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Reconstruction of circuits

* Let f(x) be a n-variate degree-d polynomial computed
by a circuit of size s from a class C.

e Reconstruction problem. Given black-box access to f,
output a small circuit computing f.
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* Let f(x) be a n-variate degree-d polynomial computed
by a circuit of size s from a class C.

e Reconstruction problem. Given black-box access to f,
output a small circuit computing f.

. s _ (n+ay _.
o Efficiency. Ideally, poly(d,s).But, even N = ( . )tlme
reconstruction is non-trivial, for n K s K N, as
exhaustive search over size-s circuits takes exp(s) time.
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e Fortnow & Klivans (2009): A randomized poly-time
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in BPEXP that does not have poly-size circuits from C.

e Volkovich (2016): A deterministic poly-time recon.
algorithm for C can be used to construct a function in
EXP that doesn’t have poly-size circuits from C.
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e Fortnow & Klivans (2009): A randomized poly-time
reconstruction algorithm for C implies there’s a function
in BPEXP that does not have poly-size circuits from C.

e Volkovich (2016): A deterministic poly-time recon.
algorithm for C can be used to construct a function in
EXP that doesn’t have poly-size circuits from C.

o Efficient reconstruction algorithms have focussed on
classes C for which non-trivial lower bounds are known.

Does lower bound imply efficient reconstruction ?



Reconstruction is inherently hard

e Reconstruction is akin to approximating the minimum
circuit size.

e Minimum Circuit Size Problem (MCSP). Given a truth-
table T of size N = 2™ and an integer s, check if the
function defined by T has a circuit of size at most s.
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the existence of one-way function.



Reconstruction is inherently hard

e Reconstruction is akin to approximating the minimum
circuit size.

e Minimum Circuit Size Problem (MCSP). Given a truth-
table T of size N = 2" and an integer s, check if the
function defined by T has a circuit of size at most s.

e Drawing analogy between Boolean and arithmetic
circuits, reconstruction is expected to be a hard
problem even if [ is given verbosely as a list of

N = (":;d) coefficients.



Natural lower bound to reconstruction?

e Razborov & Rudich (1997); Forbes, Shpilka & Volk
(2017); Grochow, Kumar, Saks & Saraf (2017):

Constructivity.

Coeff. vector of [
0,if f is computed by
a circuit from C

Separator for C




Natural lower bound to PAC learning

e Carmosino, Impagliazzo, Kabanets & Kolokolova (2016):
The natural lower bound framework for AC°[p] circuits
can be used to give quasi-polynomial time PAC learning
algorithm for the same class.

e Linial, Mansour & Nisan (1993): Similar result for ACY .

e Jackson, Klivans & Servedio (2002): Similar result for
AC? with poly-logarithmic majority gates.



Natural lower bound to PAC learning

e Carmosino, Impagliazzo, Kabanets & Kolokolova (2016):
The natural lower bound framework for AC°[p] circuits
can be used to give quasi-polynomial time PAC learning
algorithm for the same class.

e Linial, Mansour & Nisan (1993): Similar result for ACY .

e Jackson, Klivans & Servedio (2002): Similar result for
AC? with poly-logarithmic majority gates.

* These learning algorithms are not proper.
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e Can we hope to get such natural lower bound to
reconstruction translations for arithmetic circuits?

° Gave
efficient reconstruction for read-once oblivious ABP
(ROABP) and non-commutative ABP. (Natural lower
bounds were known for these models.)
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»Exact learning. Two polynomials differ at many points.
If the output is an arithmetic circuit then it has to
compute [ exactly.



Natural lower bound to reconstruction?

e Can we hope to get such natural lower bound to
reconstruction translations for arithmetic circuits?

e There are a few challenges:

»Exact learning. Two polynomials differ at many points.
If the output is an arithmetic circuit then it has to
compute [ exactly.

»Depth reduction. Constant depth arithmetic circuits
are too powerful.

»Homogenization. Makes reconstruction challenging
even for classes with exponential lower bounds.
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e Each term T; is a product of d linear forms in n
variables.
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f =T +Ty+-+T,

e Each term T; is a product of d linear forms in n
variables.

o Nisan & Wigderson (1997): Showed a (1n/d)*? lower
bound on s for d < n.

o Kayal, S., Tavenas (2016): Showed a 220V |ower bound
on s for d = n.

Both the lower bound proofs are natural.



