The Power of Linear Reconstruction Attacks

Shiva Kasiviswanathan (General Electric Research)

Joint work with Mark Rudelson (University of Michigan) Adam Smith (Penn State University)

Database D

f could be the

- 1. average function
- 2. correlation function
- 3. classifier

Informally: How much distortion is needed in f(D), to guarantee the privacy of D's entries?

What is a Reconstruction Attack?

Reconstruction Attacks [DN'03,DMT'07,DY'08,KRSU'10,D'12,KRS'13]

Reconstruction attack implies a lower bound on distortion for any reasonable notion of privacy

Talk Summary

□ Linear reconstruction attacks work surprisingly in many settings

- Marginal tables
- Decision tree classification rate
- Linear and Logistic regression parameters
- M-estimators

Analysis of the attacks under distributional assumptions on data

Privacy Requires Distortion

Reconstruction Attacks [DN'03,DMT'07,DY'08,KRSU'10,D'12,KRS'13]

[DN'03]: Answering "too many" subset sum queries "too accurately" allows an adversary to reconstruct database almost entirely

6

Concrete Setting: n users, each with secret $x_i \in \{0, 1\}$

Inner-product Query: for $S \in \{-1,1\}^n$, let $f_S(x) = \langle S, x \rangle$

Concrete Setting: n users, each with secret $x_i \in \{0, 1\}$

Inner-product Query: for $S \in \{-1,1\}^n$, let $f_S(x) = \langle S,x \rangle$

Concrete Setting: n users, each with secret $x_i \in \{0, 1\}$

Inner-product Query: for $S \in \{-1,1\}^n$, let $f_S(x) = \langle S,x \rangle$

Theorem [DN'03] (Informal): If $m \approx n$ releases each with $o(\sqrt{n})$ noise then there exists an adversary with $d_{\text{Hamming}}(\hat{x}, x) = o(n)$.

Concrete Setting: n users, each with secret $x_i \in \{0, 1\}$

Inner-product Query: for $S \in \{-1, 1\}^n$, let $f_S(x) = \langle S, x \rangle$

- Which queries S_1, \ldots, S_m allow reconstruction?
- Number of queries?
- Running time?

Our Results:

Using linear reconstruction attacks to obtain privacy lower bounds for natural, symmetric queries

- [KRSU'10] marginal (contingency) tables
- Each person's data is a row in a table
- k-way marginal: distribution of some k attributes
- [KRS'12] regression analysis, decision tree classifiers, boolean functions

Linear Reconstruction Problem [DMT'07, DY'08]

Let A be a real-valued matrix and e be an unknown error vector Problem: Given $z \approx Ax(z = Ax + e)$ construct $\hat{x} \approx x$.

Unknown error vector

Natural approach: $\hat{x} = \operatorname{argmin}_{x} ||z - Ax||_{p}$ •p=2: gives least squares method •p=1: gives LP decoding method

Least Squares Attack (L₂-attack) [DY'08]

Solving $\min_{x} ||z - Ax||_{2}$ Let $A = U \times \Sigma \times V^{\top}$ be the singular value decomposition of ADefine $A_{inv} = V \times \Sigma^{-1} \times U^{\top}$ (pseudo-inverse of A) Attack: Define $\hat{x} = (\hat{x}_{1}, \dots, \hat{x}_{n})$ where

$$\hat{x}_i = \begin{cases} 1 \text{ if the ith element of } A_{\mathrm{inv}} z \geq \frac{1}{2} \\ 0 \text{ otherwise} \end{cases}$$

Least Squares Attack (L₂-attack) [DY'08]

Solving $\min_{x} ||z - Ax||_{2}$ Let $A = U \times \Sigma \times V^{\top}$ be the singular value decomposition of ADefine $A_{inv} = V \times \Sigma^{-1} \times U^{\top}$ (pseudo-inverse of A) Attack: Define $\hat{x} = (\hat{x}_{1}, \dots, \hat{x}_{n})$ where

If the least singular value of A is "sufficiently big", then \hat{x} is close to x

Proof idea:

