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Reconstruction of circuits 

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed 

by a circuit of size 𝑠 from a class 𝐶. 

 

 Reconstruction problem. Given black-box access to 𝑓, 
output a small circuit computing 𝑓.   

 

𝑓 
𝒂 ∈  𝔽𝑛 𝑓(𝒂) 

        Black-box access to 𝑓 
 ( membership query access to 𝑓 ) 



Reconstruction of circuits 

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed 

by a circuit of size 𝑠 from a class 𝐶. 

 

 Reconstruction problem. Given black-box access to 𝑓, 
output a small circuit computing 𝑓.   

 

 Size of the output circuit.  Ideally,  𝑝𝑜𝑙𝑦(𝑠). 

 Proper learning. Output a circuit from class 𝐶. 

 



Reconstruction of circuits 

 Let 𝑓(𝒙) be a 𝑛-variate degree-𝑑 polynomial computed 

by a circuit of size 𝑠 from a class 𝐶. 

 

 Reconstruction problem. Given black-box access to 𝑓, 
output a small circuit computing 𝑓.   

 

 Efficiency.  Ideally,  𝑝𝑜𝑙𝑦(𝑑, 𝑠). But, even 𝑁 = 𝑛+𝑑
𝑛
 time 

reconstruction is non-trivial, for 𝑛 ≪  𝑠 ≪  𝑁 , as 

exhaustive search over size-𝑠 circuits takes exp (𝑠) time. 

 



Reconstruction implies lower bounds 

 Fortnow & Klivans (2009): A randomized poly-time 

reconstruction algorithm for 𝐶 implies there’s a function 

in BPEXP that does not have poly-size circuits from 𝐶. 

 

 Volkovich (2016): A deterministic poly-time recon. 

algorithm for 𝐶 can be used to construct a function in 

EXP that doesn’t have poly-size circuits from 𝐶.      
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 Efficient reconstruction algorithms have focussed on 

classes 𝐶 for which non-trivial lower bounds are known.     



Reconstruction implies lower bounds 

 Fortnow & Klivans (2009): A randomized poly-time 

reconstruction algorithm for 𝐶 implies there’s a function 

in BPEXP that does not have poly-size circuits from 𝐶. 

 

 Volkovich (2016): A deterministic poly-time recon. 

algorithm for 𝐶 can be used to construct a function in 

EXP that doesn’t have poly-size circuits from 𝐶.  

 

 Efficient reconstruction algorithms have focussed on 

classes 𝐶 for which non-trivial lower bounds are known.     

Does lower bound imply efficient reconstruction ? 



Reconstruction is inherently hard 

 Reconstruction is akin to approximating the minimum 

circuit size. 

 

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛 and an integer 𝑠, check if the 

function defined by 𝑇 has a circuit of size at most 𝑠.  

 



Reconstruction is inherently hard 

 Reconstruction is akin to approximating the minimum 

circuit size. 

 

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛 and an integer 𝑠, check if the 

function defined by 𝑇 has a circuit of size at most 𝑠.  

 

 Allender & Hirahara (2017): There’s a є(𝑁) = 𝑜(1) such 

that approximating the minimum circuit size to within 

𝑁1− є factor cannot be done in 𝑝𝑜𝑙𝑦(𝑁) time, assuming 

the existence of one-way function.  



Reconstruction is inherently hard 

 Reconstruction is akin to approximating the minimum 

circuit size. 

 

 Minimum Circuit Size Problem (MCSP). Given a truth-

table 𝑇 of size 𝑁 = 2𝑛  and an integer 𝑠, check if the 

function defined by 𝑇 has a circuit of size at most 𝑠.  

 

 Drawing analogy between Boolean and arithmetic 

circuits, reconstruction is expected to be a hard 

problem even if 𝑓 is given verbosely as a list of 

𝑁 = 𝑛+𝑑
𝑛
 coefficients.  



Natural lower bound to reconstruction? 

 Razborov & Rudich (1997); Forbes, Shpilka & Volk 

(2017); Grochow, Kumar, Saks & Saraf (2017): 

    

   Constructivity. 
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Natural lower bound to PAC learning 

 Carmosino, Impagliazzo, Kabanets & Kolokolova (2016):  

The natural lower bound framework for 𝐴𝐶0,𝑝- circuits 

can be used to give quasi-polynomial time PAC learning 

algorithm for the same class.   

 

 Linial, Mansour & Nisan (1993): Similar result for 𝐴𝐶0 . 

