Completely Log-Concave Polynomials and Distributions

Nima Anari

Continuous

$\mu: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$

Discrete

$$
\mu:\{0,1\}^{n} \text { or } \mathbb{Z}_{\geqslant 0}^{n} \rightarrow \mathbb{R}_{\geqslant 0}
$$

Continuous Land

Algorithmic Primitives

Unnormalized density $\mu: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$ gives rise to probability distribution:

$$
\mathbb{P}[A] \propto \mu(A)=\int_{A} \mu(x) d x
$$

Algorithmic Primitives

Unnormalized density $\mu: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$ gives rise to probability distribution:

$$
\mathbb{P}[A] \propto \mu(A)=\int_{A} \mu(x) d x
$$

\bigcirc Sampling: Produce a sample?

Algorithmic Primitives

Unnormalized density $\mu: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$ gives rise to probability distribution:

$$
\mathbb{P}[A] \propto \mu(A)=\int_{A} \mu(x) d x
$$

D Sampling: Produce a sample?
D Counting: Compute $\int_{\mathbb{R}^{n}} \mu(x) \mathrm{d} x$?

Algorithmic Primitives

Unnormalized density $\mu: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$ gives rise to probability distribution:

$$
\mathbb{P}[A] \propto \mu(A)=\int_{A} \mu(x) d x
$$

\checkmark Sampling: Produce a sample?
D Counting: Compute $\int_{\mathbb{R}^{n}} \mu(x) d x$?
D Optimization: Find the mode?

$\log \mu$ is concave or equivalently

$$
\mu(x)^{\alpha} \mu(y)^{1-\alpha} \leqslant \mu(\alpha x+(1-\alpha) y)
$$

Log-Concave Distributions

Sampling [Dyer-Frieze-Kannan'91, ...]

Efficiently sample к approximately satisfying

$$
\mathbb{P}[\kappa \in A] \propto \mu(A)
$$

using MCMC methods.

$\log \mu$ is concave or equivalently

$$
\mu(x)^{\alpha} \mu(y)^{1-\alpha} \leqslant \mu(\alpha x+(1-\alpha) y)
$$

Log-Concave Distributions

Sampling [Dyer-Frieze-Kannan'91, ...]

Efficiently sample к approximately satisfying

$$
\mathbb{P}[\kappa \in A] \propto \mu(A)
$$

using MCMC methods.

Optimization

The mode of a log-concave distribution can be found by convex programming:

$$
\max _{K} \log (\mu(\kappa)) .
$$

$\log \mu$ is concave or equivalently

$$
\mu(x)^{\alpha} \mu(y)^{1-\alpha} \leqslant \mu(\alpha x+(1-\alpha) y)
$$

Examples of Log-Concave Distributions

indicator of convex set

known distributions e.g., Gaussian density

mix and match

Examples of Log-Concave Distributions

indicator of convex set

known distributions e.g., Gaussian density

mix and match
D Affine transformation.

Examples of Log-Concave Distributions

indicator of convex set

known distributions e.g., Gaussian density

mix and match
D Affine transformation.
D Conditioning/slicing on a coordinate.

Examples of Log-Concave Distributions

indicator of convex set

known distributions e.g., Gaussian density

mix and match

D Affine transformation.

- Conditioning/slicing on a coordinate.

D Marginalization/projection onto a subset of coordinates.

Examples of Log-Concave Distributions

indicator of convex set

known distributions e.g., Gaussian density

mix and match
D Affine transformation.

- Conditioning/slicing on a coordinate.

D Marginalization/projection onto a subset of coordinates.
D Convolution of two log-concave functions.
D Point-wise product of two log-concave functions.

Examples of Log-Concave Distributions

indicator of convex set

known distributions e.g., Gaussian density

mix and match
D Affine transformation.

- Conditioning/slicing on a coordinate.

D Marginalization/projection onto a subset of coordinates.
D Convolution of two log-concave functions.
D Point-wise product of two log-concave functions.

Discrete Land

Algorithmic Primitives

Finite-support measure $\mu: \mathbb{Z}_{\geqslant 0}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$ gives rise to probability distribution:

$$
\mathbb{P}[k] \propto \mu(\kappa)
$$

Algorithmic Primitives

Finite-support measure $\mu: \mathbb{Z}_{\geqslant 0}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$ gives rise to probability distribution:

$$
\mathbb{P}[k] \propto \mu(\kappa)
$$

- Sampling: Produce a sample?

Algorithmic Primitives

Finite-support measure $\mu: \mathbb{Z}_{\geqslant 0}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$ gives rise to probability distribution:

$$
\mathbb{P}[k] \propto \mu(\kappa)
$$

- Sampling: Produce a sample?
D Counting: Compute $\sum_{k \in \mathbb{Z}_{\geqslant 0}^{n}} \mu(\kappa)$?

