Algebraic dependence is not hard and filling the GCT Chasm

Nitin Saxena (CSE@IIT Kanpur, India)

(Joint work with Zeyu Guo & Amit Sinhababu, CCC'18)

2018, Simons, Berkeley

Overture

- Consider map $\mathbf{f}: \mathbf{F}^n \to \mathbf{F}^m$.
- Problem (AD): dim Img(f) <? m.</p>
- Problem (ZC): $0 \in \mathbb{P}$ Img(f).

- Algebraic dependence testing
- Entropy & Protocols
- Three problems; algebra & geometry
- <u>Approximate</u> polynomials satisfiability (APS)
- APS is in PSPACE
- Conclusion

Algebraic dependence testing

- Given polynomials f₁,...,f_m ∈ F[x₁,...,x_n] we call them algebraically dependent if there is an annihilator A(y₁,...,y_m).
 - → i.e. $A(f_1,...,f_m) = 0$.
 - Input polynomials may be algebraic circuits.
 - The maximum number of independent polynomials in f₁,..., f_m is called *transcendence-degree* (trdeg).
 - Eg. trdeg of {x₁+x₂, x₁²+x₂²} is two when char(F)≠2, else it is one.
- Problem AD(F): Given polynomials f, test the algebraic dependence over field F.
 - Computability/ Complexity of this problem?
 - What about the annihilator?

Algebraic dependence-- Applications

- Fundamental in commutative algebra, algebraic-geometry.
- (Dvir,Gabizon,Wigderson'07) use it to design *extractors* for sources that are polynomial maps.
- (Kalorkoti'85) (Beecken, Mittmann, S.'07) (Agrawal, Saha, Saptharishi, S.'12) (Kumar, Saraf'16) (Pandey, S., Sinhababu'16) prove circuit lower bounds or design hitting-sets (*blackbox PIT*).
- (Heintz,Schnorr'80) (Agrawal,Ghosh,S.'18) (Kumar,Saptharishi,Tengse'18) USE annihilators to *bootstrap* bad hitting-sets to nearly optimal ones.
- Current work yields new applications of annihilators.
 - eg. polynomial system solving. GCT questions.

Alg. dependence-- previous results

- (Perron 1927) Minimal annihilator has degree $\leq \prod_i \text{deg}(f_i)$.
 - So, the annihilator A(y₁,...,y_m) has exponentially many coefficients.
 - Their existence can be checked by doing *linear algebra*.
 - AD(F) is in PSPACE.
- (Mittmann,S.,Scheiblechner'14) improved it to co-NP^{#P}.
- Jacobi 1841)'s criterion puts AD(F) in coRP, if char(F) is zero or large.
 - Rank of Jacobian $((\partial_{x_i} f_i))$ equals trdeg of f_i 's.

X_i has distinct conjugates

- When $F(\mathbf{x}) \supseteq F(\mathbf{f})$ is a separable extension.
- (Pandey,S.,Sinhababu'16) extends Jacobi criterion to input f with constant inseparable-degree.

- Algebraic dependence testing
- Entropy & Protocols
- Three problems; algebra & geometry
- <u>Approximate</u> polynomials satisfiability (APS)
- APS is in PSPACE
- Conclusion

Polynomial map-- Entropy

- Consider map $\mathbf{f} : \mathbf{F}^n \to \mathbf{F}^m$.
 - Wlog assume n=m and F large enough.
- What can we say about the geometry of the map?
 - Eg. the dimensions of image, preimage?
 - Eg. the Zariski closure of the image?
 - They seem unrelated to zeroset of the *ideal* $< f_1, ..., f_m >$.
- Intuitively, alg.independent **f** should have a *large* image.
 - Analogously, preimage f⁻¹(b) should be usually small.
- Consider the case of finite fields F = GF(q).
 - → For $b \in F^m$, denote $\#f^{-1}(b)$ by N(b).
 - → Denote # { $\mathbf{x} \in \overline{F}^n$: $\mathbf{f}(\mathbf{x}) = b$ } by $\overline{N}(b)$.

Allow points in algebraic closure.

Polynomial map-- Preimage

Consider map f : Fⁿ → Fⁿ.
 → Let D := ∏,deg(f,).

So, *Image* is dimension n (= trdeg); *Preimage* is dimension 0.

