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Weakness of occurrence obstructions

@ Weakness of occurrence obstructions (with Biirgisser and Panova)
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Weakness of occurrence obstructions

Orbit closures of determinant and permanent

o det, := Zﬂesn sgn(m) H7:1 Xi (i) per,, ‘= Zweem H:L Xi,m (i)

@ For a linear map g : C” — C” define gdet, via (gdet,)(x) := deta(g*(x))

o C*" det, = {determinants of n X n matrices whose entries are homog. lin. polyn.}
Example:

det <X1,1 +x12 Xx12—2x22

2 2 4x4
=X{1+2x1,1x1,2 + X{ 2 — X1,2X0,1 + 2x2,1%02 € C" " "deto
X2,1 X1,1 + X1,2

2 2
Valiant 1979: For all m there exists n > m such that x; "per,, € C" *" det,.

o Closure: C™xm*det, = GL »det,
o Define dc(per,,) to be the smallest n such that x;'; "per,, € GL2det,.
@ GCT Conjecture: de(per,,) grows superpolynomially.

Observation:
x{1"per,, € GLdet, iff  GL(x{;"per,) C GLdet,.

Example of a (weak) lower bound technique:
If dim GL,2(x]'; "per,,,) > dim GL 2(det,), then dc(per,,) > n.
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Weakness of occurrence obstructions

Coordinate rings

Poly"C" := homog. degree n polyn. in N variables.
dim Poly"C" = (V*771)

C[Poly"C"]4 := homog. degree d polyn. in ("*"~1) many variables

Example: n=N =2
> Poly?C? has basis {x2, xy, y2}.

> Every element in Poly?C? can be expressed as ax2 + bxy + cy?

» C[Poly?C?], has basis {a?, ab, ac, b?, bc, c?}

» The discriminant b? — 4ac € C[Poly?C?],

> b? —4ac = 0 iff ax® 4 bxy + cy? = (ax + By)? for some o, 3 € C

o Action of GLy on C[Poly"CV],: Define (gf)(p) := f(g*p)
For Z C Poly"C", define the coordinate ring:
C[Z] := (C[Poly"(CN]|7 (restrict domain of definition to Z)
If Y C Z, then this gives a natural surjection:
C[Z] - C[Y]

If Z is closed under the action of GLy, then C[Z] inherits the action of GLy.
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Weakness of occurrence obstructions

Obstructions based on representation theoretic multiplicities

@ Goal: To prove m Z GL,2det,

o If GL,a(x{; "per,) C GLzdety, then C[GL 2dety]s — CIGLz (x[; "per,)o
The group action of GL,> lets us decompose into irreducibles: 7

° C[m]d _ @)\ éBmult)\ (C[GL zdetn]d)7

o (en—m Y It (C[GL » (<] "pery,)
° (C[GL,,z(Xl 1pery)]a = D, Y, eémub‘( (GL 2 (31 "Perm)la)
Since the surjection is GL 2-equivariant, Schur’'s lemma implies:
mults (C[GL 2det,]a) > mult(C[GL,2 (1 "per,,)]a).

Multiplicity obstruction:

If I\ with multy(C[GL 2det,]q) < multy(C[GL2(x; "per,,)]a), then de(per,,) > n
Occurrence obstruction:

If 3 with multy(C[GL2det,]q) = 0 < mults(C[GL,2(x; "per,,)]a), then dc(per,,) > n.

Theorem [Biirgisser, |, Panova 2016], disproving a conj. by Mulmuley and Sohoni

There are no occurrence obstrucions that prove dc(per,,) > m*

Proof relies on the padding of the permanent.
Replace det, by homogeneous iterated matrix multiplication to avoid this: Boot camp talk
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Weakness of occurrence obstructions

Summary of part 1

o If multy(C[GL 2detn]d) < mults(C[GL,2(x{; "per,,)]a), then dc(per,,) > n.
@ Occurrence obstruction: multy(C[GL zdets]qa) = 0 < multx(C[GL,2(x'; "per,,)]a)

o But multy(C[GL,2det,]4) > 0 in all relevant cases, so that dc(per,,) > m*® cannot
be proved using occurrence obstructions.

@ The proof works in all computational models that involve padding.
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Multiplicities are strictly stronger than occurrences

© Multiplicities are strictly stronger than occurrences (with Dérfler and Panova)

Good news: There are group varieties that
@ cannot be separated with occurrence obstructions, but

@ can be separated with multiplicity obstructions.

(no padding involved)
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Multiplicities are strictly stronger than occurrences

Factorizing power sums
Two GL,-varieties:
@ Product of homogeneous linear forms:
Chpy:= {1, | £; € Poly'C™} C Poly"C".

o Border Waring rank < k polynomials:
Pow, , i= {7 + -+ + €2 | £; € Poly'C™} C Poly"C".