Algorithmic Primitives

Finite-support measure $\mu: \mathbb{Z}_{\geqslant 0}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$ gives rise to probability distribution:

$$
\mathbb{P}[k] \propto \mu(\kappa)
$$

- Sampling: Produce a sample?
D Counting: Compute $\sum_{\kappa \in \mathbb{Z}_{\geqslant 0}^{n}} \mu(\kappa)$?
\bigcirc Optimization: Find the mode? -

What should be the analog of log-concavity in discrete distributions?

Continuous
 Discrete

Distributions:

Supports:

First Attempt

First Proposal

$$
\mu\left(\kappa_{1}\right)^{\alpha_{1}} \ldots \mu\left(\kappa_{m}\right)^{\alpha_{m}} \leqslant \mu\left(\alpha_{1} \kappa_{1}+\cdots+\alpha_{m} \kappa_{m}\right)
$$

for $\alpha_{1}+\cdots+\alpha_{m}=1$, whenever it makes sense.

1-dimensional case

$$
\mu(\kappa-1) \mu(\kappa+1) \leqslant \mu(\kappa)^{2}
$$

First Attempt

First Proposal

$$
\mu\left(\kappa_{1}\right)^{\alpha_{1}} \ldots \mu\left(\kappa_{m}\right)^{\alpha_{m}} \leqslant \mu\left(\alpha_{1} \kappa_{1}+\cdots+\alpha_{m} \kappa_{m}\right)
$$

for $\alpha_{1}+\cdots+\alpha_{m}=1$, whenever it makes sense.
Problem: Satisfied by any $\mu:\{0,1\}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$.

1-dimensional case

$$
\mu(\kappa-1) \mu(\kappa+1) \leqslant \mu(\kappa)^{2}
$$

First Attempt

First Proposal

$$
\mu\left(\kappa_{1}\right)^{\alpha_{1}} \ldots \mu\left(\kappa_{m}\right)^{\alpha_{m}} \leqslant \mu\left(\alpha_{1} \kappa_{1}+\cdots+\alpha_{m} \kappa_{m}\right)
$$

for $\alpha_{1}+\cdots+\alpha_{m}=1$, whenever it makes sense.
Problem: Satisfied by any $\mu:\{0,1\}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$.
1-D case well-studied in combinatorics:

1-dimensional case

$$
\mu(\kappa-1) \mu(\kappa+1) \leqslant \mu(\kappa)^{2}
$$

First Attempt

First Proposal

$$
\mu\left(\kappa_{1}\right)^{\alpha_{1}} \ldots \mu\left(\kappa_{m}\right)^{\alpha_{m}} \leqslant \mu\left(\alpha_{1} \kappa_{1}+\cdots+\alpha_{m} \kappa_{m}\right)
$$

for $\alpha_{1}+\cdots+\alpha_{m}=1$, whenever it makes sense.
Problem: Satisfied by any $\mu:\{0,1\}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$.
1-D case well-studied in combinatorics:
$D \mu(\kappa)=\kappa$-matchings in a graph.

1-dimensional case

$$
\mu(\kappa-1) \mu(\kappa+1) \leqslant \mu(\kappa)^{2}
$$

First Attempt

First Proposal

$$
\mu\left(\kappa_{1}\right)^{\alpha_{1}} \ldots \mu\left(\kappa_{m}\right)^{\alpha_{m}} \leqslant \mu\left(\alpha_{1} \kappa_{1}+\cdots+\alpha_{m} \kappa_{m}\right)
$$

for $\alpha_{1}+\cdots+\alpha_{m}=1$, whenever it makes sense.
Problem: Satisfied by any $\mu:\{0,1\}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$.
1-D case well-studied in combinatorics:
$D \mu(\kappa)=\kappa$-matchings in a graph.
$D \mu=$ coefficients of chromatic polynomial.

[Huh'10]

1-dimensional case

$$
\mu(\kappa-1) \mu(\kappa+1) \leqslant \mu(\kappa)^{2}
$$

Interlude: Hodge Theory

Many log-concave sequences are associated with shadows of "Hodge Theory":

Interlude: Hodge Theory

Many log-concave sequences are associated with shadows of "Hodge Theory":

Polytope Algebra

$$
\mu(\kappa)=\text { mixed-vol }(\underbrace{K, \ldots, K}_{\kappa \text { times }}, \underbrace{L, \ldots, L}_{d-\kappa \text { times }}) .
$$

[McMullen'89]

Interlude: Hodge Theory

Many log-concave sequences are associated with shadows of "Hodge Theory":

Polytope Algebra
 $\mu(\kappa)=$ mixed-vol $(\underbrace{K, \ldots, K}_{\kappa \text { times }}, \underbrace{L, \ldots, L}_{d-\kappa \text { times }})$.

 [McMullen'89]

Rota's Conjecture

$\mu=$ coefficients of matroid characteristic polynomial.

