
Reconstruction of non-degenerate

homogeneous depth-3 circuits

Chandan Saha

Joint work with Neeraj Kayal

Reconstruction of circuits

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed

by a circuit of size 𝑠 from a class 𝐶.

 Reconstruction problem. Given black-box access to 𝑓,
output a small circuit computing 𝑓.

𝑓
𝒂 ∈ 𝔽𝑛 𝑓(𝒂)

 Black-box access to 𝑓
 (membership query access to 𝑓)

Reconstruction of circuits

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed

by a circuit of size 𝑠 from a class 𝐶.

 Reconstruction problem. Given black-box access to 𝑓,
output a small circuit computing 𝑓.

 Size of the output circuit. Ideally, 𝑝𝑜𝑙𝑦(𝑠).

 Proper learning. Output a circuit from class 𝐶.

Reconstruction of circuits

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed

by a circuit of size 𝑠 from a class 𝐶.

 Reconstruction problem. Given black-box access to 𝑓,
output a small circuit computing 𝑓.

 Efficiency. Ideally, 𝑝𝑜𝑙𝑦(𝑑, 𝑠). But, even 𝑁 = 𝑛+𝑑
𝑛
 time

reconstruction is non-trivial, for 𝑛 ≪ 𝑠 ≪ 𝑁 , as

exhaustive search over size-𝑠 circuits takes exp (𝑠) time.

Reconstruction implies lower bounds

 Fortnow & Klivans (2009): A randomized poly-time

reconstruction algorithm for 𝐶 implies there’s a function

in BPEXP that does not have poly-size circuits from 𝐶.

 Volkovich (2016): A deterministic poly-time recon.

algorithm for 𝐶 can be used to construct a function in

EXP that doesn’t have poly-size circuits from 𝐶.

Reconstruction implies lower bounds

 Fortnow & Klivans (2009): A randomized poly-time

reconstruction algorithm for 𝐶 implies there’s a function

in BPEXP that does not have poly-size circuits from 𝐶.

 Volkovich (2016): A deterministic poly-time recon.

algorithm for 𝐶 can be used to construct a function in

EXP that doesn’t have poly-size circuits from 𝐶.

 Efficient reconstruction algorithms have focussed on

classes 𝐶 for which non-trivial lower bounds are known.

Reconstruction implies lower bounds

 Fortnow & Klivans (2009): A randomized poly-time

reconstruction algorithm for 𝐶 implies there’s a function

in BPEXP that does not have poly-size circuits from 𝐶.

 Volkovich (2016): A deterministic poly-time recon.

algorithm for 𝐶 can be used to construct a function in

EXP that doesn’t have poly-size circuits from 𝐶.

 Efficient reconstruction algorithms have focussed on

classes 𝐶 for which non-trivial lower bounds are known.

Does lower bound imply efficient reconstruction ?

Reconstruction is inherently hard

 Reconstruction is akin to approximating the minimum

circuit size.

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛 and an integer 𝑠, check if the

function defined by 𝑇 has a circuit of size at most 𝑠.

Reconstruction is inherently hard

 Reconstruction is akin to approximating the minimum

circuit size.

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛 and an integer 𝑠, check if the

function defined by 𝑇 has a circuit of size at most 𝑠.

 Allender & Hirahara (2017): There’s a є(𝑁) = 𝑜(1) such

that approximating the minimum circuit size to within

𝑁1− є factor cannot be done in 𝑝𝑜𝑙𝑦(𝑁) time, assuming

the existence of one-way function.

Reconstruction is inherently hard

 Reconstruction is akin to approximating the minimum

circuit size.

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛 and an integer 𝑠, check if the

function defined by 𝑇 has a circuit of size at most 𝑠.

 Drawing analogy between Boolean and arithmetic

circuits, reconstruction is expected to be a hard

problem even if 𝑓 is given verbosely as a list of

𝑁 = 𝑛+𝑑
𝑛
 coefficients.

Natural lower bound to reconstruction?

 Razborov & Rudich (1997); Forbes, Shpilka & Volk

(2017); Grochow, Kumar, Saks & Saraf (2017):

 Constructivity.

Coeff. vector of 𝑓
Efficient

algorithm
0, if 𝑓 is computed by

a circuit from 𝐶

Separator for 𝐶

Natural lower bound to PAC learning

 Carmosino, Impagliazzo, Kabanets & Kolokolova (2016):

The natural lower bound framework for 𝐴𝐶0,𝑝- circuits

can be used to give quasi-polynomial time PAC learning

algorithm for the same class.

 Linial, Mansour & Nisan (1993): Similar result for 𝐴𝐶0 .

 Jackson, Klivans & Servedio (2002): Similar result for

𝐴𝐶0 with poly-logarithmic majority gates.

