Method 2: Lipschitz extensions [BBDS'13,KNRS'13]

A function f' is a Lipschitz extension of f from $\mathbf{G} \downarrow d$ to \mathbf{G} if

- f' agrees with f on \$\mathbf{G}\$1d and
- $\triangleright \partial f = \partial \downarrow df$
- Release f' via GS framework [DMNS'06]

- There exist Lipschitz extensions for all real-valued fns [BBDS'13]
- Lipschitz extensions can be computed efficiently for
 - subgraph counts [KNRS'13]
 - degree distribution [RS]

Vector of real values

Lipschitz extension of $f \downarrow -:$ flow graph

For a graph G=(V, E), define **flow graph of G**:

vlflow (G) is the value of the maximum flow in this graph.

Lemma. $v \not\downarrow flow (G)/2$ is a Lipschitz extension of $f \not\downarrow -$.

Lipschitz extension of $f \downarrow -:$ flow graph

For a graph G=(V, E), define flow graph of G:

vlflow (G) is the value of the maximum flow in this graph.

Lemma. νl flow (G)/2 is a Lipschitz extension of f l .

Proof: (1) $\nu \downarrow$ flow (G) = $2f \downarrow - (G)$ for all $G \in \mathcal{G} \downarrow d$

(2) $\partial v \downarrow \text{flow} = 2 \cdot \partial \downarrow d f \downarrow -$

Lipschitz extension of $f \downarrow -:$ flow graph

For a graph G=(V, E), define flow graph of G:

vliterightflow (G) is the value of the maximum flow in this graph.

Lemma. $v \not\downarrow flow (G)/2$ is a Lipschitz extension of $f \not\downarrow -$.

Proof: (1) $\nu \downarrow$ flow (G) = $2f \downarrow - (G)$ for all $G \in \mathcal{G} \downarrow d$

(2) $\partial v \not\downarrow \text{flow} = 2 \cdot \partial \not\downarrow d f \not\downarrow - = 2d$

Lipschitz extensions via linear programs

For a graph G=([n], E), define LP with variables $x \downarrow T$ for all triangles

 $\nu \downarrow LP$ (G) is the value of LP.

Lemma. vIP (G) is a Lipschitz extension of $fI\Delta$.

Can be generalized to other counting gueries

- If we use δ instead of (d/2) as a bound, get a function with GS
 δ.
 - It is a Lipschitz extension from a large set that includes $G \downarrow d$.

Lipschitz, extension for a function that outputs a vector

Can we use $f \downarrow v$ as a proxy for degree of v?

Issue: max flow is not unique.

Want: unique flow that has low global sensitivity.

• Let h(x) = x(2d - x).

Idea: maximize $\sum lv h(flv)$ instead of $\sum lv flv$.

• Let ϕ be the flow maximizing $\sum lv h(flv)$, and fl* be the vector of s-out-flows in ϕ .

- fî* is unique, since h is strictly concave.
- It can be computed in poly time [Lee Rao Srivastava 13].

- If $G \in G \downarrow d$, then $f \downarrow v \uparrow * = deg(v)$ for all v, since h is strictly increasing on [0,d].
- Lemma. $\ell \downarrow 1$ global sensitivity $\partial f \uparrow * \leq 3d$.

Lemma. $\ell \downarrow 1$ global sensitivity $\partial f \uparrow * \leq 3d$.

Proof sketch: Consider $g = \phi \downarrow new - \phi \downarrow old$.

g is a union of simple s-t-paths and cycles of several types:

- 1. s-t-paths and cycles using $e \downarrow s$. Contribute $\leq 2d$ to $|f \downarrow new \uparrow * -$
- 2. s-t-paths using $e \downarrow t$. $\not \subseteq d l d \uparrow * / \downarrow 1$
- 3. Cycles using $e \downarrow t$.
- 4. Remaining paths and cycles. Do not exist.

Releasing degree distribution: summary

- 1. Construct flow graph of G.
- 2. Compute *s*-out-flows $f \uparrow *$.
- 3. Release vector $f \uparrow *$, with Lap $(3d/\epsilon)$ per coordinate.
- 4. Use post-processing techniques by [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09, Karwa Slavkovic 12, Kifer Lin 13] to remove some noise.