[Adiprasito-Huh-Katz'17]

Interlude: Hodge Theory

Many log-concave sequences are associated with shadows of "Hodge Theory":

Polytope Algebra
 $$
\mu(\kappa)=\text { mixed-vol }(\underbrace{K, \ldots, K}_{\kappa \text { times }}, \underbrace{L, \ldots, L}_{d-\kappa \text { times }})
$$

 [McMullen'89]

Rota's Conjecture

$\mu=$ coefficients of matroid characteristic polynomial.

[Adiprasito-Huh-Katz'17]
\bigcirc (Weak) Mason's Conjecture: $\mu(\kappa)=$ number of independent sets of size κ in a matroid [Huh-Schröter-Wang'18].

Interlude: Hodge Theory

Many log-concave sequences are associated with shadows of "Hodge Theory":

Polytope Algebra

$$
\mu(\kappa)=\text { mixed-vol }(\underbrace{K, \ldots, K}_{\kappa \text { times }}, \underbrace{L, \ldots, L}_{d-\kappa \text { times }})
$$

[McMullen'89]

Rota's Conjecture

$\mu=$ coefficients of matroid characteristic polynomial.

[Adiprasito-Huh-Katz'17]
D (Weak) Mason's Conjecture: $\mu(\kappa)=$ number of independent sets of size κ in a matroid [Huh-Schröter-Wang'18].
\bigcirc Kazhdan-Lusztig Conjecture: Certain objects in representation theory [Elias-Williamson'14].

Second Attempt: Real-Rootedness

Coefficients of Real-Rooted Polynomials [Newton]

If $\mu(0) z^{0}+\cdots+\mu(d) z^{d} \in \mathbb{R}[z]$ is real-rooted, then $\mu(0), \ldots, \mu(d)$ is log-concave. In fact, the following is also log-concave (ultra-log-concavity):

$$
\frac{\mu(0)}{\binom{d}{0}}, \frac{\mu(1)}{\binom{d}{1}}, \ldots, \frac{\mu(\mathrm{~d})}{\binom{\mathrm{d}}{\mathrm{~d}}}
$$

Second Attempt: Real-Rootedness

Coefficients of Real-Rooted Polynomials [Newton]

If $\mu(0) z^{0}+\cdots+\mu(d) z^{d} \in \mathbb{R}[z]$ is real-rooted, then $\mu(0), \ldots, \mu(d)$ is log-concave. In fact, the following is also log-concave (ultra-log-concavity):

$$
\frac{\mu(0)}{\binom{d}{0}}, \frac{\mu(1)}{\binom{d}{1}}, \ldots, \frac{\mu(d)}{\binom{d}{d}}
$$

For $\mu: \mathbb{Z}_{\geqslant 0}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$, define the generating polynomial:

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{\left(\kappa_{1}, \ldots, \kappa_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n}} \mu\left(\kappa_{1}, \ldots, \kappa_{n}\right) z_{1}^{\kappa_{1}} \ldots z_{n}^{\kappa_{n}}
$$

Second Attempt: Real-Rootedness

Coefficients of Real-Rooted Polynomials [Newton]

If $\mu(0) z^{0}+\cdots+\mu(d) z^{d} \in \mathbb{R}[z]$ is real-rooted, then $\mu(0), \ldots, \mu(d)$ is log-concave. In fact, the following is also log-concave (ultra-log-concavity):

$$
\frac{\mu(0)}{\binom{d}{0}}, \frac{\mu(1)}{\binom{d}{1}}, \ldots, \frac{\mu(d)}{\binom{d}{d}}
$$

For $\mu: \mathbb{Z}_{\geqslant 0}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$, define the generating polynomial:

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{\left(\kappa_{1}, \ldots, \kappa_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n}} \mu\left(\kappa_{1}, \ldots, \kappa_{n}\right) z_{1}^{\kappa_{1}} \ldots z_{n}^{\kappa_{n}}
$$

D For 1-D: If g_{μ} has real roots, then μ is log-concave.

Strongly Rayleigh Distributions

$$
g_{\mu}\left(z_{1}, z_{2}\right)=1+3 z_{1}+2 z_{2}+5 z_{1} z_{2}
$$

Strongly Rayleigh Distributions

[Borcea-Brändén-Liggett’07]

Call $\mu:\{0,1\}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$ Strongly Rayleigh when g_{μ} is real stable.

- Binomial distribution:

$$
g_{\mu}(z)=((1-p)+p z)^{n}
$$

$$
g_{\mu}\left(z_{1}, z_{2}\right)=1+3 z_{1}+2 z_{2}+5 z_{1} z_{2}
$$

Strongly Rayleigh Distributions

[Borcea-Brändén-Liggett’07]

Call $\mu:\{0,1\}^{n} \rightarrow \mathbb{R}_{\geqslant 0}$ Strongly Rayleigh when g_{μ} is real stable.