Theorem [Dérfler, |, Panova 2019]

Foranym>3,n>2 letk=d=n+1, A= (n”>—2,n,2). Then
muItA((C[Ch"m]d) < mu|t)\((C[P0an,k]d),
i.e., A is a multiplicity obstruction that shows Powy, , Z Chy,.

In a finite case we can rule out the existence of occurrence obstructions:

Theorem [Dérfler, |, Panova 2019]

Let k=4, n=6 m=3,d=7, A= (n”—2,n,2) =(34,6,2). Then
multx (C[Chy,]¢) = 7 < 8 = multx(C[Powy, «]d)

and hence Pow’, , Z Ch”..
For all p: If mult,(C[Powy, ]4) > 0, then mult,(C[Ch7]4) > 0.
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Multiplicities are strictly stronger than occurrences

No occurrence obstructions

o Goal: If mult,,(C[Poly®C3]) > 0, then mult,(C[Ch§]) > 0
o Partitions: = (1, o, p13) € N>, 1 > pio > p3

Proposition (Semigroup properties)

Let p and v be partitions with mult,,(C[Poly®C3]) > 0 and mult, (C[Poly®C?]) > 0.
Then mult,+, (C[Poly®C?]) > 0.

Let  and v be partltlons with mult,(C[Ch§]) > 0 and mult, (C[Ch§]) >
Then mult,,(C[Ch§]) > 0.

Conclusion: {y | mult,(C[Poly®C3]) > 0} and {x | mult,(C[Ch§]) > 0} are semigroups.
{p | mult,(C[Poly®C?]) > 0} has 89 generators:

,6), (8,4), (10,2), (6,6,6), (8,6,4), (10,4,4), (9,6,3), (8,8,2), (10,6,2), (11,5,2), (10,7,1), (12,4,2), (11,6,1), (10,8),
,2), (13, 4, 1), (13, 5), (15, 3), (8, 8, 8), (10, 8, 6), (11,7, 6), (10,9, 5), (11, 8, 5), (10, 10, 4), (12, 7, 5), (11, 9, 4), (13, 6, 5), (12, 8, 4),
,3), (13,7, 4), (12,9,3), (13,8, 3), (12, 10,2), (15,5, 4), (14,7, 3), (13,9, 2), (13, 10, 1), (16,5, 3), (15, 7, 2), (14,9, 1), (17, 4, 3),
1), (15,9). (19,3, 2). (18,5, 1), (17, 7). (10, 10, 10), (11,10, 9), (12, 10, 8), (13,9, 8), (12, 11, 7), (13, 10,7), (14,9, 7). (13, 11, 6).
15,8, 7), (13, 12, 5), (16, 7, 7), (15, 9, 6), (14, 11, 5), (13, 13, 4), (15, 10, 5), (15, 11, 4), (14, 13, 3), (16, 11, 3), (15, 13, 2), (15, 14, 1), (17, 13),
13, 12, 11), (14, 11, 11), (13, 13, 10), (15, 11, 10), (14, 13, 9), (16, 11, 9), (15, 13, 8), (15, 14, 7), (18, 9, 9), (15, 15, 6), (17, 17, 2), (18, 17, 1),
(26,5, 5), (15, 14, 13), (16, 13, 13), (15, 15, 12), (17, 17, 8), (18, 15, 15), (17, 17, 14), (25, 23), (45, 45).

For each generator 1 we construct an occurrence of ¥#;, in C[Ch§] by computer.
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Multiplicities are strictly stronger than occurrences

Multiplicity obstructions exist

Theorem [Dérfler, I, Panova 2019]

Foranym>3,n>2 letk=d=n+1 A= (n2—2,n,2). Then
multx(C[Ch"m]d) < mu|t>\((C[P0an,k]d),
i.e., A is a multiplicity obstruction that shows Powy, , Z Chy,.

Proof:

The plethysm coefficient ay(d, n) := mult,(C[Poly"C"]4)

Proposition [Biirgisser, |, Panova 2016]

If k> d, then multy(C[Powp, «]4) = ax(d, n).

In other words: Powy, , is a hitting set for degree < k polynomials

Remains to show: multy(C[Ch},]4) < ax(d, n)
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Multiplicities are strictly stronger than occurrences

Remains to show: multx(C[Ch},]4) < ax(d, n) ford=n+1, A= (n*—2,n,2)
Use inheritance theorem: multy(C[Chy,]) = multy(C[GLa(x1 - - - xa)])

C[GLn(x1 - - - xn)] := rational functions that are defined everywhere on GL,(x1 - - xn).

C[GLn(x1 - - - xn)] € C[GLn(x1 - - - xp)], in particular

mult(C[GLa(x1 - - - xa)]) < multy(C[GLa(xa - - xa)])- |

multy (C[GLa(x1 - - - X»)]) = dim %4 for |\| = nd,
N —
=ay (n,d)

where H C GL, is the stabilizer of x; - - - x,.

