Geometry of Polynomials Bootcamp	Winter 2019
Real Stable Polynomials and Preservers	
Speaker: Shayan Oveis Gharan	In-class exercise

P1) For any integer $1 \le k \le n$, prove that the k-th elementary symmetric polynomial $\sum_{S \in \binom{[n]}{k}} z^S$ is real stable.

P2) Recall that MAP is the operator that only retains multiaffine (square free) monomials of a given polynomial, e.g., $MAP(1 + x + 3x^3y + 2yz) = 1 + x + 2yz$. Prove that MAP is a stability preserver operator.

- P3) Let $f(t) = \sum_{k} a_k t^k$ be a real rooted polynomial with nonnegative coefficients.
 - a) Prove that $\log f$ is a concave function of non-negative reals.
 - b) Prove that $f'(0) \ge \frac{1}{e} \inf_{t>0} \frac{f(t)}{t}$.

Winter 2019
Homeworks

P1) Consider the polynomial p(x, y) = a + bx + cy + dxy, where a, b, c, d are real numbers. Prove that p is real stable iff $bc \ge ad$.