Both L₁- and L₂-attacks well understood

	Error vector e	Fraction of Recovered x	Condition on A	Pluses	Minuses
Least Squares Method	All entries $\leq \sqrt{n}$	1 - 0(1)	Least singular value $\geq \sqrt{m}$		
LP Decoding Method	$\begin{array}{l} \text{At least} \\ 1-\gamma \\ \text{frac.} \\ \text{entries} \\ \leq \sqrt{n} \end{array}$	1 - o(1)	Least singular value $\geq \sqrt{m}$ and Euclidean section property	can tolerate bigger error vector	stronger condition on A, and costlier running time

Input Setting

Database D: Table of values for n individuals on d+1 attributes

16

Reconstruction from Marginals [KRSU'10]

Releasing 2-way marginals

2-way marginals include $\langle a_1, x \rangle, \langle a_2, x \rangle, \dots, \langle a_d, x \rangle$

Reconstruction from Marginals [KRSU'10]

Releasing 3-way marginals

3-way marginals include $\langle a_1 \odot a_2, x \rangle, \langle a_1 \odot a_3, x \rangle, \dots, \langle a_{d-1} \odot a_d, x \rangle$ \odot = Hadarmard product (entry-wise product)

Solve
$$\operatorname{argmin}_{x} \left\| \begin{array}{c} z \\ z \end{array} - \begin{array}{c} \begin{pmatrix} (a_{1} \odot a_{2})^{\mathsf{T}} \\ (a_{1} \odot a_{3})^{\mathsf{T}} \\ A \\ (a_{d-1} \odot a_{d})^{\mathsf{T}} \end{array} \right\| x \\ p \end{array} \right\|_{p} \longrightarrow \hat{x}$$

Analysis

Idea: Assume non-sensitive information are i.i.d.

Spectrum of Correlated Random Matrices

Key lemma for 3-way marginals: Let each of the a_i be an i.i.d. (0-1) random vector with $d \ge \sqrt{n}$. $\begin{pmatrix} (a_1 \odot a_2)^\top \\ (a_1 \odot a_3)^\top \end{pmatrix}$

$$\begin{bmatrix} (a_1 \odot a_3) \\ A \\ (a_{d-1} \odot a_d)^\top \\ \begin{pmatrix} d \\ 2 \end{pmatrix} \times n \end{bmatrix}$$

Then w.h.p. the least singular value of matrix A is $\Omega(d)$.

Analysis

Idea: Assume non-sensitive information are i.i.d.

Spectrum of Correlated Random Matrices

Key lemma for k+1-way marginals: Let each of the a_i be an i.i.d. (0-1) random vector with $d > n^{\frac{1}{k}}$. $\sub{(a_1 \odot a_2 \cdots \odot a_k)^{ op}}$ $(a_1 \odot a_3 \cdots \odot a_{k+1})^{ op}$ A $(a_{d-k} \odot a_{d-k+1} \cdots \odot a_d)^{\top} \begin{pmatrix} d \\ k \end{pmatrix} \times n$ Then w.h.p. the least singular value of matrix A is $\Omega(d^{\frac{k}{2}})$.

Theorem [KRSU'10]: If an algorithm always releases (k+1)-way marginals with $\min\{o(d^{\frac{k}{2}}), o(\sqrt{n})\}$ noise per entry then there exists an adversary \mathbf{G} that w.h.p. can construct \hat{x} with $d_{\text{Hamming}}(\hat{x}, x) = o(n)$.

Theorem [KRSU'10]: If an algorithm always releases (k+1)-way marginals with $\min\{o(d^{\frac{k}{2}}), o(\sqrt{n})\}$ noise per entry then there exists an adversary \mathbf{G} that w.h.p. can construct \hat{x} with $d_{\text{Hamming}}(\hat{x}, x) = o(n)$.

Theorem [De'12]: Stronger result with L₁attack

Extension to Boolean Functions

(1,1,1)

Fact: Every function $f : \{0,1\}^k \rightarrow \{0,1\}$

can be expressed as a multilinear polynomial of degree $\leq k$

Use Fourier Decomposition

Non-Degenerate Function: A boolean function on k variables is non-degenerate if it can be represented as a multilinear polynomial of degree exactly k

Examples include:

AND, OR, XOR, MAJ, depth k decision trees

Examples:

 \Box AND function: $x_1 \times \ldots \times x_k$

 \Box OR function: $1 - (1 - x_1) \times \ldots \times (1 - x_k)$

Adversary gets distorted $F(a_1, a_2, x), F(a_1, a_3, x), \ldots, F(a_{d-1}, a_d, x)$

d+1 attributes

Theorem [KRS10]: Let $f : \{0,1\}^3 \rightarrow \{0,1\}$ be a non-degenerate function. Consider an algorithm releasing F evaluated on every pair of columns from $\{a_1, \ldots, a_d\}$ with x. L₂-attack: If for every database D, the algorithm adds $\min\{o(\sqrt{d}, o(\sqrt{n})\}$ noise to each release

There exists an adversary **G** that can w.h.p. construct \hat{x} with $d_{\text{Hamming}}(\hat{x}, x) = o(n)$.