Homogeneous depth-3 circuits

f =T +Ty+-+T,

e Each term T; is a product of d linear forms in n
variables.

o Klivans & Shpilka (2003): Can we reconstruct
homogeneous depth-3 circuits efficiently ?
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Our result

f =T +Ty+-+T,

e Theorem.Let n > (3d)? and s < (n/3d)%/3. There is a
randomized poly(n,s) time algorithm to reconstruct
non-degenerate (n, d, s) homogeneous depth-3 circuits.

e The algorithm works under two restrictions:
> Degree restriction: n = (3d)* Let’s ignore it!
» Non-degeneracy: Next slide...
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Non-degeneracy condition

f =T +Ty+-+T,

o Letk = 285 _ [J:=(9%f) and U; = (9% T;).

log(n/ed) ’
e Clearly, U< U, +U;, +---+ Us.

e Non-degeneracy™ U= U, @U, D - DU

* A random homogeneous depth-3 circuit is almost surely
non-degenerate.
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If yes, then...



Non-degeneracy condition

e Can we get rid of non-degeneracy condition entirely!?
If yes, then...

» Lower bound for depth-3 circuits: (homogenization)
If f(x) is computed by a (n,d, s) depth-3 circuit then
z%f(x/z) is computed by (n + 1,d, s) homogeneous
depth-3 circuit. Thus, we get efficient reconstruction
for depth-3 circuits, and [FKO09] implies a lower bound
for the same class!



Non-degeneracy condition

e Can we get rid of non-degeneracy condition entirely!?
If yes, then...

» Reconstruction for general circuits: (depth reduction)

We get n20d) time reconstruction for circuits of size
poly(n) via the depth reduction to depth-3 result.
[Gupta, Kamath, Kayal, Saptharishi (2013); Tavenas
(2013); Koiran (2012); Agrawal & Vinay (2008)]
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Non-degeneracy condition

e Thus, getting an unconditional translation from natural
lower bound proofs to efficient reconstruction seems
extremely challenging even for homogeneous depth-3
circuits.

 However, it may be possible to use the natural lower
bound framework of a model to do efficient
reconstruction for the same model under some non-
degeneracy condition that originates from the lower
bound proof.




Non-degeneracy condition

f =T +Ty+-+T,

o Letk = 285 _ [J:=(9%f) and U; = (9% T;).

log(n/ed) ’
e Non-degeneracy™ U= U, @U, D - DU

e Fact: A crucial aspect of the [NVW95] lower bound
proof is that each U; is “simple” in the sense that it is a
low-dimensional space.
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Non-degeneracy condition

f =T +Ty+-+T,

o Letk = 285 _ [J:=(9%f) and U; = (9% T;).

log(n/ed) ’

e Non-degeneracy™ U= U, @U, D - DU

e The non-degeneracy condition exploits this fact and
reduces the reconstruction problem to decomposing
the space U into a direct sum of “simple” spaces/

A priori, it is not clear if this
decomposition can be done efficiently.



Conceptual contribution

e A paradigm for handling large fan-in sum gates.

» Step 1: Reduce the problem of finding children of a
sum gate to decomposition of a suitable space U into
“simpler” spaces (using the lower bound framework).

» Step 2: Define an appropriate space § of linear
operators on U. The structure of § (in our case, the
irreducible invariant subspaces of U induced by §) helps
retrieve the “simpler” spaces efficiently.
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efficient reconstruction for other circuit models for
which natural lower bounds are known.



Conceptual contribution

e A paradigm for handling large fan-in sum gates.

* We feel that this paradigm has the potential to give
efficient reconstruction for other circuit models for
which natural lower bounds are known.

* Prior work on efficient reconstruction (barring those on
ROABP / non-commutative ABP / read-once formula)
could only handle very low fan-in sum gates.




Related results



Restricted depth-3 circuits

e Beimel, Bergadano, Bshouty, Kushilevitz & Varricchio
(2000): Randomized poly(n,d,s) time reconstruction
for depth-3 powering circuits and set-multilinear depth-
3 circuits.

o Klivans & Shpilka (2003): Randomized poly(n,2¢,s)
time reconstruction for general depth-3 circuits.