- Binomial distribution:

$$
g_{\mu}(z)=((1-p)+p z)^{n}
$$

D Spanning trees in a graph:

$$
\mu\left(\mathbb{1}_{\text {S }}\right)= \begin{cases}1 & \text { S forms a spanning tree } \\ 0 & \text { otherwise }\end{cases}
$$

$$
g_{\mu}\left(z_{1}, z_{2}\right)=1+3 z_{1}+2 z_{2}+5 z_{1} z_{2}
$$

Main Example: Determinantal Point Process

- For $L \succeq 0$ the determinantal distribution μ is

$$
\mu\left(\mathbb{1}_{S}\right)=\operatorname{det}\left(L_{S, S}\right)
$$

Main Example: Determinantal Point Process

- For $\mathrm{L} \succeq 0$ the determinantal distribution μ is

$$
\mu\left(\mathbb{1}_{S}\right)=\operatorname{det}\left(\left[v_{i}\right]_{\mathfrak{i} \in S}\right)^{2}
$$

Main Example: Determinantal Point Process

- For $\mathrm{L} \succeq 0$ the determinantal distribution μ is

D The generating polynomial is

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\operatorname{det}\left(\operatorname{I}+\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right) L\right)
$$

$$
\mu\left(\mathbb{1}_{S}\right)=\operatorname{det}\left(\left[v_{i}\right]_{i \in S}\right)^{2}
$$

Algorithms for Strongly Rayleigh Distributions

D Sampling: Local Markov chains mix in polynomial time [A-Oveis Gharan-Rezaei'16, Li-Jegelka-Sra'17].

Algorithms for Strongly Rayleigh Distributions

D Sampling: Local Markov chains mix in polynomial time [A-Oveis Gharan-Rezaei'16, Li-Jegelka-Sra'17].
\bigcirc Optimization: Polynomial time 2 O $\left(\operatorname{deg} g_{\mu}\right)$-approximation to $\max _{S} \mu(S)$ [Nikolov¹6]. Matching hardness of approximation for k-DPPs [Çivril-Magdon-Ismail'10].

Algorithms for Strongly Rayleigh Distributions

D Sampling: Local Markov chains mix in polynomial time [A-Oveis Gharan-Rezaei’16, Li-Jegelka-Sra'17].
D Optimization: Polynomial time $2^{\mathrm{O}\left(\operatorname{deg} g_{\mu}\right) \text {-approximation to } \max _{\mathrm{S}} \mu(\mathrm{S}), ~(1)}$ [Nikolov¹6]. Matching hardness of approximation for k-DPPs [Civril-Magdon-Ismail'10].
D Counting: Given oracle for g_{μ} can $2^{\mathrm{O}(n)}$-approximate coefficients of g_{μ} in polynomial time [Gurvits'04]. Given oracles for $g_{\mu_{1}}, g_{\mu_{2}}$ can
 results [Nikolov-Singh'16, Straszak-Vishnoi'17].

Strongly Rayleigh seems to be a powerful definition. But is it too restrictive?

Strongly Rayleigh seems to be a powerful definition. But is it too restrictive?

Not many interesting non-determinantal examples known.

Strongly Rayleigh seems to be a powerful definition. But is it too restrictive?

Not many interesting non-determinantal examples known.

Supports are matroids [Choe-Oxley-sokal-Wagner04], but not all matroids are possible supports [Brändeño7].

Real Stability \Longrightarrow Log-Concavity \Longrightarrow Algorithms

D Main insight: In all mentioned algorithms, the important property is log-concavity of g_{μ}, not real-stability.

Real Stability \Longrightarrow Log-Concavity \Longrightarrow Algorithms

D Main insight: In all mentioned algorithms, the important property is log-concavity of g_{μ}, not real-stability.

- Coefficient inequalities: [Gurvits'06, Gurvits'08] used log-concavity to derive capacity-based inequalities on coefficients of (strongly) log-concave polynomials.

Real Stability \Longrightarrow Log-Concavity \Longrightarrow Algorithms

D Main insight: In all mentioned algorithms, the important property is log-concavity of g_{μ}, not real-stability.
D Coefficient inequalities: [Gurvits'06, Gurvits'08] used log-concavity to derive capacity-based inequalities on coefficients of (strongly) log-concave polynomials.

D Next we will see illustrative applications of log-concavity in optimization and deterministic counting. More throughout the semester.

Log-Concavity \Longrightarrow Optimization

Optimization Problem

For d-homogeneous g_{μ} find $S \in\binom{[n]}{d}$ such that $\mu(S)$ is maximized.

Relax and solve the following [on board ...]

$$
\max \left\{g_{\mu}\left(z_{1}, \ldots, z_{n}\right) \mid z_{1}, \ldots, z_{n} \geqslant 0, z_{1}+\cdots+z_{n}=d\right\} .
$$

Log-Concavity \Longrightarrow Deterministic Counting

If μ is an arbitrary distribution and μ_{1}, \ldots, μ_{n} are the marginals:

$$
\mathcal{H}(\mu) \leqslant \mathcal{H}\left(\mu_{1}\right)+\cdots+\mathcal{H}\left(\mu_{n}\right)
$$

Log-Concavity \Longrightarrow Deterministic Counting

If μ is an arbitrary distribution and μ_{1}, \ldots, μ_{n} are the marginals:

$$
\mathcal{H}(\mu) \leqslant \mathcal{H}\left(\mu_{1}\right)+\cdots+\mathcal{H}\left(\mu_{n}\right)
$$

[A-Oveis Gharan-Vinzant'18]

When g_{μ} is log-concave $\mathcal{H}(\mu) \geqslant$
$\sum_{i} \frac{\mathcal{H}\left(\mu_{i}\right)}{2}$ and $\sum_{i} \mathcal{H}\left(\mu_{i}\right)-\operatorname{deg}\left(g_{\mu}\right)$.

