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Database D




. f could be the
privately
1. average function
2. correlation function
3. classifier

-

Database D

Informally: How much distortion is needed in f(D),
to guarantee the privacy of D’s entries?



What is a Reconstruction Attack?

Reconstruction Attacks [DN'03,DMT'07,DY'08,KRSU’10,D0’'12,KRS'13]

>

Private (??) D

Algorithm T D

T D : >

5 S D1 + noise S
D D=D

Reconstruction attack implies a lower bound on
distortion for any reasonable notion of privacy




Talk Summary

Q Linear reconstruction attacks work surprisingly in many settings
* Marginal tables
 Decision tree classification rate
 Linear and Logistic regression parameters

e M-estimators

O Analysis of the attacks under distributional assumptions on data




Privacy Requires Distortion

Reconstruction Attacks [DN'03,DMT'07,DY’'08,KRSU’10,D’12,KRS'13]

>

Private (??) D

Algorithm T D

—— D1 + noise S
D D=D

(DN'03]: Answering “too many” subset sum queries “too accurately”
allows an adversary to reconstruct database almost entirely




Reconstruction Attacks [DN'03]

Concrete Setting: n users, each with secret z; € {0,1}

Inner-product Query: for S € {—1,1}" let fs(z) = (S, z)
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Reconstruction Attacks [DN'03]

Concrete Setting: n users, each with secret z; € {0, 1}

Inner-product Query: for S € {—1,1}" let fs(z) = (S, z)

Private
Algorithm Adversary T

U

Theorem [DN’03] (Informal): If m =~ nreleases each with o(1/n) noise
then there exists an adversary with di,mming (2, ) = o(n).




Reconstruction Attacks [DN'03]

Concrete Setting: n users, each with secret z; € {0, 1}

Inner-product Query: for S € {—1,1}" let fs(z) = (S, z)

m such relex

f S (Qj )-|- Adversary j\j

U
=

Private
S y Algorithm
xr

[ ]
\Q(a:l,...,xn)

* Which queries 51, ..., S,,allow reconstruction?
* Number of queries?
* Running time?
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Our Results:

Using linear reconstruction attacks to obtain privacy lower
bounds for natural, symmetric queries

> [KRSU'10] marginal (contingency) tables
e Each person’s data is a row in a table
e k-way marginal: distribution of some k attributes

> [KRS'12] regression analysis, decision tree classifiers, boolean
functions




Linear Reconstruction Problem [DMT'07,DY'08]

Let A be areal-valued matrix and e be an unknown error vector
Problem: Givenz ~ Ax(z = Ax + e) construct z ~ .

Unknown error vector

S1
S2

2| T A 4+ |€
Sm ~ in

I — —11 X 1D . 27N

Natural approach: & = argmin ||z — Az||,
*p=2: gives least squares method
ep=1: gives LP decoding method




Least Squares Attack (L,-attack) (py'os]

Solving min, ||z — Ax||2

Let A = U x 3 x V' be the singular value decomposition of A
Define 4;,,, =V x 27! x U '(pseudo-inverse of A)

Attack: Define & = (24, . .., T, ) Where

/

1if the ithelement of 4;,,z >

8
|
A
DN | —

0 otherwise

o




Least Squares Attack (L,-attack) (py'os]
Solving min, ||z — Ax||2
Let A = U x 3 x V' be the singular value decomposition of A

Define 4;,,, =V x 27! x U '(pseudo-inverse of A)

Attack: Define & = (24, . .., T, ) Where
~ 1
1if the itrelement of 4;,,z > =
N 2
T; =<
0 otherwise
N

Proof idea:

If the least singular value of A is “sufficiently big”, then Z is close tox
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Both L.- and L,-attacks well understood

Error  Fraction of Conditionon A Pluses Minuses
vector Recovered
€ Xz
Least All Least singular value
Squares  entries 1-o0(1)
> 4/
Method < v/n Z vim
At least can stronger
LP 1 —7 Least singular value tolerate  condition on A,
Decoding  frac. 1-0(1) > \/m bigger and costlier
Method entries and Euclidean error running time

<Vn section property vector




Input Setting

Over 60 | Smoking Exercise High Blood

Pressure
Alice 0 1 0 1
D= Bob 1 1 0 1
Charlie 1 0 1 0
Dave 1 0 0 1
\ } |

Y . Sensitive
available to the o o Non-sensitive o ©
adversary m

Database D: Table of values for n individuals on d+1 attributes

O



Reconstruction from Marginals (KRsU'10]

B

npeople = |Q1] .. aql | Noisy N
release 2

d+1 attributes

Releasing 2-way marginals

2-way marginals include (a1, x), (a2, ), ..., (a4, T)
TN T
1 Y
ay

Solve argmin,, > | - A T —_— |




Reconstruction from Marginals (KRsU'10]

B

npeople = |Q1] .. aql | Noisy N
release 2

d+1 attributes
Releasing 3-way marginals

3-way marginals include (a1 ® a3, x), (a1 ® a3, x),...,{ag_1 © ag, x)
® = Hadarmard product (entry-wise product)

—~ ~
(a1 ®az)' | —~

) (a1 ® CL3)T
Solve argmin,, > | - A T —_— |

_
) (a1 ©aq) ) D




Analysis

\dea: Assume non-sensitive information are i.i.d.
Spectrum of Correlated Random Matrices

/Key lemma for 3-way marginals: \

Let each of the @; be an i.i.d. (0-1) random vector withd > /n .

