

 Recent Progress on Representation Theoretic Multiplicities in GCT

Christian Ikenmeyer
(1) Weakness of occurrence obstructions (with Bürgisser and Panova)
2) Multiplicities are strictly stronger than occurrences (with Dörfler and Panova)
(3) Using multiplicities: connecting orbits with their closures (with Kandasamy)

Orbit closures of determinant and permanent

- $\operatorname{det}_{n}:=\sum_{\pi \in \mathfrak{G}_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}, \quad \operatorname{per}_{m}:=\sum_{\pi \in \mathfrak{S}_{m}} \prod_{i=1}^{m} x_{i, \pi(i)}$
- For a linear map $g: \mathbb{C}^{n^{2}} \rightarrow \mathbb{C}^{n^{2}}$ define $g \operatorname{det}_{n}$ via $\left(g \operatorname{det}_{n}\right)(x):=\operatorname{det}_{n}\left(g^{t}(x)\right)$
- $\mathbb{C}^{n^{2} \times n^{2}} \operatorname{det}_{n}=$ \{determinants of $n \times n$ matrices whose entries are homog. lin. polyn. $\}$

Example:
$\operatorname{det}\left(\begin{array}{cc}x_{1,1}+x_{1,2} & x_{1,2}-2 x_{2,2} \\ x_{2,1} & x_{1,1}+x_{1,2}\end{array}\right)=x_{1,1}^{2}+2 x_{1,1} x_{1,2}+x_{1,2}^{2}-x_{1,2} x_{2,1}+2 x_{2,1} x_{2,2} \in \mathbb{C}^{4 \times 4} \operatorname{det}_{2}$

- Valiant 1979: For all m there exists $n \geq m$ such that $x_{1,1}^{n-m} \operatorname{per}_{m} \in \mathbb{C}^{n^{2} \times n^{2}} \operatorname{det}_{n}$.
- Closure: $\overline{\mathbb{C}^{n^{2} \times n^{2}} \operatorname{det}_{n}}=\overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}}$
- Define $\underline{\mathrm{dc}}\left(\operatorname{per}_{m}\right)$ to be the smallest n such that $x_{1,1}^{n-m} \operatorname{per}_{m} \in \overline{\mathrm{GL}}_{n^{2}} \operatorname{det}_{n}$.
- GCT Conjecture: $\underline{\mathrm{dc}}\left(\mathrm{per}_{m}\right)$ grows superpolynomially.

Observation:

$$
x_{1,1}^{n-m} \operatorname{per}_{m} \in \overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}} \quad \text { iff } \quad \overline{\mathrm{GL}_{n^{2}}\left(x_{1,1}^{n-m} \operatorname{per}_{m}\right) \subseteq \overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}} .}
$$

Example of a (weak) lower bound technique:
If $\operatorname{dim} \overline{\mathrm{GL}_{n^{2}}\left(x_{1,1}^{n-m} \operatorname{per}_{m}\right)}>\operatorname{dim} \overline{\mathrm{GL}_{n^{2}}\left(\operatorname{det}_{n}\right)}$, then $\underline{\operatorname{dc}\left(\operatorname{per}_{m}\right)}>n$.

Coordinate rings

- Poly ${ }^{n} \mathbb{C}^{N}:=$ homog. degree n polyn. in N variables.
- dim Poly $^{n} \mathbb{C}^{N}=\binom{N+n-1}{n}$
- $\mathbb{C}\left[\text { Poly }^{n} \mathbb{C}^{N}\right]_{d}:=$ homog. degree d polyn. in $\binom{N+n-1}{n}$ many variables
- Example: $n=N=2$
- Poly ${ }^{2} \mathbb{C}^{2}$ has basis $\left\{x^{2}, x y, y^{2}\right\}$.
- Every element in Poly ${ }^{2} \mathbb{C}^{2}$ can be expressed as $a x^{2}+b x y+c y^{2}$
- $\mathbb{C}\left[\text { Poly }{ }^{2} \mathbb{C}^{2}\right]_{2}$ has basis $\left\{a^{2}, a b, a c, b^{2}, b c, c^{2}\right\}$
- The discriminant $b^{2}-4 a c \in \mathbb{C}\left[\text { Poly }{ }^{2} \mathbb{C}^{2}\right]_{2}$
- $b^{2}-4 a c=0$ iff $a x^{2}+b x y+c y^{2}=(\alpha x+\beta y)^{2}$ for some $\alpha, \beta \in \mathbb{C}$
- Action of GL_{N} on $\mathbb{C}\left[\text { Poly }^{n} \mathbb{C}^{N}\right]_{d}$: Define $(g f)(p):=f\left(g^{t} p\right)$

