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Database D 
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Database D 

Informally: How much distortion is needed in f(D),  
 to guarantee the privacy of D’s entries?     

         f                                         privately 
f could be the 
 
1.  average function 
2.  correlation function 
3.  classifier  
…… 
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Reconstruction Attacks [DN’03,DMT’07,DY’08,KRSU’10,D’12,KRS’13]  
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Reconstruction attack implies a lower bound on 
distortion for any reasonable notion of privacy 

  What is a Reconstruction Attack? 

Private (??) 
Algorithm …

...
 

   

 D 

Adversary 

f 

  f(D) + noise 
     ≈  D 
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q   Linear reconstruction attacks work surprisingly in many settings 

•  Marginal tables 

•  Decision tree classification rate 

•  Linear and Logistic regression parameters 

•  M-estimators 

•  ….. 

q Analysis of the attacks under distributional assumptions on data 

  Talk Summary 
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Reconstruction Attacks [DN’03,DMT’07,DY’08,KRSU’10,D’12,KRS’13]  
 

 
 
 
	

 
 
 
 

 
	


[DN’03]: Answering “too many” subset sum queries “too accurately” 
allows an adversary to reconstruct database almost entirely 

	


Private (??) 
Algorithm 
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…
...

 
   

 D      ≈  D 

  Privacy Requires Distortion 

Adversary 

f 

  f(D) + noise 
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  Reconstruction Attacks [DN’03] 

Concrete Setting: n users, each with secret  

 

Inner-product Query: for                            , let 

+ + Private 
Algorithm 
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 Reconstruction Attacks [DN’03] 

Concrete Setting: n users, each with secret  

 

Inner-product Query: for                            , let 

+ + Adversary ≈ Private 
Algorithm 

m such releases 
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 Reconstruction Attacks [DN’03] 

Concrete Setting: n users, each with secret  

 

Inner-product Query: for                            , let 

+ 

  Theorem [DN’03] (Informal): If              releases each with            noise 
   then there exists an adversary with              

+ Adversary ≈ Private 
Algorithm 

m such releases 
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 Reconstruction Attacks [DN’03] 

Concrete Setting: n users, each with secret  

 

Inner-product Query: for                            , let 

+ 

 
•  Which queries                      allow reconstruction? 
•  Number of queries? 
•  Running time? 

+ Adversary ≈ Private 
Algorithm 

m such releases 
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Our Results: 
 
Using linear reconstruction attacks to obtain privacy lower 
bounds for natural, symmetric queries 
 
Ø  [KRSU’10] marginal (contingency) tables 
• Each person’s data is a row in a table 
• k-way marginal: distribution of some k attributes 
 
Ø  [KRS’12] regression analysis, decision tree classifiers, boolean 

functions 
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Linear Reconstruction Problem [DMT’07,DY’08] 

 + 

…
.. 

= 

Natural approach:  
• p=2: gives least squares method 
• p=1: gives LP decoding method 

 Unknown error vector 

…
.. 

Let      be a real-valued matrix and    be an unknown error vector 
Problem: Given                                       construct             . 
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  Least Squares Attack (L2-attack) [DY’08]  

Let                                   be the singular value decomposition of  

 
Define        (pseudo-inverse of    ) 
 
Attack: Define                         where 	
 	


	
 	
 	
 	
 	
    	

	
 	
 	
 	
	

	
 	
 	
 	
1 if the ith element of  	
 	
	

	
 	
 	
               	
 	
 	

	
 	
 	
 	
0 otherwise 

	


Solving  
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Let                                   be the singular value decomposition of  

 
Define        (pseudo-inverse of    ) 
 
Attack: Define                         where 	
 	


	
 	
 	
 	
 	
    	

	
 	
 	
 	
	

	
 	
 	
 	
1 if the ith element of  	
 	
	

	
 	
 	
               	
 	
 	

	
 	
 	
 	
0 otherwise 

	


Solving  

Proof idea: 

If the least singular value of A is “sufficiently big”, then    is close to  

  Least Squares Attack (L2-attack) [DY’08]  
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Error 
vector   

Fraction of   
Recovered 

 

Condition on  Pluses Minuses 

Least 
Squares 
Method 

All 
entries 

          

 
1 - o(1) 

Least singular value   
                 

 
LP 

Decoding 
Method 

At least   
 

frac. 
entries 

    

 
 

1 - o(1) 

    
Least singular value  

                 
and Euclidean 

section property 

can 
tolerate 
bigger 
error 

vector 

stronger 
condition on A, 

and costlier 
running time 

Both L1- and L2-attacks well understood 
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Over 60 Smoking Exercise High Blood 
Pressure 

0 1 0 1 
1 1 0 1 
1 0 1 0 
1 0 0 1 
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    Database D: Table of values for n individuals on d+1 attributes    	

	

     

  D =  

                     Alice 
      Bob 

    Charlie 
       Dave 

     Non-sensitive   
   Sensitive 

available to the 
adversary secret 

  Input Setting 
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  Reconstruction from Marginals [KRSU’10] 

….. n people 

d+1 attributes 

   noisy 
release adversary ≈ 

Releasing 2-way marginals 
2-way marginals include  

- Solve  
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  Reconstruction from Marginals [KRSU’10] 

….. n people 

d+1 attributes 

adversary ≈ 

Releasing 3-way marginals 
3-way marginals include  

- Solve  

   noisy 
release 
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  Analysis  

Idea: Assume non-sensitive information are i.i.d. 

Spectrum of Correlated Random Matrices 

Key lemma for 3-way marginals: 
Let each of the      be an i.i.d. (0-1) random vector with                . 