— ~
(a1 @®az)’

(a1 ®asz)’

A

K(azd_l @ a:d); (Z) X N

\ Then w.h.p. the least singular value of matrix A is 2(d). /




Analysis

\dea: Assume non-sensitive information are i.i.d.
Spectrum of Correlated Random Matrices

Key lemma for k+1-way marginals:

Let each of the a; be ani.i.d. (0-1) random vector withd > n*.
(a1 @az--®ap)T M

ol o

(a1 ®ag--®ags1)'

A

K(ad—k: ©adg—k+1° O ad);/d) -
\K .
Then w.h.p. the least singular value of matrix A is 2(d2 ). /
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Database of n people <4 (1| ... adl x

Releasing k+1-way marginal tables d+1 attribites

-

3

Theorem [KRSU’10]: If an algorithm always releases (k+1)-way
marginals with min{o(dg), o(v/n)} noise per entry then there
exists an adversaryg—}l that w.h.p. can construct I with

dHamming(@v z) = o(n).

~
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Database of n people <4 (1| ... adl x

Releasing k+1-way marginal tables d+1 attribites

-

3

Theorem [KRSU’10]: If an algorithm always releases (k+1)-way
marginals with min{o(d2),o(v/n)} noise per entry then there
exists an adversaryg—}l that w.h.p. can construct I with

dHamming(@v z) = o(n).

~

4

Theorem [De’12]: Stronger result with L,attack




Extension to Boolean Functions

(0,0,0)

) 4

4

£

(1,1,1)
»
Fact: Every function
f:{0,1}* — {0,1}

can be expressed as a multilinear
polynomial of degree <k

N

Use Fourier Decomposition




Non-Degenerate Function: A boolean function on k variables is
non-degenerate if it can be represented as a multilinear polynomial
of degree exactly k

Examples include:

AND, OR, XOR, MAJ, depth k decision trees

Examples:

1 AND function: 1 X ... X Tk

QA OR function:1 — (1 —z1) X ... X (1 — xp)




Evaluating Boolean Functions (k = 3)

Database of n people - |41 ... [Ad|
T : j
d+1 attributes
Remember 3-way marginol between columnsaq,as, and xis
a,1®a2, Zal X Qg; X I;

Adversary gets distorted (a1 ® aq,x), (a1 ® as,z),...,{(ag—1 © aq,x)




Evaluating Boolean Functions (k = 3)

Database of n people - |41 ... [Ad|

\ ]
i
d+1 attributes

Remember 3-way marginol between columnsai,as, and xis

a,1®a2, E ai; X ag;, X I;

Adversary gets distorted (a1 ® az, z), (a1 ®as,x),...){ag_1 ® aq,T)

For a general function f : {0,1}° — {0,1}, let

a'17a’27 § f Cll CLQ 7332

Adversary gets distorted F'(a1, a2, x), F'(a1,as,x), ..., F(aj—1,aq, )



Database of n people 4 (41 [z

d+1 ot!cributes
Theorem [KRS10]: Let f : {0,1}% — {0,1}be a non-degenerate
function. Consider an algorithm releasing F evaluated on every
pair of columns from {a1, ..., aq} with .
L,-attack: If for every database D, the algorithm adds
min{o(V/d, o(y/n)} noise to each release

There exists an adversary ¥~ that can w.h.p. construct &

- 4




Database of n people 4 (41 [z

d+1 ot!cributes
Theorem [KRS'10]): Let f : {0,1}° — {0, 1}be a non-degenerate
function. Consider an algorithm releasing F evaluated on every
pair of columns from {a1, ..., aq} with .
L,-attack: If for every database D, the algorithm adds
min{o(V/d, o(y/n)} noise to each release

There exists an adversary ¥~ that can w.h.p. construct &

K Also generalizes to boolean function with more variables /
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M-estimators (Emp. Risk. Min.)

Let z1,...,x, € R* be n data points

Loss func: Let 4(6; z;) measure the “fit” of the parameter § € R*to x;

e.

