Completely Log-Concave Polynomials and Distributions

Speaker: Nima Anari

Exercises
(P1) Homogenization of Completely Log-Concave Polynomials
Suppose that $f\left(z_{1}, \ldots, z_{n}\right)=f_{0}+f_{1}+\cdots+f_{d}$, where f_{k} is a k-homogeneous polynomial in z_{1}, \ldots, z_{n}. Prove that f is completely log-concave if and only if the following polynomial in the variables y and z_{1}, \ldots, z_{n} is completely log-concave:

$$
\frac{y^{d}}{d!} f_{0}+\frac{y^{d-1}}{(d-1)!} f_{1}+\cdots+\frac{y^{0}}{0!} f_{d} .
$$

(P2) Universality of Log-Concavity for Homogeneous Polynomials
Suppose that $f\left(z_{1}, \ldots, z_{n}\right)$ is a d-homogeneous polynomial with nonnegative coefficients. Prove that the following are equivalent:
(a) f is log-concave over $\mathbb{R}_{\geq 0}^{n}$.
(b) $f^{1 / d}$ is concave over $\mathbb{R}_{\geq 0}^{n}$.
(c) f is quasi-concave over $\mathbb{R}_{\geq 0}^{n}$, that is $f^{-1}([1, \infty)) \cap \mathbb{R}_{\geq 0}^{n}$ is a convex set.

(P3) Univariate and Multiaffine Bivariate Polynomials

Prove that the polynomial $a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{d} z^{d}$ is completely log-concave if and only if $0!\cdot a_{0}, 1!\cdot a_{1}, \ldots, d!\cdot a_{d}$ is a log-concave sequence.
For what a, b, c, d is the polynomial $a+b z_{1}+c z_{2}+d z_{1} z_{2} \in \mathbb{R}\left[z_{1}, z_{2}\right]$ completely log-concave?
Prove that if $S \subseteq[n]$ is a random subset whose distribution is completely log-concave, then for every pair of distinct elements $i, j \in[n]$

$$
\mathbb{P}[i, j \in S] \leq 2 \mathbb{P}[i \in S] \mathbb{P}[j \in S]
$$

(P4) Coefficient Products

Suppose that $f, g \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ are completely log-concave polynomials. Let h be defined such that for every $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$

$$
\left.\partial_{z_{1}}^{\alpha_{1}} \cdots \partial_{z_{n}}^{\alpha_{n}} h\right|_{z=0}=\left(\left.\partial_{z_{1}}^{\alpha_{1}} \cdots \partial_{z_{n}}^{\alpha_{n}} f\right|_{z=0}\right) \cdot\left(\left.\partial_{z_{1}}^{\alpha_{1}} \cdots \partial_{z_{n}}^{\alpha_{n}} g\right|_{z=0}\right) .
$$

Prove that h is completely log-concave in the following cases: $n=1$, or when $n=2$ and f, g are homogeneous. Give an example outside of these cases where h is not completely log-concave.

Completely Log-Concave Polynomials and Distributions

Speaker: Nima Anari

(P1) Products
Prove that when $f, g \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ are completely log-concave, then so is $f \cdot g$.

(P2) Operators Preserving Complete Log-Concavity

Prove that if $T: \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]_{\leq 1} \rightarrow \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ is a linear map that preserves real-stability and maps polynomials with nonnegative coefficients to polynomials with nonnegative coefficients, then T preserves complete log-concavity.

Hint: Prove that if the symbol of T is completely log-concave, then T preserves complete log-concavity.