 

 Jackson, Klivans & Servedio (2002): Similar result for 

𝐴𝐶0 with poly-logarithmic majority gates. 
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 Jackson, Klivans & Servedio (2002): Similar result for 

𝐴𝐶0 with poly-logarithmic majority gates. 

 

 These learning algorithms are not proper. 
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Natural lower bound to reconstruction? 

 Can we hope to get such natural lower bound to 

reconstruction translations for arithmetic circuits? 

 

 Klivans & Shpilka (2006); Forbes & Shpilka (2013): Gave 

efficient reconstruction for read-once oblivious ABP 

(ROABP) and non-commutative ABP. (Natural lower 

bounds were known for these models.) 
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Exact learning. Two polynomials differ at many points. 

If the output is an arithmetic circuit then it has to 

compute 𝑓 exactly. 



Natural lower bound to reconstruction? 

 Can we hope to get such natural lower bound to 

reconstruction translations for arithmetic circuits? 

 

 There are a few challenges: 

Exact learning. Two polynomials differ at many points. 

If the output is an arithmetic circuit then it has to 

compute 𝑓 exactly. 

Depth reduction. Constant depth arithmetic circuits 

are too powerful. 

Homogenization. Makes reconstruction challenging 

even for classes with exponential lower bounds.   



Homogeneous depth-3 circuits 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Each term 𝑇𝑖  is a product of 𝑑  linear forms in 𝑛 
variables. 
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Homogeneous depth-3 circuits 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Each term 𝑇𝑖  is a product of 𝑑  linear forms in 𝑛 
variables. 

 

 Nisan & Wigderson (1997): Showed a (𝑛/𝑑)Ω(𝑑) lower 

bound on 𝑠 for 𝑑 ≤ 𝑛. 

 

 Kayal, S., Tavenas (2016): Showed a 2Ω(𝑛) lower bound 

on 𝑠 for 𝑑 ≥ 𝑛. 

 



Homogeneous depth-3 circuits 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Each term 𝑇𝑖  is a product of 𝑑  linear forms in 𝑛 
variables. 

 

 Nisan & Wigderson (1997): Showed a (𝑛/𝑑)Ω(𝑑) lower 

bound on 𝑠 for 𝑑 ≤ 𝑛. 

 

 Kayal, S., Tavenas (2016): Showed a 2Ω(𝑛) lower bound 

on 𝑠 for 𝑑 ≥ 𝑛. 

 Both the lower bound proofs are natural. 



Homogeneous depth-3 circuits 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Each term 𝑇𝑖  is a product of 𝑑  linear forms in 𝑛 
variables. 

 

 Klivans & Shpilka (2003): Can we reconstruct 

homogeneous depth-3 circuits efficiently ? 



Our result 
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randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct 

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.  
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 Non-degeneracy:  Next slide… 



Our result 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Theorem. Let 𝑛 ≥ (3𝑑)2 and 𝑠 ≤ (𝑛/3𝑑)𝑑/3. There is a 

randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time algorithm to reconstruct 

non-degenerate (𝑛, 𝑑, 𝑠) homogeneous depth-3 circuits.  

 

 The algorithm works under two restrictions:  

 Degree restriction:  𝑛 ≥ (3𝑑)2     Let’s ignore it! 

 Non-degeneracy:  Next slide… 



Non-degeneracy condition 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)

 ,  𝑈 ≔ 𝜕𝑘𝑓   and  𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 . 

 Clearly,   𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 . 

 

 Non-degeneracy*:   𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 
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 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)
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 Clearly,   𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 . 

 

 Non-degeneracy*:   𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 

direct sum equality 

𝑘 =  𝑂(1)  if  𝑠 = 𝑝𝑜𝑙𝑦(𝑛)   



Non-degeneracy condition 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)

 ,  𝑈 ≔ 𝜕𝑘𝑓   and  𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 . 

 Clearly,   𝑈 ⊆ 𝑈1 + 𝑈2 +⋯+ 𝑈𝑠 . 

 

 Non-degeneracy*:   𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 

 

 A random homogeneous depth-3 circuit is almost surely 

non-degenerate. 
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Non-degeneracy condition 

 Can we get rid of non-degeneracy condition entirely?   

If yes, then… 

 

 Lower bound for depth-3 circuits: (homogenization)  

If 𝑓(𝒙) is computed by a (𝑛, 𝑑, 𝑠) depth-3 circuit then 

𝑧𝑑𝑓(𝒙/𝑧) is computed by (𝑛 + 1, 𝑑, 𝑠) homogeneous 

depth-3 circuit. Thus, we get efficient reconstruction 

for depth-3 circuits, and [FK09] implies a lower bound 

for the same class! 