Log-Concavity \Longrightarrow Deterministic Counting

If μ is an arbitrary distribution and μ_{1}, \ldots, μ_{n} are the marginals:

$$
\mathcal{H}(\mu) \leqslant \mathcal{H}\left(\mu_{1}\right)+\cdots+\mathcal{H}\left(\mu_{n}\right) .
$$

[A-Oveis Gharan-Vinzant'18]

When g_{μ} is log-concave $\mathcal{H}(\mu) \geqslant$
$\sum_{i} \frac{\mathcal{H}\left(\mu_{i}\right)}{2}$ and $\sum_{i} \mathcal{H}\left(\mu_{i}\right)-\operatorname{deg}\left(g_{\mu}\right)$.

\checkmark A deterministic efficient algorithm to 2^{O} (rank) -approximately count bases of a matroid or common bases of two matroids [A-Oveis Gharan-Vinzant'18].

Matroids

A matroid is a family \mathcal{J} of subsets of $\{1, \ldots, n\}$, called independent sets:

Downward Closed

If $\mathrm{I} \in \mathcal{J}$ and $\mathrm{J} \subset \mathrm{I}$, then $\mathrm{J} \in \mathcal{J}$.

Exchange Axiom

If $\mathrm{I}, \mathrm{J} \in \mathcal{J}$ and $|\mathrm{J}|>|\mathrm{I}|$, there is $\mathrm{e} \in \mathrm{J}-\mathrm{I}$ such that $\mathrm{I} \cup\{e\} \in \mathcal{J}$.

Matroids

A matroid is a family \mathcal{J} of subsets of $\{1, \ldots, n\}$, called independent sets:

Downward Closed
If $\mathrm{I} \in \mathcal{J}$ and $\mathrm{J} \subset \mathrm{I}$, then $\mathrm{J} \in \mathcal{J}$.

Exchange Axiom

If $\mathrm{I}, \mathrm{J} \in \mathrm{J}$ and $|\mathrm{J}|>|\mathrm{I}|$, there is $\mathrm{e} \in \mathrm{J}-\mathrm{I}$ such that $\mathrm{I} \cup\{e\} \in \mathcal{J}$.
\bigcirc Bases: Maximal independent sets \mathcal{B}. They all have size rank.

Matroids

A matroid is a family \mathcal{J} of subsets of $\{1, \ldots, n\}$, called independent sets:

Downward Closed

If $\mathrm{I} \in \mathcal{J}$ and $\mathrm{J} \subset \mathrm{I}$, then $\mathrm{J} \in \mathcal{J}$.

Exchange Axiom

If $\mathrm{I}, \mathrm{J} \in \mathcal{J}$ and $|\mathrm{J}|>|\mathrm{I}|$, there is $\mathrm{e} \in \mathrm{J}-\mathrm{I}$ such that $\mathrm{I} \cup\{e\} \in \mathcal{J}$.

D Bases: Maximal independent sets \mathcal{B}. They all have size rank.
D Examples: Uniform, Laminar, Graphic, Linear, Algebraic, Paving, etc.

Matroid in Real Life 1: Erasures in Linear Codes

For linear code $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n} \mid M x=0\right\}$, can recover from erasures iff

columns corresponding to erased bits are linearly independent.

Matroid in Real Life 2: Graph Reliability

For graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and number k, connected k-subsets of E form bases of a matroid.

Matroid in Real Life 2: Graph Reliability

For graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and number k, connected k-subsets of E form bases of a matroid.

D How many connected subgraphs are there?

Matroid in Real Life 2: Graph Reliability

For graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and number k, connected k-subsets of E form bases of a matroid.

D How many connected subgraphs are there?
© Graph Reliability: If each edge fails with probability p what's the chance graph remains connected?

Matroid in Real Life 3: Rigidity Matroids

Link failure probabilities known. What is the chance the structure remains rigid?