Natural lower bound to PAC learning

 Carmosino, Impagliazzo, Kabanets & Kolokolova (2016):

The natural lower bound framework for 𝐴𝐶0,𝑝- circuits

can be used to give quasi-polynomial time PAC learning

algorithm for the same class.

 Linial, Mansour & Nisan (1993): Similar result for 𝐴𝐶0 .

 Jackson, Klivans & Servedio (2002): Similar result for

𝐴𝐶0 with poly-logarithmic majority gates.

 These learning algorithms are not proper.

Natural lower bound to reconstruction?

 Can we hope to get such natural lower bound to

reconstruction translations for arithmetic circuits?

Natural lower bound to reconstruction?

 Can we hope to get such natural lower bound to

reconstruction translations for arithmetic circuits?

 Klivans & Shpilka (2006); Forbes & Shpilka (2013): Gave

efficient reconstruction for read-once oblivious ABP

(ROABP) and non-commutative ABP. (Natural lower

bounds were known for these models.)

Natural lower bound to reconstruction?

 Can we hope to get such natural lower bound to

reconstruction translations for arithmetic circuits?

 There are a few challenges:

Exact learning. Two polynomials differ at many points.

If the output is an arithmetic circuit then it has to

compute 𝑓 exactly.

Natural lower bound to reconstruction?

 Can we hope to get such natural lower bound to

reconstruction translations for arithmetic circuits?

 There are a few challenges:

Exact learning. Two polynomials differ at many points.

If the output is an arithmetic circuit then it has to

compute 𝑓 exactly.

Depth reduction. Constant depth arithmetic circuits

are too powerful.

Homogenization. Makes reconstruction challenging

even for classes with exponential lower bounds.

Homogeneous depth-3 circuits

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Each term 𝑇𝑖 is a product of 𝑑 linear forms in 𝑛
variables.

Homogeneous depth-3 circuits

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Each term 𝑇𝑖 is a product of 𝑑 linear forms in 𝑛
variables.

A (𝑛, 𝑑, 𝑠) homogeneous

depth-3 circuit

Homogeneous depth-3 circuits

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Each term 𝑇𝑖 is a product of 𝑑 linear forms in 𝑛
variables.

 Nisan & Wigderson (1997): Showed a (𝑛/𝑑)Ω(𝑑) lower

bound on 𝑠 for 𝑑 ≤ 𝑛.

 Kayal, S., Tavenas (2016): Showed a 2Ω(𝑛) lower bound

on 𝑠 for 𝑑 ≥ 𝑛.

Homogeneous depth-3 circuits

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Each term 𝑇𝑖 is a product of 𝑑 linear forms in 𝑛
variables.

 Nisan & Wigderson (1997): Showed a (𝑛/𝑑)Ω(𝑑) lower

bound on 𝑠 for 𝑑 ≤ 𝑛.

 Kayal, S., Tavenas (2016): Showed a 2Ω(𝑛) lower bound

on 𝑠 for 𝑑 ≥ 𝑛.

 Both the lower bound proofs are natural.

Homogeneous depth-3 circuits

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Each term 𝑇𝑖 is a product of 𝑑 linear forms in 𝑛
variables.

 Klivans & Shpilka (2003): Can we reconstruct

homogeneous depth-3 circuits efficiently ?

Our result

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Theorem. Let 𝑛 ≥ (3𝑑)2 and 𝑠 ≤ (𝑛/3𝑑)𝑑/3. There is a

randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.

Our result

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Theorem. Let 𝑛 ≥ (3𝑑)2 and 𝑠 ≤ (𝑛/3𝑑)𝑑/3. There is a

randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.

 Proper learning. The output is a (𝑛, 𝑑, 𝑠) homogeneous

depth-3 circuit.

Our result

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Theorem. Let 𝑛 ≥ (3𝑑)2 and 𝑠 ≤ (𝑛/3𝑑)𝑑/3. There is a

randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.

 The algorithm works under two restrictions:

 Degree restriction: 𝑛 ≥ (3𝑑)2

 Non-degeneracy: Next slide…

Our result

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Theorem. Let 𝑛 ≥ (3𝑑)2 and 𝑠 ≤ (𝑛/3𝑑)𝑑/3. There is a

randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.

 The algorithm works under two restrictions:

 Degree restriction: 𝑛 ≥ (3𝑑)2 Let’s ignore it!

 Non-degeneracy: Next slide…

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Clearly, 𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Clearly, 𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

direct sum equality

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Clearly, 𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

direct sum equality

𝑘 = 𝑂(1) if 𝑠 = 𝑝𝑜𝑙𝑦(𝑛)

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Clearly, 𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

 A random homogeneous depth-3 circuit is almost surely

non-degenerate.

Non-degeneracy condition

 Can we get rid of non-degeneracy condition entirely?

If yes, then…

Non-degeneracy condition

 Can we get rid of non-degeneracy condition entirely?