- Lemma 1 [Preimage]: For alg.independent f, N(f(a)) ≤ D for all except (D²/q)-fraction of a∈Fⁿ.
 - → *Pf idea*: Consider the annihilators $A_i(x_i, f) = 0$, for $i \in [n]$.
 - Degree bound is D and it constrains the bad a's.
- Lemma 2 [Preimage]: For dependent f, N(f(a)) > k for all except (kD/q)-fraction of a∈Fⁿ.
 - *Pf idea*: Consider the annihilator A(f) = 0.
 - Degree bound is D and it constrains the bad a's.
- (Goldwasser-Sipser'86)'s set-lowerbound method on f⁻¹(f(a)) proves: AD is in AM.

Polynomial map-- Image

- Consider map f : Fⁿ → Fⁿ
 Let D := ∏deg(f)
- Lemma 1 [Image]: For alg.independent f, N(b)>0 for at least (D⁻¹ D/q)-fraction of b∈Fⁿ.
 - → *Pf idea*: Let S be the a's for which $N(f(a)) \leq D$.
 - Sy Lemma 1 [Preimage], #f(S)/qⁿ ≥ #S/Dqⁿ ≥ (D⁻¹ D/q).
- Lemma 2 [Image]: For dependent f, N(b)=0 for all except (D/q)-fraction of b∈Fⁿ.
 - *Pf idea*: Consider the annihilator A(f) = 0.
 - Degree is D and it constrains the *image* b.

AD ∈ AM ∩ coAM rules out AD's NP-hardness !

 (Goldwasser-Sipser'86)'s Set Lowerbound method on Image(f) proves: AD is in coAM.

- Algebraic dependence testing
- Entropy & Protocols
- Three problems; algebra & geometry
- <u>Approximate</u> polynomials satisfiability (APS)
- APS is in PSPACE
- Conclusion

Polynomial map-- Zariski closure

- Consider map $\mathbf{f} : \mathbf{F}^n \to \mathbf{F}^m$.
- Zariski closure $\overline{Img}(\mathbf{f}) := Z(I)$, where I is the annihilating-ideal of **f**.
 - It's the smallest affine variety in \overline{F}^m containing image of **f**.
 - Zerosets are closed sets in Zariski topological space F^m.
- Problem ZC: Given polynomials **f**, test whether $0 \in \mathbb{P}[\text{Img}(f)]$.
- Eg. $\mathbf{0} \in \overline{\text{Img}}(x_1, x_1x_2-1)$, though $\mathbf{0} \notin \text{Img}(x_1, x_1x_2-1)$.
 - Annihilating-ideal of (x_1, x_1x_2-1) is <0>.
- ZC can be solved using Elimination theory or Gröbner bases.
 - It takes EXPSPACE.
 - i.e. *doubly*-exponential time!
 - Annihilating-ideal may be terribly complicated.

Polynomial map-- AnnAtZero

- Consider map $\mathbf{f} : \mathbf{F}^n \to \mathbf{F}^m$ with I as the annihilating-ideal.
- Problem AnnAtZero: Given polynomials f, is the constant term of every annihilator zero?
- If trdeg(f)=m, then the answer is trivially YES.
- If trdeg(f)=m-1, then the annihilating-ideal is principal.
 - Check constant term, by doing *linear algebra*, in PSPACE.
 - (Kayal'09) Even this is NP-hard.
- Lemma: ZC iff AnnAtZero.
 - → Proof idea: $\mathbf{0} \in \overline{\text{Img}}(\mathbf{f}) := Z(\mathbf{I})$ iff $\mathbf{I} \subseteq \langle \mathbf{y}_1, ..., \mathbf{y}_m \rangle$.
- AnnAtZero is in EXPSPACE.

0 0

Approx. polynomials satisfiability- APS

- Problem APS: Given circuits **f**, is there β ∈ $\overline{F}(ε)^n$ such that, for all i, f_i(β) ∈ εF[ε] ?
 - → Real Analytic motivation: Think of $ε \rightarrow 0$.
 - Then, we want ``roots" β of **f** such that $f_{\beta}(\beta) \rightarrow 0$.
 - → We're allowing ``values'' $1/ε \rightarrow ∞$.
- <u>Note</u>: If $\beta \in \overline{F}[\epsilon]^n$ then we get actual roots of **f** in \overline{F}^n .
 - Classical PS (or Hilbert Nullstellensatz) is in PSPACE.
 - (Koiran'96) Conditionally, it's in AM.
- Lemma: ZC iff APS.
 - Proof idea: (Lehmkuhl-Lickteig'89) reduce to a curve & deduce:
 - $\mathbf{0} \in \text{Img}(\mathbf{f}) := Z(\mathbf{I})$ iff ``approximate root" $\beta \in F(\varepsilon)^n$ exists.
- APS is in **EXPSPACE**.

