Ramanujan graphs and interlacing polynomials

Speaker: Jan Vondrak
In-class exercise

P1) Prove the Gutman-Godsil theorem: If $\chi_{s}(x)=\operatorname{det}\left(x I-A_{s}\right)$ where A_{s} is the signed adjacency matrix of G, then

$$
\mathbb{E}_{s \in\{ \pm 1\}^{E}}\left[\chi_{s}(x)\right]=\sum_{\text {matching } M}(-1)^{|M|} x^{n-2|M|}
$$

P2) Prove that if f and g have a common interlacing, then $h_{t}(x)=t f(x)+(1-t) g(x)$ is real-rooted (even in the case where f, g have some multiple roots).

Ramanujan graphs and interlacing polynomials

Speaker: Jan Vondrak

P1) Compute the eigenvalues of the following graph. Is it Ramanujan?

P2) Compute the matching polynomials for K_{2}, K_{3}, K_{4} and find the recursive formula for K_{n}. These are also known as Hermite polynomials.

P3) Compute the matching polynomials for $K_{1,1}, K_{2,2}, K_{3,3}$ and find the recursive formula for $K_{n, n}$. These are also known as Laguerre polynomials.

