Computing Partition Functions by Polynomial Interpolation

Alexander Barvinok

Lectures on Friday, January 25, 9:30 a.m.-10:50 a.m. and 11:15 a.m. - 12:35 p.m.

In-class exercises:

1. Problem. For any $0 < \delta < 0.5$, construct a polynomial $\phi = \phi_{\delta} : \mathbb{C} \longrightarrow \mathbb{C}$ such that $\phi(0) = 0$, $\phi(1) = 1$, deg $\phi = e^{O(1/\delta)}$ and ϕ maps the disc

 $\mathbb{D} = \mathbb{D}_{\beta} = \{ z \in \mathbb{C} : |z| < \beta \} \text{ of some radius } \beta = 1 + \frac{1}{e^{O(1/\delta)}}$

inside the rectangle

$$-\delta \leq \Re z \leq 1 + \delta$$
 and $|\Im z| \leq \delta$

(all implied constants in the "O" notation are absolute).

Hint: For $\rho > 0$, consider the function

$$f(z) = f_{\rho}(z) = \rho \ln \frac{1}{1 - \alpha z}$$
 where $\alpha = \alpha_{\rho} = 1 - e^{-\frac{1}{\rho}}$

(we consider the principal branch of the logarithm).

2. Problem. For $0 < \delta < 1$, consider the rational function $\psi = \psi_{\delta} : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ defined by

$$\psi(z) = \frac{\delta}{(1-\xi z)^2} - \delta$$
 where $\xi = \xi_{\delta} = 1 - \sqrt{\frac{\delta}{1+\delta}}.$

Show that $\psi(0) = 0$, $\psi(1) = 1$ and that the image $\psi(\mathbb{D})$ of the disc

$$\mathbb{D} = \mathbb{D}_{\beta} = \{ z \in \mathbb{C} : |z| < \beta \} \quad \text{of radius} \quad \beta = 1 + \sqrt{\delta}$$

does not intersect the ray

$$\{z \in \mathbb{C} : \Im z = 0 \text{ and } \Re z \leq -\delta\}.$$

3. Problem. Let G = (V, E) be an undirected graph with set V of vertices, set E of edges, without loops or multiple edges. A map $\phi : V \longrightarrow \{1, \ldots, q\}$ is called a *proper q-coloring* if $\phi(v) \neq \phi(u)$ whenever $\{u, v\} \in E$. Let $\chi_G(q)$ be the number of proper q-colorings. Prove that

$$\chi_G(q) = \sum_{E' \subset E} q^{c(E')} (-1)^{|E'|},$$

where c'(E') is the number of connected components of the graph G' = (V, E').

Hint: Write

$$\chi_G(q) = \sum_{\phi: V \longrightarrow \{1, \dots, q\}} \prod_{\{u, v\} \in E} \left(1 - \delta_{\phi(u)\phi(v)} \right) \quad \text{where} \quad \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Homework problems:

1. Problem. Let

$$\mathbb{D} = \mathbb{D}_{\beta} = \{ z \in \mathbb{C} : |z| < \beta \}$$

be the disc of some radius $\beta > 1$ and let $\phi : \mathbb{D} \longrightarrow \mathbb{C}$ be a holomorphic function such that $\phi(0) = 0$, $\phi(1) = 1$ and ϕ maps \mathbb{D} inside the strip

$$-\delta < \Re z < 1 + \delta$$
 and $|\Im z| < \delta$

for some $0 < \delta < 0.5$. Prove that

$$\beta < 1 + c_1 e^{-c_2/\delta}$$
 for some absolute constants $c_1, c_2 > 0$.

Hint: Use the Schwarz Lemma.

2. Problem. Let $A = (a_{ij})$ be an $n \times n$ complex matrix such that

$$\sum_{j=1}^{n} |a_{ij}| < 1 \text{ for } i = 1, \dots, n.$$

Show that $per(I + A) \neq 0$, where I is the $n \times n$ identity matrix.

Hint: Argue that it suffices to assume that $a_{ii} = 0$ for i = 1, ..., n and that every row of A contains at most one non-zero entry.

3. Problem. Prove that for any $0 < \delta < 1$ there exists an $\epsilon = \epsilon(\delta) > 0$ such that if $A = (a_{ij})$ is $n \times n$ complex matrix such that

$$\delta \leq \Re a_{ij} \leq 1$$
 and $|\Im a_{ij}| \leq \epsilon$ for all i, j

then per $A \neq 0$.

Hint: Show by induction on n that for an appropriate $\epsilon > 0$ a stronger statement holds: if A and B are $n \times n$ complex matrices as above that differ in at most one row (at most one column) then the angle between the non-zero complex numbers per $A \neq 0$ and per $B \neq 0$, considered as vectors in $\mathbb{R}^2 = \mathbb{C}$, does not exceed $\pi/2$.