If yes, then…

 Lower bound for depth-3 circuits: (homogenization)

If 𝑓(𝒙) is computed by a (𝑛, 𝑑, 𝑠) depth-3 circuit then

𝑧𝑑𝑓(𝒙/𝑧) is computed by (𝑛 + 1, 𝑑, 𝑠) homogeneous

depth-3 circuit. Thus, we get efficient reconstruction

for depth-3 circuits, and [FK09] implies a lower bound

for the same class!

Non-degeneracy condition

 Can we get rid of non-degeneracy condition entirely?

If yes, then…

 Reconstruction for general circuits: (depth reduction)

We get 𝑛𝑂(𝑑) time reconstruction for circuits of size

𝑝𝑜𝑙𝑦(𝑛) via the depth reduction to depth-3 result.

[Gupta, Kamath, Kayal, Saptharishi (2013); Tavenas

(2013); Koiran (2012); Agrawal & Vinay (2008)]

Non-degeneracy condition

 Thus, getting an unconditional translation from natural

lower bound proofs to efficient reconstruction seems

extremely challenging even for homogeneous depth-3

circuits.

Non-degeneracy condition

 Thus, getting an unconditional translation from natural

lower bound proofs to efficient reconstruction seems

extremely challenging even for homogeneous depth-3

circuits.

 However, it may be possible to use the natural lower

bound framework of a model to do efficient

reconstruction for the same model under some non-

degeneracy condition that originates from the lower

bound proof.

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

 Fact: A crucial aspect of the [NW95] lower bound

proof is that each 𝑈𝑖 is ‘‘simple’’ in the sense that it is a

low-dimensional space.

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

 The non-degeneracy condition exploits this fact and

reduces the reconstruction problem to decomposing

the space 𝑈 into a direct sum of ‘‘simple’’ spaces.

Non-degeneracy condition

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 Non-degeneracy*: 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠

 The non-degeneracy condition exploits this fact and

reduces the reconstruction problem to decomposing

the space 𝑈 into a direct sum of ‘‘simple’’ spaces.

A priori, it is not clear if this

decomposition can be done efficiently.

Conceptual contribution

 A paradigm for handling large fan-in sum gates.

 𝑆𝑡𝑒𝑝 1: Reduce the problem of finding children of a

sum gate to decomposition of a suitable space 𝑈 into

‘‘simpler’’ spaces (using the lower bound framework).

 𝑆𝑡𝑒𝑝 2: Define an appropriate space 𝓢 of linear

operators on 𝑈. The structure of 𝓢 (in our case, the

irreducible invariant subspaces of 𝑈 induced by 𝓢) helps

retrieve the ‘‘simpler’’ spaces efficiently.

Conceptual contribution

 A paradigm for handling large fan-in sum gates.

 We feel that this paradigm has the potential to give

efficient reconstruction for other circuit models for

which natural lower bounds are known.

Conceptual contribution

 A paradigm for handling large fan-in sum gates.

 We feel that this paradigm has the potential to give

efficient reconstruction for other circuit models for

which natural lower bounds are known.

 Prior work on efficient reconstruction (barring those on

ROABP / non-commutative ABP / read-once formula)

could only handle very low fan-in sum gates.

Related results

Restricted depth-3 circuits

 Beimel, Bergadano, Bshouty, Kushilevitz & Varricchio

(2000): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑, 𝑠) time reconstruction

for depth-3 powering circuits and set-multilinear depth-

3 circuits.

 Klivans & Shpilka (2003): Randomized 𝑝𝑜𝑙𝑦(𝑛, 2𝑑 , 𝑠)
time reconstruction for general depth-3 circuits.

 The output hypothesis is an ROABP.

Restricted depth-3 circuits

 Shpilka (2007): Randomized 𝑞𝑝𝑜𝑙𝑦(𝑛, 𝑑, |𝔽|) time

reconstruction for depth-3 circuits with top fan-in two.

 Karnin & Shpilka (2009): Deterministic reconstruction

for depth-3 circuits in 𝑝𝑜𝑙𝑦 𝑛 . |𝔽|(log 𝑑)
𝑂(𝑠3)

 time.

 Sinha (2016): Randomized reconstruction for depth-3

circuits with top fan-in two over ℝ in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time.

Restricted depth-3 circuits

 Shpilka (2007): Randomized 𝑞𝑝𝑜𝑙𝑦(𝑛, 𝑑, |𝔽|) time

reconstruction for depth-3 circuits with top fan-in two.

 Karnin & Shpilka (2009): Deterministic reconstruction

for depth-3 circuits in 𝑝𝑜𝑙𝑦 𝑛 . |𝔽|(log 𝑑)
𝑂(𝑠3)

 time.

 Sinha (2016): Randomized reconstruction for depth-3

circuits with top fan-in two over ℝ in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time.