Log-Concavity \Longrightarrow Deterministic Counting

If μ is an arbitrary distribution and μ_{1}, \ldots, μ_{n} are the marginals:

$$
\mathcal{H}(\mu) \leqslant \mathcal{H}\left(\mu_{1}\right)+\cdots+\mathcal{H}\left(\mu_{n}\right)
$$

Log-Concavity \Longrightarrow Deterministic Counting

If μ is an arbitrary distribution and μ_{1}, \ldots, μ_{n} are the marginals:

$$
\mathcal{H}(\mu) \leqslant \mathcal{H}\left(\mu_{1}\right)+\cdots+\mathcal{H}\left(\mu_{n}\right)
$$

[A-Oveis Gharan-Vinzant'18]

When g_{μ} is log-concave $\mathcal{H}(\mu) \geqslant$
$\sum_{i} \frac{\mathcal{H}\left(\mu_{i}\right)}{2}$ and $\sum_{i} \mathcal{H}\left(\mu_{i}\right)-\operatorname{deg}\left(g_{\mu}\right)$.

Log-Concavity \Longrightarrow Deterministic Counting

If μ is an arbitrary distribution and μ_{1}, \ldots, μ_{n} are the marginals:

$$
\mathcal{H}(\mu) \leqslant \mathcal{H}\left(\mu_{1}\right)+\cdots+\mathcal{H}\left(\mu_{n}\right) .
$$

[A-Oveis Gharan-Vinzant'18]

When g_{μ} is log-concave $\mathcal{H}(\mu) \geqslant$
$\sum_{i} \frac{\mathcal{H}\left(\mu_{i}\right)}{2}$ and $\sum_{i} \mathcal{H}\left(\mu_{i}\right)-\operatorname{deg}\left(g_{\mu}\right)$.

\checkmark A deterministic efficient algorithm to 2^{O} (rank) -approximately count bases of a matroid or common bases of two matroids [A-Oveis Gharan-Vinzant'18].

Third Attempt: Complete Log-Concavity

Real stable polynomials and strongly Rayleigh measures
\checkmark have negative correlation. Matroids were conjectured to have this property [Seymour-Welsh'75], but the same people found a counterexample.
$\mathbb{P}[i \in B] \cdot \mathbb{P}[j \in B] \geqslant \mathbb{P}[i, j \in B]$ for random base B.

Third Attempt: Complete Log-Concavity

Real stable polynomials and strongly Rayleigh measures
\checkmark have negative correlation. Matroids were conjectured to have this property [Seymour-Welsh'75], but the same people found a counterexample.
$\mathbb{P}[i \in B] \cdot \mathbb{P}[j \in B] \geqslant \mathbb{P}[i, j \in B]$ for random base B.

D are log-concave over $\mathbb{R}_{\geqslant 0}^{n}$.

Third Attempt: Complete Log-Concavity

Real stable polynomials and strongly Rayleigh measures
\checkmark have negative correlation. Matroids were conjectured to have this property [Seymour-Welsh'75], but the same people found a counterexample.
$\mathbb{P}[i \in B] \cdot \mathbb{P}[j \in B] \geqslant \mathbb{P}[i, j \in B]$ for random base B.

D are log-concave over $\mathbb{R}_{\geqslant 0}^{n}$.
D are closed under directional derivatives in positive directions.

Third Attempt: Complete Log-Concavity

Real stable polynomials and strongly Rayleigh measures
D have negative correlation. Matroids were conjectured to have this property [Seymour-Welsh'75], but the same people found a counterexample.
$\mathbb{P}[i \in B] \cdot \mathbb{P}[j \in B] \geqslant \mathbb{P}[i, j \in B]$ for random base B.

D are log-concave over $\mathbb{R}_{\geqslant 0}^{n}$.
D are closed under directional derivatives in positive directions.

Complete Log-Concavity [A-Oveis Gharan-Vinzant'18 inspired by Gurvits'06]

A polynomial $g \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$ is completely log-concave iff for any $k \geqslant 0$ and any $v_{1}, \ldots, v_{k} \in \mathbb{R}_{\geqslant 0}^{n}$, the following function is log-concave on $\mathbb{R}_{\geqslant 0}^{n}$

$$
\mathrm{D}_{v_{1}} \mathrm{D}_{v_{2}} \ldots \mathrm{D}_{v_{\mathrm{k}}} \mathrm{~g} .
$$

Déjà-Vu

Based on Hodge theory for matroids [Adiprasito-Huh-Katz¹7]:
Matroids are Completely Log-Concave [A-Oveis Gharan-Vinzant’18]
If μ is the indicator of bases of a matroid, then g_{μ} is completely log-concave:

$$
g_{\mu}\left(z_{1}, \ldots, z_{m}\right)=\sum_{B \in \mathcal{B}} \prod_{i \in B} z_{i}
$$

Déjà-Vu

Based on Hodge theory for matroids [Adiprasito-Huh-Katz¹7]:
Matroids are Completely Log-Concave [A-Oveis Gharan-Vinzant’18]
If μ is the indicator of bases of a matroid, then g_{μ} is completely log-concave:

$$
g_{\mu}\left(z_{1}, \ldots, z_{m}\right)=\sum_{B \in \mathcal{B}} \prod_{i \in B} z_{i}
$$

Complete log-concavity is equivalent to:
D Strong log-concavity of [Gurvits'06].