Non-degeneracy condition 

 Can we get rid of non-degeneracy condition entirely?   

If yes, then… 

 

 Reconstruction for general circuits: (depth reduction)  

We get 𝑛𝑂( 𝑑) time reconstruction for circuits of size 

𝑝𝑜𝑙𝑦(𝑛) via the depth reduction to depth-3 result. 

[Gupta, Kamath, Kayal, Saptharishi (2013); Tavenas 

(2013); Koiran (2012);  Agrawal & Vinay (2008)] 



Non-degeneracy condition 

 Thus, getting an unconditional translation from natural 

lower bound proofs to efficient reconstruction seems 

extremely challenging even for homogeneous depth-3 

circuits. 

 



Non-degeneracy condition 

 Thus, getting an unconditional translation from natural 

lower bound proofs to efficient reconstruction seems 

extremely challenging even for homogeneous depth-3 

circuits. 

 

 However, it may be possible to use the natural lower 

bound framework of a model to do efficient 

reconstruction for the same model under some non-

degeneracy condition that originates from the lower 

bound proof. 



Non-degeneracy condition 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)

 ,  𝑈 ≔ 𝜕𝑘𝑓   and  𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 . 

 

 Non-degeneracy*:   𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 

 

 Fact:  A crucial aspect of the [NW95] lower bound 

proof is that each 𝑈𝑖 is ‘‘simple’’ in the sense that it is a 

low-dimensional space. 
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the space 𝑈 into a direct sum of  ‘‘simple’’ spaces. 



Non-degeneracy condition 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)

 ,  𝑈 ≔ 𝜕𝑘𝑓   and  𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 . 

 

 Non-degeneracy*:   𝑈 = 𝑈1 𝑈2 ⋯ 𝑈𝑠 

 

 The non-degeneracy condition exploits this fact and 

reduces the reconstruction problem to decomposing 

the space 𝑈 into a direct sum of  ‘‘simple’’ spaces. 

A priori, it is not clear if this 

decomposition can be done efficiently. 



Conceptual contribution 

 A paradigm for handling large fan-in sum gates.  

 

 𝑆𝑡𝑒𝑝 1: Reduce the problem of finding children of a 

sum gate to decomposition of a suitable space 𝑈 into 

‘‘simpler’’ spaces (using the lower bound framework).  

 

 𝑆𝑡𝑒𝑝 2:  Define an appropriate space 𝓢 of linear 

operators on 𝑈. The structure of 𝓢 (in our case, the 

irreducible invariant subspaces of 𝑈 induced by 𝓢) helps 

retrieve the ‘‘simpler’’ spaces efficiently.  
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 We feel that this paradigm has the potential to give 

efficient reconstruction for other circuit models for 

which natural lower bounds are known. 

 

 



Conceptual contribution 

 A paradigm for handling large fan-in sum gates.  

 

 We feel that this paradigm has the potential to give 

efficient reconstruction for other circuit models for 

which natural lower bounds are known. 

 

 Prior work on efficient reconstruction (barring those on 

ROABP / non-commutative ABP / read-once formula) 

could only handle very low fan-in sum gates. 
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Kumar (2017):  Linear width lower bound known 



Back to homogeneous 

depth-3 circuits 



The algorithm 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)

 ,  𝑈 ≔ 𝜕𝑘𝑓   and  𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 . 

 

 

 𝑆𝑡𝑒𝑝 1: Compute a basis of 𝑈. 

 𝑆𝑡𝑒𝑝 2:  Decompose  𝑈 =  𝑈1 𝑈2 ⋯ 𝑈𝑠 . 

 𝑆𝑡𝑒𝑝 3: Compute 𝑇𝑖 from a basis of 𝑈𝑖. 

 



The algorithm 

                      𝑓  =  𝑇1 + 𝑇2 +⋯+ 𝑇𝑠 

 

 Let 𝑘 =  log 𝑠
log(𝑛/𝑒𝑑)

 ,  𝑈 ≔ 𝜕𝑘𝑓   and  𝑈𝑖 ≔ 𝜕
𝑘 𝑇𝑖 . 

 

 

 𝑆𝑡𝑒𝑝 1: Compute a basis of 𝑈. 

 𝑆𝑡𝑒𝑝 2:  Decompose  𝑈 =  𝑈1 𝑈2 ⋯ 𝑈𝑠 . 