* The output hypothesis is an ROABP.
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for depth-3 circuits in poly(n). |F time.

e Sinha (2016): Randomized reconstruction for depth-3
circuits with top fan-in two over R in poly(n, d) time.
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o Shpilka (2007):  Randomized gpoly(n,d,|F|) time
reconstruction for depth-3 circuits with top fan-in two.

e Karnin & Shpilka (2009): Deterministic reconstruction
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for depth-3 circuits in poly(n). |F|(°8 D time.

e Sinha (2016): Randomized reconstruction for depth-3
circuits with top fan-in two over R in poly(n, d) time.

* These learning algorithms are proper*.



Restricted depth-4 circuits

o Gupta, Kayal & Lokam (2012): Randomized poly(s) time
reconstruction for size s multilinear depth-4 circuits
with top fan-in two.

 This learning is also proper.
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Reconstruction under non-degeneracy

o Kayal (2012): Randomized poly(n,s'°82%)  time
reconstruction for depth-3 powering circuits.

o Garcia-Marco, Koiran & Pecatte (2018): Randomized
poly(n,s) time reconstruction for depth-3 powering

circuits for s < (n;rl) and d > 5.

o Gupta, Kayal & Qiao (2013): Randomized poly(n,s)
time reconstruction for fan-in two regular formulas.

o Kayal, Nair & S. (2018): Randomized poly(n,d) time
reconstruction for constant width homogeneous ABP.

Kumar (2017): Linear width lower bound known



Back to homogeneous
depth-3 circuits
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The algorithm

f =T +Ty+-+T,

o Letk = 285 _ [J:=(9%f) and U; = (9% T;).

log(n/ed) ’

Main step

» Step 1: Compute a basis of U. /
» Step 2: Decompose U= U, U, D - DU; .
» Step 3: Compute T; from a basis of U;.
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(f1, f2, -, fm) in randomized poly(n,d, m) time.



Step 1: Computing a basis of U

e Fact 1: From black-box access to f, we can compute

black-box access to a—f in poly(n, d) time.

e Fact 2: From black-box access to [y, f2, ..., fin, We can
compute black-box access to elements of a basis of
(f1, f2, -, fm) in randomized poly(n,d, m) time.

> Compute black-box access to elements of d%f in
poly(n,s) time using Fact 1.

» Compute black-box access to elements of a basis
I'=(g94 .., 9m) of U using Fact 2.



Step 1: Computing a basis of U

e Fact 1: From black-box access to f, we can compute

black-box access to a—f in poly(n, d) time.

e Fact 2: From black-box access to [y, f2, ..., fin, We can
compute black-box access to elements of a basis of
(f1, f2, -, fm) in randomized poly(n,d, m) time.

> Compute black-box access to elements of 0%f in
poly(n,s) time using Fact 1. ||o*f| = (") = poly(n,s)

» Compute black-box access to elements of a basis
I'=(g94 .., 9m) of U using Fact 2.



Step 3: Computing T; from U;

* From Step 2, we have black-box access to elements of a
basis (g; 1, ) Jim;) of U;.

* Let Deg(k) be the set of all degree-k monomials in the
x-variables. |[Deg(k)| = ("+,':_1) = poly(n, s).
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Step 3: Computing T; from U;

* From Step 2, we have black-box access to elements of a
basis (gi,l' ---»gi,mi) of Ui'
* Let Deg(k) be the set of all degree-k monomials in the

x-variables.
» For a € Deg(k),solve for ¢, ; ; € IF such that

ok f
2iels] Cait’ Gin t ot Caim; * Gimy = S
akT ok
1 _I_ + S
oa oa
» Such a solution satisfies
O*T;

Cairt’9i1 T T Cqim; "Gim; = Ao



Step 3: Computing T; from U;

* From Step 2, we have black-box access to elements of a
basis (g; 1, ) Jim;) of U;.

* Let Deg(k) be the set of all degree-k monomials in the
x-variables.

> Well known identity for homogeneous polynomials

. (d — 2k)! Z k O*T;
Y (d -k a) & Toa
a € Deg(k) '\

|dentifying a with its
exponent vector




Step 3: Computing T; from U;

* From Step 2, we have black-box access to elements of a
basis (g; 1, ) Jim;) of U;.

* Let Deg(k) be the set of all degree-k monomials in the
x-variables.