 These learning algorithms are proper*.

Restricted depth-4 circuits

 Gupta, Kayal & Lokam (2012): Randomized 𝑝𝑜𝑙𝑦(𝑠) time

reconstruction for size 𝑠 multilinear depth-4 circuits

with top fan-in two.

 This learning is also proper.

Reconstruction under non-degeneracy

 Kayal (2012): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠log𝑑 𝑠) time

reconstruction for depth-3 powering circuits.

 García-Marco, Koiran & Pecatte (2018): Randomized

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time reconstruction for depth-3 powering

circuits for 𝑠 ≤ 𝑛+1
2

 and 𝑑 ≥ 5.

Reconstruction under non-degeneracy

 Kayal (2012): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠log𝑑 𝑠) time

reconstruction for depth-3 powering circuits.

 García-Marco, Koiran & Pecatte (2018): Randomized

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time reconstruction for depth-3 powering

circuits for 𝑠 ≤ 𝑛+1
2

 and 𝑑 ≥ 5.

 Gupta, Kayal & Qiao (2013): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠)
time reconstruction for fan-in two regular formulas.

 Kayal, Nair & S. (2018): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time

reconstruction for constant width homogeneous ABP.

Reconstruction under non-degeneracy

 Kayal (2012): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠log𝑑 𝑠) time

reconstruction for depth-3 powering circuits.

 García-Marco, Koiran & Pecatte (2018): Randomized

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time reconstruction for depth-3 powering

circuits for 𝑠 ≤ 𝑛+1
2

 and 𝑑 ≥ 5.

 Gupta, Kayal & Qiao (2013): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠)
time reconstruction for fan-in two regular formulas.

 Kayal, Nair & S. (2018): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time

reconstruction for constant width homogeneous ABP.

Kayal, S., Saptharishi (2014): Super-poly lower bound known

Reconstruction under non-degeneracy

 Kayal (2012): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠log𝑑 𝑠) time

reconstruction for depth-3 powering circuits.

 García-Marco, Koiran & Pecatte (2018): Randomized

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time reconstruction for depth-3 powering

circuits for 𝑠 ≤ 𝑛+1
2

 and 𝑑 ≥ 5.

 Gupta, Kayal & Qiao (2013): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠)
time reconstruction for fan-in two regular formulas.

 Kayal, Nair & S. (2018): Randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time

reconstruction for constant width homogeneous ABP.

Kumar (2017): Linear width lower bound known

Back to homogeneous

depth-3 circuits

The algorithm

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 𝑆𝑡𝑒𝑝 1: Compute a basis of 𝑈.

 𝑆𝑡𝑒𝑝 2: Decompose 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 .

 𝑆𝑡𝑒𝑝 3: Compute 𝑇𝑖 from a basis of 𝑈𝑖.

The algorithm

 𝑓 = 𝑇1 + 𝑇2 +⋯+ 𝑇𝑠

 Let 𝑘 = log 𝑠
log(𝑛/𝑒𝑑)

 , 𝑈 ≔ 𝜕𝑘𝑓 and 𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 .

 𝑆𝑡𝑒𝑝 1: Compute a basis of 𝑈.

 𝑆𝑡𝑒𝑝 2: Decompose 𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 .

 𝑆𝑡𝑒𝑝 3: Compute 𝑇𝑖 from a basis of 𝑈𝑖.

Main step

𝑆𝑡𝑒𝑝 1: Computing a basis of U

 𝐹𝑎𝑐𝑡 1: From black-box access to 𝑓, we can compute

black-box access to
𝜕𝑓

𝜕𝑥
 in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time.

 𝐹𝑎𝑐𝑡 2: From black-box access to 𝑓1, 𝑓2, … , 𝑓𝑚, we can

compute black-box access to elements of a basis of

𝑓1, 𝑓2, … , 𝑓𝑚 in randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑,𝑚) time.

𝑆𝑡𝑒𝑝 1: Computing a basis of U

 𝐹𝑎𝑐𝑡 1: From black-box access to 𝑓, we can compute

black-box access to
𝜕𝑓

𝜕𝑥
 in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time.

 𝐹𝑎𝑐𝑡 2: From black-box access to 𝑓1, 𝑓2, … , 𝑓𝑚, we can

compute black-box access to elements of a basis of

𝑓1, 𝑓2, … , 𝑓𝑚 in randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑,𝑚) time.

 Compute black-box access to elements of 𝜕𝑘𝑓 in

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time using 𝐹𝑎𝑐𝑡 1.

 Compute black-box access to elements of a basis

Γ = (𝑔1, … , 𝑔𝑚) of 𝑈 using 𝐹𝑎𝑐𝑡 2.

𝑆𝑡𝑒𝑝 1: Computing a basis of U

 𝐹𝑎𝑐𝑡 1: From black-box access to 𝑓, we can compute

black-box access to
𝜕𝑓

𝜕𝑥
 in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time.