 𝑆𝑡𝑒𝑝 3: Compute 𝑇𝑖 from a basis of 𝑈𝑖. 

 

Main step 



𝑆𝑡𝑒𝑝 1: Computing a basis of U 

 𝐹𝑎𝑐𝑡 1:  From black-box access to 𝑓, we can compute 

black-box access to 
𝜕𝑓

𝜕𝑥
 in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time. 

 𝐹𝑎𝑐𝑡 2: From black-box access to 𝑓1, 𝑓2, … , 𝑓𝑚, we can 

compute black-box access to elements of a basis of 

𝑓1, 𝑓2, … , 𝑓𝑚  in randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑,𝑚) time. 

 



𝑆𝑡𝑒𝑝 1: Computing a basis of U 

 𝐹𝑎𝑐𝑡 1:  From black-box access to 𝑓, we can compute 

black-box access to 
𝜕𝑓

𝜕𝑥
 in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time. 

 𝐹𝑎𝑐𝑡 2: From black-box access to 𝑓1, 𝑓2, … , 𝑓𝑚, we can 

compute black-box access to elements of a basis of 

𝑓1, 𝑓2, … , 𝑓𝑚  in randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑,𝑚) time. 

 

 Compute black-box access to elements of 𝜕𝑘𝑓 in 

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time using 𝐹𝑎𝑐𝑡 1. 

 Compute black-box access to elements of a basis 

Γ = (𝑔1, … , 𝑔𝑚) of 𝑈 using 𝐹𝑎𝑐𝑡 2. 



𝑆𝑡𝑒𝑝 1: Computing a basis of U 

 𝐹𝑎𝑐𝑡 1:  From black-box access to 𝑓, we can compute 

black-box access to 
𝜕𝑓

𝜕𝑥
 in 𝑝𝑜𝑙𝑦(𝑛, 𝑑) time. 

 𝐹𝑎𝑐𝑡 2: From black-box access to 𝑓1, 𝑓2, … , 𝑓𝑚, we can 

compute black-box access to elements of a basis of 

𝑓1, 𝑓2, … , 𝑓𝑚  in randomized 𝑝𝑜𝑙𝑦(𝑛, 𝑑,𝑚) time. 

 

 Compute black-box access to elements of 𝜕𝑘𝑓 in 

𝑝𝑜𝑙𝑦(𝑛, 𝑠) time using 𝐹𝑎𝑐𝑡 1. 

 Compute black-box access to elements of a basis 

Γ = (𝑔1, … , 𝑔𝑚) of 𝑈 using 𝐹𝑎𝑐𝑡 2. 

𝜕𝑘𝑓 = 𝑛+𝑘−1
𝑘
= 𝑝𝑜𝑙𝑦(𝑛, 𝑠)  



𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖 

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a 

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖. 

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the 

𝒙-variables.    𝐷𝑒𝑔 𝑘 = 𝑛+𝑘−1
𝑘
= 𝑝𝑜𝑙𝑦(𝑛, 𝑠). 



𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖 

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a 

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖. 

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the 

𝒙-variables. 

 For 𝛼 ∈ 𝐷𝑒𝑔(𝑘), solve for 𝑐𝛼,𝑖,𝑗 ∈ 𝔽 such that 

   𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖𝑖∈ 𝑠 =
𝜕𝑘𝑓

𝜕𝛼
 

 

 



𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖 

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a 

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖. 

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the 

𝒙-variables. 

 For 𝛼 ∈ 𝐷𝑒𝑔(𝑘), solve for 𝑐𝛼,𝑖,𝑗 ∈ 𝔽 such that 

   𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖𝑖∈ 𝑠 =
𝜕𝑘𝑓

𝜕𝛼
 

 

 
We have black-box access 



𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖 

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a 

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖. 

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the 

𝒙-variables. 

 For 𝛼 ∈ 𝐷𝑒𝑔(𝑘), solve for 𝑐𝛼,𝑖,𝑗 ∈ 𝔽 such that 

   𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖𝑖∈ 𝑠 =
𝜕𝑘𝑓

𝜕𝛼
 

                                                        =
𝜕𝑘𝑇1

𝜕𝛼
+⋯+

𝜕𝑘𝑇𝑠

𝜕𝛼
 

 Such a solution satisfies 

         𝑐𝛼,𝑖,1∙ 𝑔𝑖,1 +⋯+ 𝑐𝛼,𝑖,𝑚𝑖 ∙ 𝑔𝑖,𝑚𝑖 =
𝜕𝑘𝑇𝑖
𝜕𝛼

 



𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖 

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a 

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖. 