Method 3

Recursive mechanism

Method 3: recursive mechanism [Chen Zhou 13]

Strategy for releasing real-valued functions f(G)

• Define functions $X \downarrow \delta$ (G) with global sensitivity δ .

As in projection methods,

- $\triangleright X \downarrow \delta(G) \leq f(G)$ and
- $\triangleright X \downarrow \delta$ (G) is closer to f(G) for larger δ .
- Release $X \downarrow \delta$ (G) for a carefully chosen δ via Laplace mechanism.

Defining $X \downarrow \delta(G)$

Given graph G, define sequence in R1+:

$$0=H\downarrow 0 \ (G)\leq H\downarrow 1 \ (G)\leq ...\leq H\downarrow n \ (G)=f(G).$$

E.g., $H \downarrow i(g) = \min_{\mathcal{T}} \blacksquare subgraphs \ G \uparrow' \ of \ G \ of \ size \ i \ f(g) = G \uparrow' \}$.

• $H \downarrow i$'s must be interleaving: $H \downarrow i$ $(G \downarrow 2) \leq H \downarrow i$ $(G \downarrow 1) \leq H \downarrow i + 1$ ($G \downarrow 2$)

• Define $X \downarrow \delta$ (G)=min $+ 0 \le i \le n (H \downarrow i (G) + (n-i)\delta)$. Lemma. $X \downarrow \delta$ (G)=f(G) for $\delta \ge \max + i (H \downarrow i + 1 (G) - H \downarrow i (G))$.

Global sensitivity of $X \downarrow \delta(G)$

• $H \downarrow i$'s must be interleaving: $H \downarrow i$ $(G \downarrow 2) \leq H \downarrow i$ $(G \downarrow 1) \leq H \downarrow i + 1$ ($G \downarrow 2$)

for all neighbors $G \downarrow 1 \subset G \downarrow 2$ and i=0,1,...,n.

• Define $X \downarrow \delta$ (G)=min $\neq 0 \le i \le n (H \downarrow i (G) + (n-i) \delta)$.

Lemma. Global node sensitivity of $X \downarrow \delta$ is δ .

Proof: Consider neighbors $G \downarrow 1 \subset G \downarrow 2$.

1. Want to show: $X \downarrow \delta$ (G \downarrow 2) $\leq X \downarrow \delta$ (G \downarrow 1) + δ .

Let $i\hat{I}^*$ be the index that minimizes the expression for $X \downarrow \delta$ ($G \downarrow 1$).

$$X \downarrow \delta (G \downarrow 2) \leq H \downarrow i \uparrow * (G \downarrow 2) + (n+1-i \uparrow *) \delta$$

$$\leq H \downarrow i \uparrow * (G \downarrow 1) + (n-i \uparrow *) \delta + \delta = X \downarrow \delta (G \downarrow 2) + \delta.$$

2. Similarly, can show $X \downarrow \delta$ (G $\downarrow 1$) $\leq X \downarrow \delta$ (G $\downarrow 2$).

Computationally efficient recursive mechanism

```
Recall: X \downarrow \delta (G)=min + 0 \le i \le n (H \downarrow i (G)+(n-i)\delta).

E.g., H \downarrow i (G)=min + \blacksquare subgraphs G1' of NP-hard f (G1').

Idea: Use an LP-relaxation of H \downarrow i.

E.g., for f \not \downarrow \Delta (the number of triangles):
```

$$\sum (u,v,w) = \Delta \text{ of } G \uparrow \text{max}(0, (x \downarrow u + x \downarrow v + x \downarrow w))$$
 $H \downarrow i (G) = \text{main}$
 $0 \le x \downarrow v \le 1$ for all nodes v
 $\sum v \uparrow \text{max} \downarrow v = i$

Output: $X \downarrow \delta$ (G) in global sensitivity framework.