There exists an adversary **G** that can w.h.p. construct \hat{x} with $d_{\text{Hamming}}(\hat{x}, x) = o(n)$.

Also generalizes to boolean function with more variables

Lower Bounds for Privately Releasing M-estimators

M-estimators (Emp. Risk. Min.)

Let $x_1, \ldots, x_n \in \mathcal{R}^k$ be n data points

Loss func: Let $\ell(\theta; x_i)$ measure the "fit" of the parameter $\theta \in \mathcal{R}^k$ to x_i

The M-estimator
$$\hat{\theta}$$
 is
= $\operatorname{argmin}_{\theta} \sum_{i=1}^{n} \ell(\theta; x_i)$

e.g.,

$$\hat{\theta} = \operatorname{argmin}_{\theta} \sum ||x_i - \theta||_1$$

 $\hat{\theta} = \operatorname{argmin}_{\theta} \sum ||x_i - \theta||_2^2$

M-estimators (Emp. Risk. Min.)

Let $x_1, \ldots, x_n \in \mathcal{R}^k$ be n data points

Loss func: Let $\ell(\theta; x_i)$ measure the "fit" of the parameter $\theta \in \mathcal{R}^k$ to x_i

The M-estimator
$$\hat{\theta}$$
 is

$$= \operatorname{argmin}_{\theta} \sum_{i=1}^{n} \ell(\theta; x_i)$$
e.g.,
 $\hat{\theta} = \operatorname{argmin}_{\theta} \sum ||x_i - \theta||_1$
 $\hat{\theta} = \operatorname{argmin}_{\theta} \sum ||x_i - \theta||_2^2$

If loss function ℓ is differentiable, then $\hat{ heta}$ can be obtained by

$$\frac{\partial}{\partial \theta} \sum_{i=1}^{n} \ell(\theta; x_i) = 0$$

Look at Logistic Regression (k = 1)

$$a_1 a_2 \dots a_d x$$

The logistic regression parameter θ_1 between column a_1 and x is

$$\begin{bmatrix} \log\left(\frac{\zeta_1}{1-\zeta_1}\right) \\ \vdots \\ \log\left(\frac{\zeta_n}{1-\zeta_n}\right) \end{bmatrix} = a_1 \theta_1 \text{ where } \zeta_i = \Pr[x_i = 1]$$

Look at Logistic Regression (k = 1)

MLE estimate $\hat{ heta}_1$ of $heta_1$ is:

$$\begin{bmatrix} -a_1^\top - \mathbf{j} \\ x \end{bmatrix} + \begin{bmatrix} -a_1^\top - \mathbf{j} \\ \frac{1 + \exp(\hat{\theta}_1 a_{1_1})}{\exp(\hat{\theta}_1 a_{1_n})} \\ \frac{1 + \exp(\hat{\theta}_1 a_{1_n})}{\exp(\hat{\theta}_1 a_{1_n})} \end{bmatrix} = \mathbf{0}$$

from
$$\hat{\theta}_1$$
:

$$\begin{pmatrix}
a_1^\top \\
\vdots \\
x \\
+
\end{pmatrix}
\begin{bmatrix}
a_1^\top \\
\vdots \\
a_1 \\
\vdots \\
a_1 \\
\vdots \\
exp(\hat{\theta}_1 a_{1_n}) \\
\vdots \\
exp(\hat{\theta}_1 a_{1_n})
\end{bmatrix} = \mathbf{C}_1$$