Déjà-Vu

Based on Hodge theory for matroids [Adiprasito-Huh-Katz’17]:

Matroids are Completely Log-Concave [A-Oveis Gharan-Vinzant'18]

If μ is the indicator of bases of a matroid, then g_{μ} is completely log-concave:

$$
g_{\mu}\left(z_{1}, \ldots, z_{\mathfrak{m}}\right)=\sum_{B \in \mathcal{B}} \prod_{i \in B} z_{i} .
$$

Complete log-concavity is equivalent to:
D Strong log-concavity of [Gurvits'06].
D Mixed order-1 Hodge-Riemann relations in Hodge theory.

Déjà-Vu

Based on Hodge theory for matroids [Adiprasito-Huh-Katz’17]:

Matroids are Completely Log-Concave [A-Oveis Gharan-Vinzant'18]

If μ is the indicator of bases of a matroid, then g_{μ} is completely log-concave:

$$
g_{\mu}\left(z_{1}, \ldots, z_{\mathfrak{m}}\right)=\sum_{B \in \mathcal{B}} \prod_{\mathfrak{i} \in \mathrm{B}} z_{\mathfrak{i}} .
$$

Complete log-concavity is equivalent to:
D Strong log-concavity of [Gurvits'06].
D Mixed order-1 Hodge-Riemann relations in Hodge theory.
D "Perfect" high-dimensional expansion of [Kaufman-Oppenheim"17].

Déjà-Vu

Based on Hodge theory for matroids [Adiprasito-Huh-Katz’17]:

Matroids are Completely Log-Concave [A-Oveis Gharan-Vinzant'18]

If μ is the indicator of bases of a matroid, then g_{μ} is completely log-concave:

$$
g_{\mu}\left(z_{1}, \ldots, z_{\mathfrak{m}}\right)=\sum_{B \in \mathcal{B}} \prod_{\mathfrak{i} \in \mathrm{B}} z_{\mathfrak{i}} .
$$

Complete log-concavity is equivalent to:
D Strong log-concavity of [Gurvits'06].
D Mixed order-1 Hodge-Riemann relations in Hodge theory.
D "Perfect" high-dimensional expansion of [Kaufman-Oppenheim"17].
\bigcirc Notion independently developed by [Brändén-Huh].

Calculus of Complete Log-Concavity

Complete Log-Concavity: For any k and $v_{1}, \ldots, v_{\mathrm{k}} \in \mathbb{R}_{\geqslant 0}^{n}$ the following is log-concave over $\mathbb{R}_{\geqslant 0}^{n}$:

$$
D_{v_{1}} D_{v_{2}} \ldots D_{v_{k}} g\left(z_{1}, \ldots, z_{n}\right)
$$

Calculus of Complete Log-Concavity

Complete Log-Concavity: For any k and $v_{1}, \ldots, v_{k} \in \mathbb{R}_{\geqslant 0}^{n}$ the following is log-concave over $\mathbb{R}_{\geqslant 0}^{n}$:

$$
D_{v_{1}} D_{v_{2}} \ldots D_{v_{k}} g\left(z_{1}, \ldots, z_{n}\right)
$$

[A-Liu-Oveis Gharan-Vinzant]

For d-homogeneous
"connected-support" g_{μ} enough to check $k=d-2$ and

$$
v_{1}, \ldots, v_{d-2} \in\left\{\mathbb{1}_{1}, \mathbb{1}_{2}, \ldots, \mathbb{1}_{n}\right\}
$$

Calculus of Complete Log-Concavity

Complete Log-Concavity: For any k and $v_{1}, \ldots, v_{k} \in \mathbb{R}_{\geqslant 0}^{n}$ the following is log-concave over $\mathbb{R}_{\geqslant 0}^{n}$:

$$
D_{v_{1}} D_{v_{2}} \ldots D_{v_{k}} g\left(z_{1}, \ldots, z_{n}\right)
$$

[A-Liu-Oveis Gharan-Vinzant]

For d-homogeneous
"connected-support" g_{μ} enough to check $k=d-2$ and

$$
v_{1}, \ldots, v_{d-2} \in\left\{\mathbb{1}_{1}, \mathbb{1}_{2}, \ldots, \mathbb{1}_{n}\right\} .
$$

[A-Liu-Oveis Gharan-Vinzant]

For 2-homogeneous g complete log-concavity means

$$
\nabla^{2} g \in \mathbb{R}_{\geqslant 0}^{n \times n}
$$

has $\leqslant 1$ positive eigenvalue.

Calculus of Complete Log-Concavity

Complete Log-Concavity: For any k and $v_{1}, \ldots, v_{k} \in \mathbb{R}_{\geqslant 0}^{n}$ the following is log-concave over $\mathbb{R}_{\geqslant 0}^{n}$:

$$
D_{v_{1}} D_{v_{2}} \ldots D_{v_{k}} g\left(z_{1}, \ldots, z_{n}\right)
$$

[A-Liu-Oveis Gharan-Vinzant]

For d-homogeneous
"connected-support" g_{μ} enough to check $k=d-2$ and
$v_{1}, \ldots, v_{\mathrm{d}-2} \in\left\{\mathbb{1}_{1}, \mathbb{1}_{2}, \ldots, \mathbb{1}_{\mathrm{n}}\right\}$.