 𝐹𝑎𝑐𝑡 2: From black-box access to 𝑓1, 𝑓2, … , 𝑓𝑚, we can

compute black-box access to elements of a basis of

𝑓1, 𝑓2, … , 𝑓𝑚 in randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑,𝑚) time.

 Compute black-box access to elements of 𝜕𝑘𝑓 in

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time using 𝐹𝑎𝑐𝑡 1.

 Compute black-box access to elements of a basis

Γ = (𝑔1, … , 𝑔𝑚) of 𝑈 using 𝐹𝑎𝑐𝑡 2.

𝜕𝑘𝑓 = 𝑛+𝑘−1
𝑘
= 𝑝𝑜𝑙𝑦(𝑛, 𝑠)

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables. 𝐷𝑒𝑔 𝑘 = 𝑛+𝑘−1
𝑘
= 𝑝𝑜𝑙𝑦(𝑛, 𝑠).

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables.

 For 𝛼 ∈ 𝐷𝑒𝑔(𝑘), solve for 𝑐𝛼,𝑖,𝑗 ∈ 𝔽 such that

 𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖𝑖∈ 𝑠 =
𝜕𝑘𝑓

𝜕𝛼

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables.

 For 𝛼 ∈ 𝐷𝑒𝑔(𝑘), solve for 𝑐𝛼,𝑖,𝑗 ∈ 𝔽 such that

 𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖𝑖∈ 𝑠 =
𝜕𝑘𝑓

𝜕𝛼

We have black-box access

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables.

 For 𝛼 ∈ 𝐷𝑒𝑔(𝑘), solve for 𝑐𝛼,𝑖,𝑗 ∈ 𝔽 such that

 𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖𝑖∈ 𝑠 =
𝜕𝑘𝑓

𝜕𝛼

 =
𝜕𝑘𝑇1

𝜕𝛼
+⋯+

𝜕𝑘𝑇𝑠

𝜕𝛼

 Such a solution satisfies

 𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖 =
𝜕𝑘𝑇𝑖
𝜕𝛼

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables.

 Well known identity for homogeneous polynomials

𝑇𝑖 =
𝑑 − 2𝑘 !

𝑑 − 𝑘 !
∙

𝑘

𝛼
𝛼 ∈ 𝐷𝑒𝑔(𝑘)

∙ 𝛼 ∙
𝜕𝑘𝑇𝑖
𝜕𝛼

Identifying 𝛼 with its

exponent vector

𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖.

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the

𝒙-variables.

 Well known identity for homogeneous polynomials

𝑇𝑖 =
𝑑 − 2𝑘 !

𝑑 − 𝑘 !
∙

𝑘

𝛼
𝛼 ∈ 𝐷𝑒𝑔(𝑘)

∙ 𝛼 ∙
𝜕𝑘𝑇𝑖
𝜕𝛼

Thanks to Gaurav Sinha for showing

us this argument for executing Step 3 !

A few definitions

 Let 𝑈 be a space and 𝓢 a space of linear operators on 𝑈.

 Definition. A space 𝑉 ⊆ 𝑈 is an invariant subspace of 𝑈

(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉.

A few definitions

 Let 𝑈 be a space and 𝓢 a space of linear operators on 𝑈.

 Definition. A space 𝑉 ⊆ 𝑈 is an invariant subspace of 𝑈

(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉. Moreover, 𝑉 is irreducible if

there’s no invariant subspace properly contained in 𝑉.

A few definitions

 Let 𝑈 be a space and 𝓢 a space of linear operators on 𝑈.

 Definition. A space 𝑉 ⊆ 𝑈 is an invariant subspace of 𝑈

(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉. Moreover, 𝑉 is irreducible if

there’s no invariant subspace properly contained in 𝑉.

 Definition. The closure of vector 𝑣 ∈ 𝑈 with respect to

𝓢 is the smallest invariant subspace of 𝑈 containing 𝑣.

A few definitions

 Let 𝑈 be a space and 𝓢 a space of linear operators on 𝑈.

 Definition. A space 𝑉 ⊆ 𝑈 is an invariant subspace of 𝑈

(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉. Moreover, 𝑉 is irreducible if

there’s no invariant subspace properly contained in 𝑉.

 Definition. The closure of vector 𝑣 ∈ 𝑈 with respect to

𝓢 is the smallest invariant subspace of 𝑈 containing 𝑣.

 𝐹𝑎𝑐𝑡 3: Given 𝑣 ∈ 𝔽𝑚 and a set of matrices *𝑀1, … ,𝑀𝑡+
in 𝔽𝑚×𝑚, the closure of 𝑣 with respect to 𝑀1, … ,𝑀𝑡

can be computed in deterministic 𝑝𝑜𝑙𝑦(𝑚) time.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The idea:

 Define a suitable space 𝓢 of linear operators on 𝑈

such that 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces

of 𝑈 induced by 𝓢.

