Computing Partition Functions by Polynomial Interpolation

Alexander Barvinok

Lectures on Friday, January 25, 9:30 a.m.-10:50 a.m. and 11:15 a.m. - 12:35 p.m.

In-class exercises:

1. Problem. For any $0<\delta<0.5$, construct a polynomial $\phi=\phi_{\delta}: \mathbb{C} \longrightarrow \mathbb{C}$ such that $\phi(0)=0, \phi(1)=1$, $\operatorname{deg} \phi=e^{O(1 / \delta)}$ and ϕ maps the disc

$$
\mathbb{D}=\mathbb{D}_{\beta}=\{z \in \mathbb{C}:|z|<\beta\} \quad \text { of some radius } \quad \beta=1+\frac{1}{e^{O(1 / \delta)}}
$$

inside the rectangle

$$
-\delta \leq \Re z \leq 1+\delta \text { and }|\Im z| \leq \delta
$$

(all implied constants in the " O " notation are absolute).
Hint: For $\rho>0$, consider the function

$$
f(z)=f_{\rho}(z)=\rho \ln \frac{1}{1-\alpha z} \quad \text { where } \quad \alpha=\alpha_{\rho}=1-e^{-\frac{1}{\rho}}
$$

(we consider the principal branch of the logarithm).
2. Problem. For $0<\delta<1$, consider the rational function $\psi=\psi_{\delta}: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ defined by

$$
\psi(z)=\frac{\delta}{(1-\xi z)^{2}}-\delta \quad \text { where } \quad \xi=\xi_{\delta}=1-\sqrt{\frac{\delta}{1+\delta}}
$$

Show that $\psi(0)=0, \psi(1)=1$ and that the image $\psi(\mathbb{D})$ of the disc

$$
\mathbb{D}=\mathbb{D}_{\beta}=\{z \in \mathbb{C}:|z|<\beta\} \quad \text { of radius } \quad \beta=1+\sqrt{\delta}
$$

does not intersect the ray

$$
\{z \in \mathbb{C}: \Im z=0 \quad \text { and } \quad \Re z \leq-\delta\}
$$

3. Problem. Let $G=(V, E)$ be an undirected graph with set V of vertices, set E of edges, without loops or multiple edges. A map $\phi: V \longrightarrow\{1, \ldots, q\}$ is called a proper q-coloring if $\phi(v) \neq \phi(u)$ whenever $\{u, v\} \in E$. Let $\chi_{G}(q)$ be the number of proper q-colorings. Prove that

$$
\chi_{G}(q)=\sum_{E^{\prime} \subset E} q^{c\left(E^{\prime}\right)}(-1)^{\left|E^{\prime}\right|}
$$

where $c^{\prime}\left(E^{\prime}\right)$ is the number of connected components of the graph $G^{\prime}=\left(V, E^{\prime}\right)$.
Hint: Write

$$
\chi_{G}(q)=\sum_{\phi: V \longrightarrow\{1, \ldots, q\}} \prod_{\{u, v\} \in E}\left(1-\delta_{\phi(u) \phi(v)}\right) \quad \text { where } \quad \delta_{i j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j .\end{cases}
$$

Homework problems:

1. Problem. Let

$$
\mathbb{D}=\mathbb{D}_{\beta}=\{z \in \mathbb{C}:|z|<\beta\}
$$

be the disc of some radius $\beta>1$ and let $\phi: \mathbb{D} \longrightarrow \mathbb{C}$ be a holomorphic function such that $\phi(0)=0, \phi(1)=1$ and ϕ maps \mathbb{D} inside the strip

$$
-\delta<\Re z<1+\delta \text { and }|\Im z|<\delta
$$

for some $0<\delta<0.5$. Prove that

$$
\beta<1+c_{1} e^{-c_{2} / \delta} \quad \text { for some absolute constants } c_{1}, c_{2}>0
$$

Hint: Use the Schwarz Lemma.
2. Problem. Let $A=\left(a_{i j}\right)$ be an $n \times n$ complex matrix such that

$$
\sum_{j=1}^{n}\left|a_{i j}\right|<1 \quad \text { for } \quad i=1, \ldots, n
$$

Show that $\operatorname{per}(I+A) \neq 0$, where I is the $n \times n$ identity matrix.
Hint: Argue that it suffices to assume that $a_{i i}=0$ for $i=1, \ldots, n$ and that every row of A contains at most one non-zero entry.
3. Problem. Prove that for any $0<\delta<1$ there exists an $\epsilon=\epsilon(\delta)>0$ such that if $A=\left(a_{i j}\right)$ is $n \times n$ complex matrix such that

$$
\delta \leq \Re a_{i j} \leq 1 \quad \text { and } \quad\left|\Im a_{i j}\right| \leq \epsilon \quad \text { for all } \quad i, j
$$

then per $A \neq 0$.
Hint: Show by induction on n that for an appropriate $\epsilon>0$ a stronger statement holds: if A and B are $n \times n$ complex matrices as above that differ in at most one row (at most one column) then the angle between the non-zero complex numbers per $A \neq 0$ and per $B \neq 0$, considered as vectors in $\mathbb{R}^{2}=\mathbb{C}$, does not exceed $\pi / 2$.