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the 

𝒙-variables. 

 Well known identity for homogeneous polynomials 

 

𝑇𝑖   =   
𝑑 − 2𝑘 !

𝑑 − 𝑘 !
∙  

𝑘

𝛼
𝛼 ∈ 𝐷𝑒𝑔(𝑘)

∙ 𝛼 ∙
𝜕𝑘𝑇𝑖
𝜕𝛼

 

Identifying 𝛼 with its 

exponent vector 



𝑆𝑡𝑒𝑝 3: Computing 𝑇𝑖 from 𝑈𝑖 

 From 𝑆𝑡𝑒𝑝 2, we have black-box access to elements of a 

basis (𝑔𝑖,1, … , 𝑔𝑖,𝑚𝑖) of 𝑈𝑖. 

 Let 𝐷𝑒𝑔(𝑘) be the set of all degree-𝑘 monomials in the 

𝒙-variables. 

 Well known identity for homogeneous polynomials 

 

𝑇𝑖   =   
𝑑 − 2𝑘 !

𝑑 − 𝑘 !
∙  

𝑘

𝛼
𝛼 ∈ 𝐷𝑒𝑔(𝑘)

∙ 𝛼 ∙
𝜕𝑘𝑇𝑖
𝜕𝛼

 

Thanks to Gaurav Sinha for showing 

us this argument for executing Step 3 ! 



A few definitions 

 Let 𝑈 be a space and 𝓢 a space of linear operators on 𝑈. 

 Definition. A space 𝑉 ⊆ 𝑈 is an invariant subspace of 𝑈 

(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉. 
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(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉. Moreover, 𝑉 is irreducible if 

there’s no invariant subspace properly contained in 𝑉. 
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 Definition. A space 𝑉 ⊆ 𝑈 is an invariant subspace of 𝑈 

(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉. Moreover, 𝑉 is irreducible if 

there’s no invariant subspace properly contained in 𝑉. 

 

 Definition. The closure of vector 𝑣 ∈ 𝑈 with respect to 

𝓢 is the smallest invariant subspace of 𝑈 containing 𝑣.  



A few definitions 

 Let 𝑈 be a space and 𝓢 a space of linear operators on 𝑈. 

 Definition. A space 𝑉 ⊆ 𝑈 is an invariant subspace of 𝑈 

(induced by 𝓢) if 𝓢𝑉 ⊆ 𝑉. Moreover, 𝑉 is irreducible if 

there’s no invariant subspace properly contained in 𝑉. 

 

 Definition. The closure of vector 𝑣 ∈ 𝑈 with respect to 

𝓢 is the smallest invariant subspace of 𝑈 containing 𝑣.  

 

 𝐹𝑎𝑐𝑡 3: Given 𝑣 ∈ 𝔽𝑚 and a set of matrices *𝑀1, … ,𝑀𝑡+ 
in 𝔽𝑚×𝑚, the closure of 𝑣 with respect to 𝑀1, … ,𝑀𝑡  

can be computed in deterministic 𝑝𝑜𝑙𝑦(𝑚) time. 



𝑆𝑡𝑒𝑝 2: Decomposing 𝑈 

 The idea:  

 

 Define a suitable space 𝓢 of linear operators on 𝑈 

such that 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces 

of 𝑈 induced by 𝓢. 

 

 Pick vectors in 𝑈 carefully such that the closures of 

these vectors with respect to 𝓢 give 𝑈1, … , 𝑈𝑠. 



𝑆𝑡𝑒𝑝 2: Decomposing 𝑈 

 The idea:  

 

 Define a suitable space 𝓢 of linear operators on 𝑈 

such that 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces 

of 𝑈 induced by 𝓢. 

 

 Pick vectors in 𝑈 carefully such that the closures of 

these vectors with respect to 𝓢 give 𝑈1, … , 𝑈𝑠. 

Simultaneous block diagonalization of a basis of 𝓢. 



Space of linear operators on 𝑈 

 The shifted differential operator space:  

     𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶   𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) . 

     𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 . 



Space of linear operators on 𝑈 

 The shifted differential operator space:  

     𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶   𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) . 

     𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 . 

 

 Observation.  A basis (𝜓1, … , 𝜓𝑡) of 𝓢 can be computed 

in 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time from a basis Γ = (𝑔1, … , 𝑔𝑚) of 𝑈.  