> Well known identity for homogeneous polynomials

_(d = 2k)! k O T;
"= G Z (a>'“' dct

a € Deg(k)

Thanks to Gaurav Sinha for showing
us this argument for executing Step 3 !
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A few definitions

e Let U be a space and § a space of linear operators on U.

e Definition. A space I/ € U is an invariant subspace of U
(induced by §) if SV € V. Moreover, V is irreducible if
there’s no invariant subspace properly contained in V.

e Definition. The closure of vector v € U with respect to
S is the smallest invariant subspace of U containing v.

e Fact 3: Given v € [F"* and a set of matrices {M, ..., M;}
in F"™ "the closure of v with respect to (M, ..., M;)
can be computed in deterministic poly(m) time.
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» Define a suitable space § of linear operators on U

such that Uy, ..., U are irreducible invariant subspaces
of U induced by §.

» Pick vectors in U carefully such that the closures of
these vectors with respect to § give Uy, ..., Us.



Step 2: Decomposing U

e The idea:

» Define a suitable space § of linear operators on U

such that Uy, ..., U are irreducible invariant subspaces
of U induced by §.

» Pick vectors in U carefully such that the closures of
these vectors with respect to § give Uy, ..., Us.

T

Simultaneous block diagonalization of a basis of §.
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Space of linear operators on U

e The shifted differential operator space:
ak

> 8D, :=< o a,p € Deg(k)>.

> 8§ =8Dyy =) €SDy :P(U) S V).

e Observation. A basis (11, ..., ;) of S can be computed
in poly(n,s) time from a basis I' = (g4, ..., g,,,) of U.
* Proof. Solve for ¢, g and d; ; in [F such that

akg;
oa

Za,ﬁepeg(k) Ca,p B — Zje[m] di,j "Yj
for every i € [m].

We have black-box access to these polynomials
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Nice properties of 8§

e Claim 1. Uy, ..., Ug are invariant subspaces of U induced
by S.

e Claim 2. There is an operator Yy € § having distinct
eigenvalues.

e Claim 3. U4, ..., Us are irreducible invariant subspaces of
U induced by §.

e The proofs of Claim 2 and Claim 3 are a bit technical.



Step 2: Decomposing U

e The algorithm.

Compute a basis (Y4, ...,0;) of § from ' = (g4, ..., gm)-
Let Mr(;) be the m X m matrix associated with ;.

N

Once a basis I" of U is fixed, every operator i) € §
can be identified with a unique matrix M ().
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Find the null spaces Ny, ..., N; of hy (M), -+, h;(Myp).

For every j € |[], pick a v € N; and compute the closure of
v with respect to (Mr(Y,), ..., Mr(Y;)).
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e Claim 4. Every N; is contained in some U, .

* Proof. N; is the null space of h;(M). The statement of the claim
is independent of the choice of basis I'. Assume that I is a basis
formed by taking union of bases of Uy, ..., Us .
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Let p; be the characteristic polynomial of R;. Then,

h=py p2ps=hy hyhy
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Mr = , is a block-diagonal matrix.
R

pi(Rq) ‘v, = 0 for every q € [s]. Pickany g # i. As h is square-
free, there are polynomials e;, e, such that

e1 pitey pg=1

e1(Rq) - pi(Rq) = Im



Step 2: Decomposing U

e Claim 4. Every N; is contained in some U, .
* Proof. N; is the null space of h;(Mr). By Claim 1,

Mr = , is a block-diagonal matrix.
R

pi(Rq) ‘v, = 0 for every q € [s]. Pickany g # i. As h is square-
free, there are polynomials e;, e, such that
e1 pitey pg=1
e1(Rq) - pi(Rq) - vg = v = 0.

SV E Ui,F .



Summary

* We give an efficient reconstruction algorithm for non-
degenerate homogeneous depth-3 circuits where both
the algorithm and the non-degeneracy condition
originate from the natural lower bound proof.




Summary

* We give an efficient reconstruction algorithm for non-
degenerate homogeneous depth-3 circuits where both
the algorithm and the non-degeneracy condition
originate from the natural lower bound proof.

* In doing so, we give a paradigm for handling large fan-in
sum gates by reducing the problem to decomposition of
a suitable space U, and then solving this decomposition
problem by defining an appropriate space & of
operators on U and examining its structure.
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e The particular operator space we work with is the

shifted differential operator space. It shows the
effectiveness of shifted derivatives in solving
reconstruction problems.

e The paradigm has the potential to give efficient
reconstruction for other models for which natural lower
bounds are known. Homogeneous depth-4 circuits,
constant depth multilinear circuits, regular formulas are
instances of such models.

Thanks!