Then w.h.p. the least singular value of matrix     is           .  
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  Analysis 

Spectrum of Correlated Random Matrices 

Key lemma for k+1-way marginals: 
Let each of the      be an i.i.d. (0-1) random vector with              . 

Then w.h.p. the least singular value of matrix     is              .  
       
 

Idea: Assume non-sensitive information are i.i.d. 
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Theorem [KRSU’10]:  If an algorithm always releases (k+1)-way 
marginals with  	
 	
                 noise per entry then there 	


exists an adversary      that w.h.p. can construct    with                 	
	


Releasing k+1-way marginal tables 

….. Database of n people 

d+1 attributes 
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Theorem [KRSU’10]:  If an algorithm always releases (k+1)-way 
marginals with  	
 	
                 noise per entry then there 	


exists an adversary      that w.h.p. can construct    with                 	
	


Releasing k+1-way marginal tables 

….. Database of n people 

d+1 attributes 

Theorem [De’12]: Stronger result with L1attack 
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  Extension to Boolean Functions 

(+1,−1,+1) 

(1,1,1) 

(0,0,0) 

Fact: Every function  

                 
can be expressed as a multilinear 

polynomial of degree ≤ k 

    Use Fourier Decomposition 
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Examples: 

q  AND function: 

q  OR function: 

24 

Non-Degenerate Function: A boolean function on k variables is  
non-degenerate if it can be represented as a multilinear polynomial 

of degree exactly k  

Examples include: 

AND, OR, XOR, MAJ, depth k decision trees 
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Remember 3-way marginal between columns     ,    , and    is 

 

Adversary gets distorted  

 

  Evaluating Boolean Functions (k = 3) 

….. Database of n people 

d+1 attributes 
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Remember 3-way marginal between columns     ,    , and    is 

 

Adversary gets distorted  

For a general function                                    , let 

 

 

Adversary gets distorted  

 

….. Database of n people 

d+1 attributes 

  Evaluating Boolean Functions (k = 3) 
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Theorem [KRS10]: Let                                   be a non-degenerate 
function. Consider an algorithm releasing F evaluated on every 

pair of columns from                       with    .  
L2-attack: If for every database D, the algorithm adds  

                              noise to each release 
 

There exists an adversary        that can w.h.p. construct            
   

 
 

with 

….
. 

Database of n people 

d+1 attributes 
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Also generalizes to boolean function with more variables 

….
. 

Database of n people 

d+1 attributes 

Theorem [KRS’10]: Let                                   be a non-degenerate 
function. Consider an algorithm releasing F evaluated on every 

pair of columns from                       with    .  
L2-attack: If for every database D, the algorithm adds  

                              noise to each release 
 

There exists an adversary        that can w.h.p. construct            
   

 
 

with 
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Lower Bounds for 	

Privately Releasing M-estimators	
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Let                                be n data points 

Loss func:  Let              measure the “fit” of the parameter              to  

  The M-estimator    is 

   = 

 
  =  

 
        = 

e.g., 

 M-estimators (Emp. Risk. Min.) 
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Let                                be n data points 

Loss func:  Let              measure the “fit” of the parameter              to  

  The M-estimator    is 

   = 

If loss function l is differentiable, then    can be obtained by 

    

 
  =  

 
        = 

e.g., 

 M-estimators (Emp. Risk. Min.) 
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  Look at Logistic Regression (k = 1) 

….. 

 The logistic regression parameter     between column      and     is 

…
. where       =   
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  Look at Logistic Regression (k = 1) 

MLE estimate      of       is: 

 + …
. = 0 

To estimate     : 
1)  Take MLE 
2)  Set grad. of MLE = 0 

….. 
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from      : = 0 

  Logistic Regression: Linear Reconstruction 

…
 

 + 
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from      : 
from      : 

= 0 

  Logistic Regression: Linear Reconstruction 

…
 

…
 

 + 
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 + 

from      : 
from      : 
from      : 

= 0 

  Logistic Regression: Linear Reconstruction 

…
 

…
 

…
 

…
. 

…. 

…
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 + 

from      : 
from      : 
from      : 

= 0 

  Logistic Regression: Linear Reconstruction 

…
 

…
 

…
 

…
. 

…. 

…
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 + 

Linear system of the form: 

from      : 
from      : 
from      : 

= 0 

 Slight issue is that adversary gets noisy  
    M-estimators                    and not the noisy         

              version of vector 
  

 But, this can be come by using  
     Lipchitz-ness of the function 

  Logistic Regression: Linear Reconstruction 

…
 

…
 

…
 

…
. 

…. 

…
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Theorem [KRS10]: Consider an algorithm that releases that 
releases the parameters of the logistic regression model each 

between column in                       with   . Let              . 
L2-attack: If for every database D, the algorithm adds  

          noise to each parameter 
        

There exists an adversary        that can w.h.p. construct       
           with  

….
. 

Database of n people 

d+1 attributes 

  Logistic Regression Results 
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Theorem [KRS10]: Consider an algorithm that releases that 
releases the parameters of the logistic regression model each 

between column in                       with   . Let              . 
L2-attack: If for every database D, the algorithm adds  

          noise to each parameter 
        

Attack & analysis works for any differentiable M-estimators 

….
. 

Database of n people 

d+1 attributes 

There exists an adversary        that can w.h.p. construct       
           with  

  Logistic Regression Results 
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We use linear reconstruction attack to obtain privacy lower bounds for 
two natural and broad classes of functions 

Boolean functions: Marginals, Decision tree error rates 

Differentiable M-estimators: Linear and Logistic regression parameters 

These bounds are tight under this loose notion of privacy 
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Open Questions 
 
1)  Lower bounds for non-differentiable M-estimators (like median) 
2)  Non-linear attacks?? 
 
 
 
  	

 	


	


  Wrapping Up 