Space of linear operators on 𝑈 

 The shifted differential operator space:  

     𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶   𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) . 

     𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 . 

 

 Observation.  A basis (𝜓1, … , 𝜓𝑡) of 𝓢 can be computed 

in 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time from a basis Γ = (𝑔1, … , 𝑔𝑚) of 𝑈.  

 Proof.  Solve for 𝑐𝛼,𝛽 and 𝑑𝑖,𝑗 in 𝔽 such that 

           𝑐𝛼,𝛽 ∙ 𝛽 ∙
𝜕𝑘𝑔𝑖

𝜕𝛼𝛼,𝛽∈𝐷𝑒𝑔(𝑘)   =     𝑑𝑖,𝑗 ∙ 𝑔𝑗𝑗∈,𝑚-  

   for every 𝑖 ∈ ,𝑚-. 



Space of linear operators on 𝑈 

 The shifted differential operator space:  

     𝓢𝓓𝑘 ≔ 𝛽 ∙
𝜕𝑘

𝜕𝛼
 ∶   𝛼, 𝛽 ∈ 𝐷𝑒𝑔(𝑘) . 

     𝓢 = 𝓢𝓓𝑘,𝑈 ≔ 𝜓 ∈ 𝓢𝓓𝑘 ∶ 𝜓 𝑈 ⊆ 𝑈 . 

 

 Observation.  A basis (𝜓1, … , 𝜓𝑡) of 𝓢 can be computed 

in 𝑝𝑜𝑙𝑦(𝑛, 𝑠) time from a basis Γ = (𝑔1, … , 𝑔𝑚) of 𝑈.  

 Proof.  Solve for 𝑐𝛼,𝛽 and 𝑑𝑖,𝑗 in 𝔽 such that 

           𝑐𝛼,𝛽 ∙ 𝛽 ∙
𝜕𝑘𝑔𝑖

𝜕𝛼𝛼,𝛽∈𝐷𝑒𝑔(𝑘)   =     𝑑𝑖,𝑗 ∙ 𝑔𝑗𝑗∈,𝑚-  

   for every 𝑖 ∈ ,𝑚-. 
We have black-box access to these polynomials 



Nice properties of 𝓢 

 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced 

by 𝓢. 
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 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced 

by 𝓢. 

 

 

… follows from the non-degeneracy condition 
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 𝐶𝑙𝑎𝑖𝑚 1. 𝑈1, … , 𝑈𝑠 are invariant subspaces of 𝑈 induced 

by 𝓢. 

 

 𝐶𝑙𝑎𝑖𝑚 2. There is an operator 𝜓 ∈ 𝓢 having distinct 

eigenvalues. 
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eigenvalues. 

 

 𝐶𝑙𝑎𝑖𝑚 3. 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces of 

𝑈 induced by 𝓢. 
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by 𝓢. 

 

 𝐶𝑙𝑎𝑖𝑚 2. There is an operator 𝜓 ∈ 𝓢 having distinct 

eigenvalues. 

 

 𝐶𝑙𝑎𝑖𝑚 3. 𝑈1, … , 𝑈𝑠 are irreducible invariant subspaces of 

𝑈 induced by 𝓢. 

 

 The proofs of 𝐶𝑙𝑎𝑖𝑚 2 and 𝐶𝑙𝑎𝑖𝑚 3 are a bit technical. 

 

 



𝑆𝑡𝑒𝑝 2: Decomposing 𝑈 

 The algorithm. 

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚). 
Let 𝑀Γ(𝜓𝑖) be the 𝑚 ×𝑚 matrix associated with 𝜓𝑖. 

 

Once a basis Γ of 𝑈 is fixed, every operator 𝜓 ∈ 𝓢  
can be identified with a unique matrix 𝑀Γ(𝜓).  
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2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly.  Let 𝑀Γ =  𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- . 
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3. Factor the characteristic polynomial 𝑕(𝑦) of 𝑀Γ. If 𝑕 is not 

square-free, output ‘Fail’. Else, let 𝑕 = 𝑕1 ∙ 𝑕2⋯𝑕𝑙 . 
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 The algorithm. 

1. Compute a basis (𝜓1, … , 𝜓𝑡) of 𝓢 from Γ = (𝑔1, … , 𝑔𝑚). 
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2. Pick 𝑟1, … , 𝑟𝑡 ∈ 𝔽 randomly.  Let 𝑀Γ =  𝑟𝑖 ∙ 𝑀Γ(𝜓𝑖)𝑖∈,𝑡- . 
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