 Pick vectors in 𝑈 carefully such that the closures of

these vectors with respect to 𝓢 give 𝑈1, … , 𝑈𝑠.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The idea:

 Define a suitable space 𝓢 of linear operators on 𝑈

such that 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces

of 𝑈 induced by 𝓢.

 Pick vectors in 𝑈 carefully such that the closures of

these vectors with respect to 𝓢 give 𝑈1, … , 𝑈𝑠.

Simultaneous block diagonalization of a basis of 𝓢.

Space of linear operators on 𝑈

 The shifted differential operator space:

 𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶ 𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) .

 𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 .

Space of linear operators on 𝑈

 The shifted differential operator space:

 𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶ 𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) .

 𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 .

 Observation. A basis (𝜓1, … , 𝜓𝑡) of 𝓢 can be computed

in 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time from a basis Γ = (𝑔1, … , 𝑔𝑚) of 𝑈.

Space of linear operators on 𝑈

 The shifted differential operator space:

 𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶ 𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) .

 𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 .

 Observation. A basis (𝜓1, … , 𝜓𝑡) of 𝓢 can be computed

in 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time from a basis Γ = (𝑔1, … , 𝑔𝑚) of 𝑈.

 Proof. Solve for 𝑐𝛼,𝛽 and 𝑑𝑖,𝑗 in 𝔽 such that

 𝑐𝛼,𝛽 ∙ 𝛽 ∙
𝜕𝑘𝑔𝑖

𝜕𝛼𝛼,𝛽∈𝐷𝑒𝑔(𝑘) = 𝑑𝑖,𝑗 ∙ 𝑔𝑗𝑗∈,𝑚-

 for every 𝑖 ∈ ,𝑚-.

Space of linear operators on 𝑈

 The shifted differential operator space:

 𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶ 𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) .

 𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 .

 Observation. A basis (𝜓1, … , 𝜓𝑡) of 𝓢 can be computed

in 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time from a basis Γ = (𝑔1, … , 𝑔𝑚) of 𝑈.

 Proof. Solve for 𝑐𝛼,𝛽 and 𝑑𝑖,𝑗 in 𝔽 such that

 𝑐𝛼,𝛽 ∙ 𝛽 ∙
𝜕𝑘𝑔𝑖

𝜕𝛼𝛼,𝛽∈𝐷𝑒𝑔(𝑘) = 𝑑𝑖,𝑗 ∙ 𝑔𝑗𝑗∈,𝑚-

 for every 𝑖 ∈ ,𝑚-.
We have black-box access to these polynomials

Nice properties of 𝓢

 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced

by 𝓢.

Nice properties of 𝓢

 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced

by 𝓢.

… follows from the non-degeneracy condition

Nice properties of 𝓢

 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced

by 𝓢.

 𝐶𝑙𝑎𝑖𝑚 2. There is an operator 𝜓 ∈ 𝓢 having distinct

eigenvalues.

Nice properties of 𝓢

 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced

by 𝓢.

 𝐶𝑙𝑎𝑖𝑚 2. There is an operator 𝜓 ∈ 𝓢 having distinct

eigenvalues.

 𝐶𝑙𝑎𝑖𝑚 3. 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces of

𝑈 induced by 𝓢.

Nice properties of 𝓢

 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced

by 𝓢.

 𝐶𝑙𝑎𝑖𝑚 2. There is an operator 𝜓 ∈ 𝓢 having distinct

eigenvalues.

 𝐶𝑙𝑎𝑖𝑚 3. 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces of

𝑈 induced by 𝓢.

 The proofs of 𝐶𝑙𝑎𝑖𝑚 2 and 𝐶𝑙𝑎𝑖𝑚 3 are a bit technical.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

Once a basis Γ of 𝑈 is fixed, every operator 𝜓 ∈ 𝓢
can be identified with a unique matrix 𝑀Γ(𝜓).

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial 𝑕(𝑦) of 𝑀Γ. If 𝑕 is not

square-free, output ‘Fail’. Else, let 𝑕 = 𝑕1 ∙ 𝑕2⋯𝑕𝑙 .

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial 𝑕(𝑦) of 𝑀Γ. If 𝑕 is not

square-free, output ‘Fail’. Else, let 𝑕 = 𝑕1 ∙ 𝑕2⋯𝑕𝑙 .

4. Find the null spaces 𝑁1, … , 𝑁𝑙 of 𝑕1 𝑀Γ , ⋯ , 𝑕𝑙(𝑀Γ).

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial 𝑕(𝑦) of 𝑀Γ. If 𝑕 is not

square-free, output ‘Fail’. Else, let 𝑕 = 𝑕1 ∙ 𝑕2⋯𝑕𝑙 .

