Geometry of Polynomials Bootcamp

Winter 2019

Exercises

Completely Log-Concave Polynomials and Distributions

Speaker: Nima Anari

(P1) Homogenization of Completely Log-Concave Polynomials

Suppose that $f(z_1, ..., z_n) = f_0 + f_1 + \cdots + f_d$, where f_k is a *k*-homogeneous polynomial in $z_1, ..., z_n$. Prove that *f* is completely log-concave if and only if the following polynomial in the variables *y* and $z_1, ..., z_n$ is completely log-concave:

$$\frac{y^d}{d!}f_0 + \frac{y^{d-1}}{(d-1)!}f_1 + \dots + \frac{y^0}{0!}f_d$$

(P2) Universality of Log-Concavity for Homogeneous Polynomials

Suppose that $f(z_1,...,z_n)$ is a *d*-homogeneous polynomial with nonnegative coefficients. Prove that the following are equivalent:

- (a) *f* is log-concave over $\mathbb{R}^{n}_{\geq 0}$.
- (b) $f^{1/d}$ is concave over $\mathbb{R}^n_{>0}$.
- (c) f is quasi-concave over $\mathbb{R}^n_{>0}$, that is $f^{-1}([1,\infty)) \cap \mathbb{R}^n_{>0}$ is a convex set.

(P3) Univariate and Multiaffine Bivariate Polynomials

Prove that the polynomial $a_0 + a_1z + a_2z^2 + \cdots + a_dz^d$ is completely log-concave if and only if $0! \cdot a_0, 1! \cdot a_1, \ldots, d! \cdot a_d$ is a log-concave sequence.

For what *a*, *b*, *c*, *d* is the polynomial $a + bz_1 + cz_2 + dz_1z_2 \in \mathbb{R}[z_1, z_2]$ completely log-concave?

Prove that if $S \subseteq [n]$ is a random subset whose distribution is completely log-concave, then for every pair of distinct elements $i, j \in [n]$

$$\mathbb{P}[i, j \in S] \le 2\mathbb{P}[i \in S]\mathbb{P}[j \in S].$$

(P4) Coefficient Products

Suppose that $f, g \in \mathbb{R}[z_1, ..., z_n]$ are completely log-concave polynomials. Let *h* be defined such that for every $(\alpha_1, ..., \alpha_n) \in \mathbb{Z}_{\geq 0}^n$

$$\partial_{z_1}^{\alpha_1}\cdots\partial_{z_n}^{\alpha_n}h\big|_{z=0}=\left(\partial_{z_1}^{\alpha_1}\cdots\partial_{z_n}^{\alpha_n}f\big|_{z=0}\right)\cdot\left(\partial_{z_1}^{\alpha_1}\cdots\partial_{z_n}^{\alpha_n}g\big|_{z=0}\right)$$

Prove that *h* is completely log-concave in the following cases: n = 1, or when n = 2 and *f*, *g* are homogeneous. Give an example outside of these cases where *h* is not completely log-concave.

Geometry of Polynomials Bootcamp

Winter 2019

Completely Log-Concave Polynomials and Distributions

Speaker: Nima Anari

Homework

(P1) Products

Prove that when $f, g \in \mathbb{R}[z_1, ..., z_n]$ are completely log-concave, then so is $f \cdot g$.

(P2) Operators Preserving Complete Log-Concavity

Prove that if $T : \mathbb{R}[z_1, \ldots, z_n]_{\leq 1} \to \mathbb{R}[z_1, \ldots, z_n]$ is a linear map that preserves real-stability and maps polynomials with nonnegative coefficients to polynomials with nonnegative coefficients, then *T* preserves complete log-concavity.

Hint: Prove that if the symbol of *T* is completely log-concave, then *T* preserves complete log-concavity.