[A-Liu-Oveis Gharan-Vinzant]

For 2-homogeneous g complete log-concavity means

$$
\nabla^{2} g \in \mathbb{R}_{\geqslant 0}^{n \times n}
$$

has $\leqslant 1$ positive eigenvalue.
D The premise of these is the notion independently developed by [Brändén-Huh].

Calculus of Complete Log-Concavity

Complete Log-Concavity: For any k and $v_{1}, \ldots, v_{k} \in \mathbb{R}_{\geqslant 0}^{n}$ the following is log-concave over $\mathbb{R}_{\geqslant 0}^{n}$:

$$
D_{v_{1}} D_{v_{2}} \ldots D_{v_{k}} g\left(z_{1}, \ldots, z_{n}\right)
$$

[A-Liu-Oveis Gharan-Vinzant]

For d-homogeneous
"connected-support" g_{μ} enough to check $k=d-2$ and

$$
v_{1}, \ldots, v_{\mathrm{d}-2} \in\left\{\mathbb{1}_{1}, \mathbb{1}_{2}, \ldots, \mathbb{1}_{\mathrm{n}}\right\} .
$$

\bigcirc The premise of these is the notion independently developed by [Brändén-Huh].
[matroids and bivariate polynomials on board ...]

Continuous
 Discrete

Distributions:

Supports:

Mason's Conjecture

[A-Liu-Oveis Gharan-Vinzant, equivalent form by Brändén-Huh]

Suppose that \mathcal{J} is the collection of independent sets of a matroid on $\{1, \ldots, n\}$ elements. Then the following is completely log-concave:

$$
g\left(y, z_{1}, \ldots, z_{n}\right)=\sum_{\mathrm{I} \in \mathrm{~J}} y^{n-|\mathrm{I}|} \prod_{i \in \mathrm{I}} z_{i}
$$

Mason's Conjecture

[A-Liu-Oveis Gharan-Vinzant, equivalent form by Brändén-Huh]

Suppose that \mathcal{J} is the collection of independent sets of a matroid on $\{1, \ldots, n\}$ elements. Then the following is completely log-concave:

$$
g\left(y, z_{1}, \ldots, z_{n}\right)=\sum_{I \in \mathcal{J}} y^{n-|\mathrm{I}|} \prod_{i \in \mathrm{I}} z_{i} .
$$

D This finally resolves the strongest form of Mason's conjecture [Mason'72]:

$$
\frac{\left|\mathcal{J}^{0}\right|}{\binom{n}{0}}, \frac{\left|\mathcal{J}^{1}\right|}{\binom{\text { n }}{1}}, \ldots, \frac{\mid \text { Jrank } \mid}{\binom{n}{\text { rank }}},
$$

is log-concave where J^{k} is the collection of independent sets of size k .

Mason's Conjecture

[A-Liu-Oveis Gharan-Vinzant, equivalent form by Brändén-Huh]

Suppose that \mathcal{J} is the collection of independent sets of a matroid on $\{1, \ldots, n\}$ elements. Then the following is completely log-concave:

$$
g\left(y, z_{1}, \ldots, z_{n}\right)=\sum_{I \in \mathcal{J}} y^{n-|\mathrm{I}|} \prod_{i \in \mathrm{I}} z_{i} .
$$

D This finally resolves the strongest form of Mason's conjecture [Mason'72]:

$$
\frac{\left|\mathcal{J}^{0}\right|}{\binom{n}{0}}, \frac{\left|\mathcal{J}^{1}\right|}{\binom{n}{1}}, \ldots, \frac{\mid \text { Jrank } \mid}{\binom{n}{\text { rank }}},
$$

is log-concave where J^{k} is the collection of independent sets of size k .
\bigcirc Weaker form was solved by matroid Hodge theory [Huh-Schröter-Wang'18]:

$$
0!\cdot\left|\mathcal{J}^{0}\right|, 1!\cdot\left|\mathcal{J}^{1}\right|, \ldots, \text { rank }!\cdot\left|\mathcal{J}^{\text {rank }}\right| .
$$

New World of Complete Log-Concavity

Matroids

Random Cluster Model

$$
\mathbb{P}[S] \propto q^{\# c c} p^{|S|}(1-p)^{|S|} \text { for } q \leqslant 1
$$

Submodular Polytopes

$$
\sum_{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in P \cap \mathbb{Z}_{\geqslant 0}^{n}} \frac{z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}}{\alpha_{1}!\ldots \alpha_{n}!}
$$

Fractional DPPs

$\mathbb{P}[S] \propto\left|\operatorname{det}\left(\left[v_{i}\right]_{i \in S}\right)\right|^{\alpha}$ for $\alpha \leqslant 2$.