4. Find the null spaces 𝑁1, … , 𝑁𝑙 of 𝑕1 𝑀Γ , ⋯ , 𝑕𝑙(𝑀Γ).

5. For every 𝑗 ∈ ,𝑙-, pick a 𝑣 ∈ 𝑁𝑗 and compute the closure of

𝑣 with respect to 𝑀Γ 𝜓1 , … ,𝑀Γ(𝜓𝑡) .

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 The algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial 𝑕(𝑦) of 𝑀Γ. If 𝑕 is not

square-free, output ‘Fail’. Else, let 𝑕 = 𝑕1 ∙ 𝑕2⋯𝑕𝑙 .

4. Find the null spaces 𝑁1, … , 𝑁𝑙 of 𝑕1 𝑀Γ , ⋯ , 𝑕𝑙(𝑀Γ).

5. For every 𝑗 ∈ ,𝑙-, pick a 𝑣 ∈ 𝑁𝑗 and compute the closure of

𝑣 with respect to 𝑀Γ 𝜓1 , … ,𝑀Γ(𝜓𝑡) .

6. Let *𝑊1, … ,𝑊𝑝+ be the set of these closure spaces. If 𝑝 ≠ 𝑠,

return ‘Fail’. Else, return bases of Γ ∙ 𝑊1, … , Γ ∙ 𝑊𝑠 .

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 Analyzing the algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

A random operator in 𝓢

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 Analyzing the algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial 𝑕(𝑦) of 𝑀Γ. If 𝑕 is not

square-free, output ‘Fail’. Else, let 𝑕 = 𝑕1 ∙ 𝑕2⋯𝑕𝑙 .

𝑕 is square-free w.h.p (by 𝐶𝑙𝑎𝑖𝑚 2).

𝐶𝑙𝑎𝑖𝑚 2. There is an operator 𝜓 ∈ 𝓢
having distinct eigenvalues.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 Analyzing the algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial 𝑕(𝑦) of 𝑀Γ. If 𝑕 is not

square-free, output ‘Fail’. Else, let 𝑕 = 𝑕1 ∙ 𝑕2⋯𝑕𝑙 .

𝑕 is square-free w.h.p (by 𝐶𝑙𝑎𝑖𝑚 2).

𝐶𝑙𝑎𝑖𝑚 2. A random operator in 𝓢
 has distinct eigenvalues.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 Analyzing the algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial 𝑕(𝑦) of 𝑀Γ. If 𝑕 is not

square-free, output ‘Fail’. Else, let 𝑕 = 𝑕1 ∙ 𝑕2⋯𝑕𝑙 .

4. Find the null spaces 𝑁1, … , 𝑁𝑙 of 𝑕1 𝑀Γ , ⋯ , 𝑕𝑙(𝑀Γ).

Once a basis Γ of 𝑈 is fixed, every 𝑈𝑖 can be identified with

a space 𝑈𝑖,Γ ⊆ 𝔽
𝑚.

𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ. (Proof later)

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 Analyzing the algorithm.

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚).
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖.

2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly. Let 𝑀Γ = 𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- .

3. Factor the characteristic polynomial 𝑕(𝑦) of 𝑀Γ. If 𝑕 is not

square-free, output ‘Fail’. Else, let 𝑕 = 𝑕1 ∙ 𝑕2⋯𝑕𝑙 .

4. Find the null spaces 𝑁1, … , 𝑁𝑙 of 𝑕1 𝑀Γ , ⋯ , 𝑕𝑙(𝑀Γ).

5. For every 𝑗 ∈ ,𝑙-, pick a 𝑣 ∈ 𝑁𝑗 and compute the closure of

𝑣 with respect to 𝑀Γ 𝜓1 , … ,𝑀Γ(𝜓𝑡) .

6. Let *𝑊1, … ,𝑊𝑝+ be the set of these closure spaces. If 𝑝 ≠ 𝑠,

return ‘Fail’. Else, return bases of Γ ∙ 𝑊1, … , Γ ∙ 𝑊𝑠 .

𝑂𝑏𝑠. *𝑊1, … ,𝑊𝑠+ are the spaces *𝑈1,Γ, … , 𝑈𝑠,Γ+ (by 𝐶𝑙𝑎𝑖𝑚 3)

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . The statement of the claim

is independent of the choice of basis Γ. Assume that Γ is a basis

formed by taking union of bases of 𝑈1, … , 𝑈𝑠 .

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. Then,

 𝑕 = 𝑝1 ∙ 𝑝2⋯𝑝𝑠 = 𝑕1 ∙ 𝑕2⋯𝑕𝑙

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. 𝑕𝑗 divides some 𝑝𝑖.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. 𝑕𝑗 divides some 𝑝𝑖.