Infinitesimally approximate

root

Equivalence of the three

- Consider map $\mathbf{f} : \mathbf{F}^n \to \mathbf{F}^m$.
- Theorem: ZC iff AnnAtZero iff APS.
- Can we do better than EXPSPACE ?
- Going by degree/ precision bounds, it looks hopeless.....
- Exploit the geometry in ZC?
 - Dimension reduction?

- Algebraic dependence testing
- Entropy & Protocols
- Three problems; algebra & geometry
- <u>Approximate</u> polynomials satisfiability (APS)
- APS is in PSPACE
- Conclusion

APS models Approximative Complexity

Family {f_n(x)} is in VP if, over F(ε), there is a poly(n)-size circuit family {g_n(x)} such that

 $f_n - g_n \in \varepsilon F[\varepsilon][\mathbf{x}]$.

- We define $\overline{\text{size}}(f_n)$ to be $\text{size}(g_n)$.
- Potentially, size(f) may be much smaller than size(f).
- Blackbox polynomial identity testing/ *Hitting-set generator* for VP:
- Problem [VP hsg]: Given oracle to f(x), test whether it's zero.
 [Verification]: Given a set H, is it a hitting-set for size-s circuits?
 - Infinitely many circuits to verify!

We reduce the verification problem to APS.

VP

F(ε)

APS models Approximative Complexity

- Reduce the \overline{VP} hsg verification problem to APS.
- Let Ψ(y,x) be a universal circuit with y as auxiliary variables.
 Fixing y ∈ F(ε)^{s'} approximates any desired size-s circuit.
- Set <u>H</u> is not a hitting-set for size-s degree-r circuits, if there is a fixing of y such that resulting polynomial fools <u>H</u>.

APS models Approximative Complexity

- APS models any computational problem where infinitesimal approximation is involved.
 - Recipe is field and char independent.
- Border rank computation of a tensor reduces to APS.
- Explicit system of parameters (esop) in GCT reduces to APS.
 * (Mulmuley'12) GCT Chasm: VP hsg vs. VP hsg.
- *Null-cone problem*, from invariant theory, reduces to APS.
 - Whether input tensor X is in the null cone of the group action G?
 - (Bürgisser-Garg-Oliveira-Walter-Wigderson '17) Applicable in combinatorial optimization, etc.
 - A really special case of APS.

- Algebraic dependence testing
- Entropy & Protocols
- Three problems; algebra & geometry
- <u>Approximate</u> polynomials satisfiability (APS)
- APS is in PSPACE
- Conclusion

Solving APS

- We give a nontrivial algorithm for APS.
- Input circuits $f_1, \dots, f_m \in F[x_1, \dots, x_n]$.
 - Recall that AnnAtZero on f is equivalent to APS.
- We intend to reduce to the case where trdeg(f)=m-1.
 - Check constant term of the unique annihilator, by doing *linear* algebra, in PSPACE.

Else, there are too many/ high degree annihilators!

- Let trdeg(f)=:k.
 - → Case [$k \ge m 1$]: We know a PSPACE algorithm solving APS.
- Assume we have k<m-1.</p>
 - $\mathbf{g}:=\{\mathbf{g}_1,...,\mathbf{g}_{k+1}\}\$ be k+1 random linear combinations of \mathbf{f} .

Solving APS

- g:= {g₁,..., g_{k+1}} is k+1 random linear combinations of f.
 Claim: Whp, trdeg(g) = k.
- Theorem: Whp, g is in APS iff f is in APS.
 - Proof idea: Converse is relatively easy to show.
 - → For forward direction, assume trdeg(g) = k and $g \in APS$.
 - → Let π : $F^m \rightarrow F^{k+1}$ be random linear map with kernel W.
 - Let V := $\overline{\text{Img}}(\mathbf{f})$ and V' := $\overline{\pi(V)}$ be relevant varieties.
 - We show: $\pi^{-1}(V') = U_{P \in V} W_{P}$, where W_{P} is the translate variety.
 - **0**∈V' ⇒ W ⊆ π⁻¹(V') ⇒ W=W_P for some P∈V ⇒ P∈ V∩W (*false* whp).
- We solve APS in PSPACE.
 - Down with EXPSPACE !

- Algebraic dependence testing
- Entropy & Protocols
- Three problems; algebra & geometry
- <u>Approximate</u> polynomials satisfiability (APS)
- APS is in PSPACE
- Conclusion

At the end ...

- Algebraic dependence testing is in AM ∩ coAM.
 - Open: Randomized subexp-time algorithm?
- Approx.polynomials satisfiability is in PSPACE.
 - Open: in AM? PH?
 - Would solve a host of other problems.
- An input instance open for both the problems:
 - Open: Set of quadratic polynomials over GF(2) ?