 $\frac{1 + \exp(\hat{\theta}_1 a_{1_1})}{\exp(\hat{\theta}_1 a_{1_1})}$ $\left(\begin{array}{c}a_{1}\\a_{2}^{\top}\\\end{array}\right)\left[x\right]$ from $\hat{ heta}_1$: from $\hat{ heta}_2$: $\left(a_{1}^{\top}a_{2}^{\top}+
ight)$ $1 + \exp(\hat{\theta}_2 a_{21})$ $\exp(\hat{\theta}_2 a_{2_1})$ $1 + \exp(\hat{\theta}_2 a_{2n})$

 $\frac{1 + \exp(\hat{\theta}_1 a_{1_1})}{\exp(\hat{\theta}_1 a_{1_1})}$ $\frac{1 + \exp(\hat{\theta}_1 a_{1_n})}{1 + \exp(\hat{\theta}_1 a_{1_n})}$ $a_1^\top a_2^\top a_3^\top$ $\left(a_1^\top a_2^\top a_3^\top \dots\right)$ $\begin{array}{l} \operatorname{from} \hat{\theta}_1 \\ \operatorname{from} \hat{\theta}_2 \\ \operatorname{from} \hat{\theta}_3 \end{array}$ |x| $\exp(\hat{\theta}_1 a_{1n})$ + $1 + \exp(\hat{\theta}_2 a_{2_1})$ $\exp(\hat{\theta}_2 a_{2_1})$ $1 + \exp(\hat{\theta}_2 a_{2n})$ $\exp(\hat{\theta}_2 a_{2n})$ $1 + \exp(\hat{\theta}_3 a_{3_1})$ $\exp(\hat{\theta}_3 a_{3_1})$ $1 + \exp(\hat{\theta}_3 a_{3n})$ $\exp(\hat{\theta}_3 a_{3n})$

= 0

 $\left(a_1^\top a_2^\top a_3^\top \dots \right)$

from $\hat{\theta}_1$: from $\hat{\theta}_2$: from $\hat{\theta}_3$:

Linear system of the form: Ax + b = 0

 \mathcal{X}

 a_1

Slight issue is that adversary gets noisy M-estimators $\hat{\theta}_1, \ldots, \hat{\theta}_d$ and not the noisy version of vector Ax + b = 0

But, this can be come by using Lipchitz-ness of the function

 $1 + \exp(\hat{\theta}_1 a_{1_1})$ $\exp(\hat{\theta}_1 a_{1_1})$ $+\exp(\hat{\theta}_1 a_{1n})$ $\exp(\hat{\theta}_1 a_{1n})$ $1 + \exp(\hat{\theta}_2 a_{2_1})$ $\exp(\hat{\theta}_2 a_{2_1})$ $1 + \exp(\hat{\theta}_2 a_{2n})$ $\exp(\hat{\theta}_2 a_{2n})$ $1 + \exp(\hat{\theta}_3 a_{3_1})$ $\exp(\hat{\theta}_3 a_{3_1})$ $1 + \exp(\hat{\theta}_3 a_{3n})$ $\exp(\hat{\theta}_3 a_{3n})$

Theorem [KRS10]: Consider an algorithm that releases that releases the parameters of the logistic regression model each between column in $\{a_1, \ldots, a_d\}$ with x. Let $d \ge 2n$. L₂-attack: If for every database D, the algorithm adds $o(1/\sqrt{n})$ noise to each parameter

There exists an adversary \mathbf{G} that can w.h.p. construct \hat{x} with $d_{\text{Hamming}}(\hat{x}, x) = o(n)$.

Theorem [KRS10]: Consider an algorithm that releases that releases the parameters of the logistic regression model each between column in $\{a_1, \ldots, a_d\}$ with x. Let $d \ge 2n$. L₂-attack: If for every database D, the algorithm adds $o(1/\sqrt{n})$ noise to each parameter

There exists an adversary ${\bf G}$ that can w.h.p. construct \hat{x} with $d_{\mathrm{Hamming}}(\hat{x},x)=o(n).$

Attack & analysis works for any differentiable M-estimators

Wrapping Up

- We use linear reconstruction attack to obtain privacy lower bounds for two natural and broad classes of functions
- **Boolean functions:** Marginals, Decision tree error rates
- **Differentiable M-estimators:** Linear and Logistic regression parameters
- These bounds are tight under this loose notion of privacy

Open Questions

- 1) Lower bounds for non-differentiable M-estimators (like median)
- 2) Non-linear attacks??