 For 𝑣 ∈ 𝑁𝑗 ,

𝑝𝑖 𝑀Γ =
𝑝𝑖 𝑅1

⋱
𝑝𝑖 𝑅𝑠

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. 𝑕𝑗 divides some 𝑝𝑖.

 For 𝑣 ∈ 𝑁𝑗 ,

𝑝𝑖 𝑀Γ ∙ 𝑣 =
𝑝𝑖 𝑅1

⋱
𝑝𝑖 𝑅𝑠

∙ 𝑣 = 0

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. 𝑕𝑗 divides some 𝑝𝑖.

 For 𝑣 ∈ 𝑁𝑗 ,

𝑝𝑖 𝑀Γ ∙ 𝑣 =
𝑝𝑖 𝑅1

⋱
𝑝𝑖 𝑅𝑠

∙

𝑣1
⋮
𝑣𝑠
= 0

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 Let 𝑝𝑖 be the characteristic polynomial of 𝑅𝑖. 𝑕𝑗 divides some 𝑝𝑖.

 For 𝑣 ∈ 𝑁𝑗 ,

𝑝𝑖 𝑀Γ ∙ 𝑣 =
𝑝𝑖 𝑅1

⋱
𝑝𝑖 𝑅𝑠

∙

𝑣1
⋮
𝑣𝑠
= 0

 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 0 for every 𝑞 ∈ ,𝑠-.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 0 for every 𝑞 ∈ ,𝑠-. Pick any 𝑞 ≠ 𝑖.

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 0 for every 𝑞 ∈ ,𝑠-. Pick any 𝑞 ≠ 𝑖. As 𝑕 is square-

 free, there are polynomials 𝑒1, 𝑒2 such that

 𝑒1 ∙ 𝑝𝑖 + 𝑒2 ∙ 𝑝𝑞 = 1

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 0 for every 𝑞 ∈ ,𝑠-. Pick any 𝑞 ≠ 𝑖. As 𝑕 is square-

 free, there are polynomials 𝑒1, 𝑒2 such that

 𝑒1 ∙ 𝑝𝑖 + 𝑒2 ∙ 𝑝𝑞 = 1

 𝑒1 𝑅𝑞 ∙ 𝑝𝑖 𝑅𝑞 = 𝐼𝑚

𝑆𝑡𝑒𝑝 2: Decomposing 𝑈

 𝐶𝑙𝑎𝑖𝑚 4. Every 𝑁𝑗 is contained in some 𝑈𝑖,Γ.

 𝑃𝑟𝑜𝑜𝑓. 𝑁𝑗 is the null space of 𝑕𝑗 𝑀Γ . By 𝐶𝑙𝑎𝑖𝑚 1,

 𝑀Γ =
𝑅1
⋱
𝑅𝑠

, is a block-diagonal matrix.

 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 0 for every 𝑞 ∈ ,𝑠-. Pick any 𝑞 ≠ 𝑖. As 𝑕 is square-

 free, there are polynomials 𝑒1, 𝑒2 such that

 𝑒1 ∙ 𝑝𝑖 + 𝑒2 ∙ 𝑝𝑞 = 1

 𝑒1 𝑅𝑞 ∙ 𝑝𝑖 𝑅𝑞 ∙ 𝑣𝑞 = 𝑣𝑞 = 0.

 ∴ 𝑣 ∈ 𝑈𝑖,Γ .

Summary

 We give an efficient reconstruction algorithm for non-

degenerate homogeneous depth-3 circuits where both

the algorithm and the non-degeneracy condition

originate from the [NW95] natural lower bound proof.

Summary

 We give an efficient reconstruction algorithm for non-

degenerate homogeneous depth-3 circuits where both

the algorithm and the non-degeneracy condition

originate from the [NW95] natural lower bound proof.

 In doing so, we give a paradigm for handling large fan-in

sum gates by reducing the problem to decomposition of

a suitable space 𝑈, and then solving this decomposition

problem by defining an appropriate space 𝓢 of

operators on 𝑈 and examining its structure.

Summary

 The particular operator space we work with is the

shifted differential operator space. It shows the

effectiveness of shifted derivatives in reconstruction

problems.

Summary

 The particular operator space we work with is the

shifted differential operator space. It shows the

effectiveness of shifted derivatives in solving

reconstruction problems.

 The paradigm has the potential to give efficient

reconstruction for other models for which natural lower

bounds are known. Homogeneous depth-4 circuits,

constant depth multilinear circuits, regular formulas are

instances of such models.

Summary

 The particular operator space we work with is the

shifted differential operator space. It shows the

effectiveness of shifted derivatives in solving

reconstruction problems.

 The paradigm has the potential to give efficient

reconstruction for other models for which natural lower

bounds are known. Homogeneous depth-4 circuits,

constant depth multilinear circuits, regular formulas are

instances of such models.

Thanks!