§ = argming Y. ||z; — 0|1

£ § = argming > [lz; — 6]

Q

The M-estimator é IS

= argmin, Z 0(0; x;)




M-estimators (Emp. Risk. Min.)

Let z1,...,x, € R* be n data points

Loss func: Let 4(6; z;) measure the “fit” of the parameter § € R*to x;

e.

Q

The M-estimator é IS "

. 0 = argming > ||z; — 0|1
= argminyg ZE(@;Q:Z-) ~ .
2 § = argming 3 [lz: — 0]

I loss function ¢ is differentiable, then § can be obtained by
% Z?:l €(9§ 377,) =0




Look at Logistic Regression (k = 1)

The logistic regression parameter ¢ between column a;and X is

~ N

log ( 151@“1 )

=a1601 where (; = Pr[z; = 1]




Look at Logistic Regression (k = 1)

To estimate 65
----- A T 1) Take MLE

2) Set grad. of MLE=0

/‘

1+eXp(é1a11 )
eXp(Hlall)

1—}—eXp(é1 aln )
exp(fiai,,)

/

-




Logistic Regression: Linear Reconstruction

1—|—eXI:)A(é]_ ai ., )
exp(fiai,,)

A T s 1+expiai,)
from 6: o B [CLI ] [expgélau)J = O
0 "




Logistic Regression: Linear Reconstruction

A T [ ) q+eXp(é1a11)\
from 91 / a,%_ \ [a/;l_a,;_ ] eXp(élall) s O
from 0: Qo 14+EXP(G1as,) ™
T + >eXp(9 1a1 )<
1—}—8Xp(0 as
eXp(egaz )
\ ./ L) 1+ex15(éga2n)

\_€XDP(0z2az,,) _J




Logistic Regression: Linear Reconstruction

A T s q+exp(éla11)\
from 6: 4 a,% B [aIaQT ag— ] exp(diar,) - O
from 0y g i 122}51(39(61%? —
4 T 141,
from @5: Qs + >1+exp(92a21)<
é eXp(egazl)
\ -/ \ J 1—|—eXp(62a2n)
>eXp(02a2n) <
1—|—eXp(93a31
eXp(03a31)
1—|—eXp(93CL3n
>9XP(93a3n) <




Logistic Regression: Linear Reconstruction

from (9:1:
from 05:
from 05:

q+eXp(é1 a1, )\

eXp(él all)

1—|—eXp(61 aln

>€Xp(91a1n) <

1—}—eXp(02a21 )
eXp(Og asz, )

1—|—eXp(62 agn )

>€Xp(92 as,, ) <

1—|—eXp(93a31
eXp(03a31 )

1—|-eXp(93 a3n

>€Xp(03a3n) <




Logistic Regression: Linear Reconstruction

P T f1+exp(éla11)\
from Ql / a,%_ \ ] exp(él ai,) -
from 65: Ao 4 LHexXp(diar,) "
A T eXp(Olaln)
from @5: (s >1+eXp(02a21)<
exp(egazl)
\ ./ 1—|—6Xp(92a2n)
A >eXp(92azn) <
1—|—eXp(93a31
exp(03a31)
. 1—|—eXp(93a3n
Linear system of the form: Az +b =0 MEXP(Bs3,) 4
Slight issue is that adversary gets noisy

M-estimators ¢, . ... 4, and not the noisy
version of vector Ax +b =20

But, this can be come by using
Lipchitz-ness of the function




Logistic Regression Results

Database of n people 4 |4 ez

T L |
T

P P | n++rih|w|(£\
/ UUUUUUUUU

Theorem [KRS10]: Consider an algorithm that releases that
releases the parameters of the logistic regression model each
between column in {a1,--.,aq} withz. Letd > 2n.
L,-attack: If for every database D, the algorithm adds

o(1/y/n)noise to each parameter

There exists an adversary . that can w.h.p. construct

K with dHamming(aAj?x) = o(n). /
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Logistic Regression Results

Database of n people 4 |4 ez

"L |
T

P P | n++rih|w|(£\
/ UUUUUUUUU

Theorem [KRS10]: Consider an algorithm that releases that
releases the parameters of the logistic regression model each
between column in {a1,- .., a4} withz. Letd > 2n.
L,-attack: If for every database D, the algorithm adds

o(1/y/n)noise to each parameter

There exists an adversary B that can w.h.p. construct &
with dHamming(aAj?x) = o(n).

Attack & analysis works for any differentiable M-estimators




Wrapping Up

We use linear reconstruction attack to obtain privacy lower bounds for
two natural and broad classes of functions

Boolean functions: Marginals, Decision tree error rates
Differentiable M-estimators: Linear and Logistic regression parameters

These bounds are tight under this loose notion of privacy

Open Questions

1) Lower bounds for non-differentiable M-estimators (like median)
2) Non-linear attacks??