Summary

- New techniques
 - 1. Truncation + smooth sensitivity [BBDS'13, KNRS'13]
 - **2. Lipschitz extensions** [BBDS'13, KNRS'13]
 - 3. Recursive mechanism [Chen Zhou 13]
- Unifying idea: ``projections'' on ``graphs'' with low sensitivity
 - Generic reduction to privacy over bounded-degree graphs
 truncation + smooth sensitivity [BBDS'13,KNRS'13]
 - Releasing number of edges and subgraph counts
 Lipschitz extensions via max flow and LP [KNRS'13]
 - Releasing degree distribution
 Lipschitz extension via convex programming [Raskhodnikova Smith]
 - Releasing subgraph counts
 Recursive mechanism [Chen Zhou 13]

Experimental evaluation

Experiments for the flow and LP method [Lu]

	Graph	# nodes	# edges	Max degree	Time, secs # edges	Time, secs # Δs
•	CA-GrQc	5,242	28,992	81	0.02	7
•	CA-HepTh	9,877	51,996	65	0.68	0.5
•	CA-AstroPh	18,772	396,220	504	0.34	10,222
•	com-dblp-ungraph	317,080	2,099,732	343	2	2128
•	com-youtube-ungraph	1,134,890	5,975,248	28,754	9	94

Other experimental results

[Lu] showed that truncation is less accurate than flow and LP-based methods.

[Chen Zhou 13] provide experimental evaluation on random and real-world graphs.

- (Mostly) better accuracy than in [KRSY'11] for edge-DP algs.
- Comparable (slightly better?) accuracy on smaller graphs than in experiments of [Lu] for node-DP algorithms.
- Longer running times.
- Not enough experiments to compare the two node-DP methods.

Conclusions

- We are close to having edge-private and node-private algorithms that work well in practice for basic graph statistics.
- Interesting projection techniques that might be useful for design of DP algorithms in other contexts.

Open questions

New techniques:

- Can special-purpose LP-solvers make them more efficient?
- To which other queries do they apply?
- What's the best way to choose the degree/sensitivity cut off?

• Specific queries:

- Releasing cuts with node-DP
- Releasing pairwise distances between nodes with DP

Open questions (continued)

- DP synthetic graphs
- Simultaneous release of answers to many queries
- What are the right notions of privacy for graph data?
- What are the right ways to state utility guarantees?
 - Some proposals in [KRSY'13, KNRS'13, Chen Zhou 13]
- Social networks have node and edge attributes. What queries are useful?
- Hypergraphs (that capture relationships such as "people appearing on the same photo")

"Projections" on graphs of small degree

Let \mathbf{G} = family of all graphs,

GId = family of graphs of degree $\leq d$.

Notation. $\partial f = \text{node } GS \downarrow f$ over G.

 $\partial \mathcal{A} f = \text{node } GS \mathcal{A} f \text{ over } G \mathcal{A} d.$

Observation. $\partial \mathcal{M} f$ is low for many useful f

Examples:

- $\rightarrow \partial l d f l = d$ (compare to $\partial f l = n$)
- \rightarrow $\partial \downarrow d f \downarrow \triangle = (d/2)$ (compare to $\partial f \downarrow \triangle = (n/2)$)

Idea: "Project" on graphs in $G \downarrow d$ for a carefully chosen d << n.

Graph statistics

- Number of edges
- Counts of small subgraphs

- Degree distribution
- Joint degree distribution
- Cuts

Our contributions: algorithms

- Node differentially private algorithms for releasing
 - number of edges
 - counts of small subgraphs

(e.g., triangles, k-triangles, k-stars)

- degree distribution
- Accuracy analysis of our algorithms for graphs with not-tooheavy-tailed degree distribution: with α -decay for constant $\alpha > 1$

Notation: d = average degree

P(d)= fraction of nodes in G of degree $\geq d$

A graph G satisfies α -decay if for all t>1: $P(t\cdot d) \le t \uparrow -\alpha$

- Every graph satisfies 1-decay
- Natural graphs (e.g., "scale-free" graphs, Erdos-Renyi) satisfy $\alpha > 1$

Our contributions: accuracy analysis

- Node differentially private algorithms for releasing
 - number of edges
 - counts of small subgraphs

(e.g., triangles, k-triangles, k-stars)

- degree distribution
- Accuracy analysis of our algorithms for graphs with not-tooheavy-tailed degree distribution: with α -decay for constant $\alpha > 1$

A graph G satisfies α -decay if for all t>1: $P(t \cdot d) \le t \hat{1} - \alpha$

- number of edges
- counts of small subgraphs
 (e.g., triangles, k-triangles, k-stars)

(1+o(1))-approximation