## Geometry of Polynomials Bootcamp

Winter 2019

Ramanujan graphs and interlacing polynomials

 $Speaker: \ Jan \ Vondrak$ 

 ${\it In-class\ exercise}$ 

P1) Prove the Gutman-Godsil theorem: If  $\chi_s(x) = det(xI - A_s)$  where  $A_s$  is the signed adjacency matrix of G, then

$$\mathbb{E}_{s\in\{\pm1\}^E}[\chi_s(x)] = \sum_{\text{matching } M} (-1)^{|M|} x^{n-2|M|}.$$

P2) Prove that if f and g have a common interlacing, then  $h_t(x) = tf(x) + (1-t)g(x)$  is real-rooted (even in the case where f, g have some multiple roots).

| Geometry of Polynomials Bootcamp             | Winter 2019 |
|----------------------------------------------|-------------|
| Ramanujan graphs and interlacing polynomials | s           |
| Speaker: Jan Vondrak                         | Homeworks   |

P1) Compute the eigenvalues of the following graph. Is it Ramanujan?



- P2) Compute the matching polynomials for  $K_2, K_3, K_4$  and find the recursive formula for  $K_n$ . These are also known as Hermite polynomials.
- P3) Compute the matching polynomials for  $K_{1,1}, K_{2,2}, K_{3,3}$  and find the recursive formula for  $K_{n,n}$ . These are also known as Laguerre polynomials.