Proof:

Algebraic

C[GLn(x1 - -+ xn)] = C[GL,/H] = C[GL,)" ™= P75 @ 1 ]
A

Proposition (proof based on symmetric functions)

For A= (n>—2,n,2): ax(n+1,n) =1+ ax(n,n+1).

multy (C[Ch7,]) = multx(C[GLn(x1 - - - xa)]) < multsx(C[GLa(x1 - - - xa)]) = ax(n, d) < ax(d, n).00
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Multiplicities are strictly stronger than occurrences

Summary of part 2

o multy(C[Ch7]a) < multyx(C[Powy, (]a), therefore Powy, , Z Chy,.

@ Proof based on relationship “orbit vs orbit closure”:
multx(C[GLa(x1 - - - xn)]) < multA(C[GLA(x1 - - - Xa)])-

@ In a finite case we verified by computer:
there are no occurrence obstructions showing Powp, ,  Chy,, but multiplicity
obstructions work
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Using multiplicities: connecting orbits with their closures

© Using multiplicities: connecting orbits with their closures (with Kandasamy)
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Using multiplicities: connecting orbits with their closures

[Biirgisser, 1 2017] connects orbit and orbit closure more closely:
o Let 0 # & € C[GLn(x{ + - - - + x)] be invariant under SL,
(x{ + -+ x7, is not in the null cone)
@ Then ® is nonzero everywhere on GLn(x{ + -+ + xp)

@ It turns out: ® vanishes on the boundary GLn (X + - -+ 4+ x%) \ GLn(X{ + -+ + x7)
(proof uses Hilbert-Mumford criterion and refinement by Luna and Kempf)

@ As a result: . n
CIGLm(x{ + -+ xp)] = C[GLm(x] + - - - + x2)]o

is the localization at ¢.

Theorem [Biirgisser, | 2017]

For all d there is e:

ClGLm(X +- - 4+x2)d > CIGLa( + -+ + x)drem S CIGLm(X +- - - +x2)]d+em,

where v(f) := ®°f.

Theorem [l, Kandasamy 2019]

For even n, an upper bound on the required e is m —|—4%.
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Using multiplicities: connecting orbits with their closures

Theorem [Biirgisser, | 2017]

For all d there is e:
.pe
(C[GLm(Xln QP oooF Xr’;))]d — (C[GI—m(X{7 A oooTF Xr’;))]dJrem g (C[GI—m(Xln A oooSF X:q)]dJrem-

Theorem [l, Kandasamy 2019]

For even n, an upper bound on the required e is m —|—4%.

@ Given a Young tableau T, we can explicitly construct a function fr in
CICLa(f + -+ xB)]
@ All highest weight functions in C[GLn(x + - - + x/)] can be constructed in this way
@ We have a combinatorial/linear algebra way of evaluating at points
We have a similar situation in C[GLn(x{ + - - + x3)]:
o Given a Young tableau S, we can explicitly construct a function fs in
ClGLm(X{ + - - + x0)] ~ ¥
@ All highest weight functions in C[GLn(x{ + - - - + x},)] can be constructed in this way
@ We have a combinatorial/linear algebra way of evaluating at points

@ Proof idea of I-Kandasamy: Given a tableau S, construct a slightly larger tableau T
such that fr and fs coincide on SLn(Xx{ + - - - + x7)-
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Summary of part 3

@ The representation theory of C[GLyp] can usually be much better understood than
the representation theory of C[GLyp]

@ In many cases of interest: the representation theory of C[GLyp] and C[GLyp] is
connected by a fundamental invariant ¢

@ In the case of power sums, this connection is very close

@ The hope is that C[GLyp] and C[GLnp] are closely related in more involved cases
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Where does the hope for multiplicities come from?
Let H C GLy be the stabilizer of p.

multy (C[GLyp]) = dim %3

Theorem [Larsen and Pink 1990, Inventiones math.]

H C GLy. Under reasonable assumptions, the group H is determined (up to group
isomorphism) by the dimensions dim KH.

Pick H to be the stabilizer of a point p that is characterized by its stabilizer:
o determinant
@ permanent

iterated matrix multiplication polynomial

power sum polynomial

multilinear monomial

matrix multiplication tensor
@ unit tensor

Conclusion: A strengthening of this theorem would yield that p is characterized by its
multiplicities.
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Summary

@ In the computational models with padding there are no occurence obstructions that
prove strong lower bounds

@ The padding can be removed: Iterated matrix multiplication

@ But even in small explicit unpadded cases: multiplicity obstructions are stronger than
occurrence obstructions

o Multiplicities in C[GLyp] can be studied with algebraic combinatorics.
The connection to C[GLyp] is hopefully close.

(This works for power sums)

@ Larsen and Pink: Give hope for multiplicity obstructions

Thank you for your attention!
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