For $Z \subseteq \operatorname{Poly}^{n} \mathbb{C}^{N}$, define the coordinate ring:

$$
\mathbb{C}[\bar{Z}]:=\mathbb{C}\left[\text { Poly }{ }^{n} \mathbb{C}^{N}\right]_{\left.\right|_{\bar{Z}}} \quad \text { (restrict domain of definition to } \bar{Z} \text {) }
$$

If $\bar{Y} \subseteq \bar{Z}$, then this gives a natural surjection:

$$
\mathbb{C}[\bar{Z}] \rightarrow \mathbb{C}[\bar{Y}]
$$

If \bar{Z} is closed under the action of $G L_{N}$, then $\mathbb{C}[\bar{Z}]$ inherits the action of GL_{N}.

Obstructions based on representation theoretic multiplicities

- Goal: To prove $\overline{\mathrm{GL}_{n^{2}}\left(x_{1,1}^{n-m} \operatorname{per}_{m}\right)} \nsubseteq \overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}}$
- If $\overline{\mathrm{GL}_{n^{2}}\left(x_{1,1}^{n-m} \operatorname{per}_{m}\right)} \subseteq \overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}}$, then $\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}}\right]_{d} \rightarrow \mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}}\left(x_{1,1}^{n-m} \operatorname{per}_{m}\right)}\right]_{d}$

The group action of $G L_{n^{2}}$ lets us decompose into irreducibles:

- $\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}}\right]_{d}=\bigoplus_{\lambda} \mathscr{V}_{\lambda}^{\oplus \operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}}\right]_{d}\right)}$,
- $\mathbb{C}\left[\overline{\mathrm{GL}}_{n^{2}}\left(x_{1,1}^{n-m} \operatorname{per}_{m}\right)\right]_{d}=\bigoplus_{\lambda} \mathscr{V}_{\lambda}^{\oplus \text { mult }_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}}\left(x_{1,1}^{n-m} \text { per }_{m}\right)}\right]_{d}\right)}$

Since the surjection is $\mathrm{GL}_{n^{2}}$-equivariant, Schur's lemma implies:

$$
\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}}\right]_{d}\right) \geq \operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}}\left(x_{1,1}^{n-m} \operatorname{per}_{m}\right)}\right]_{d}\right)
$$

Multiplicity obstruction:
If $\exists \lambda$ with mult $\lambda_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}}\right]_{d}\right)<\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}}\left(x_{1,1}^{n-m} \operatorname{per}_{m}\right)}\right]_{d}\right)$, then $\underline{\mathrm{dc}}\left(\operatorname{per}_{m}\right)>n$.
Occurrence obstruction:
If $\exists \lambda$ with mult $\lambda_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}}\right]_{d}\right)=0<\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[{\overline{G L_{n}}}\left(x_{1,1}^{n-m} \operatorname{per}_{m}\right)\right]_{d}\right)$, then $\underline{\operatorname{dc}}\left(\operatorname{per}_{m}\right)>n$.

Theorem [Bürgisser, I, Panova 2016], disproving a conj. by Mulmuley and Sohoni

There are no occurrence obstrucions that prove $\underline{\mathrm{dc}}\left(\right.$ per $\left._{m}\right) \geq m^{25}$.
Proof relies on the padding of the permanent.
Replace det_{n} by homogeneous iterated matrix multiplication to avoid this: Boot camp talk

Summary of part 1

- If mult $\lambda_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}} \operatorname{det}_{n}}\right]_{d}\right)<\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}}\left(x_{1,1}^{n-m} \operatorname{per}_{m}\right)}\right]_{d}\right)$, then $\underline{\operatorname{dc}}\left(\operatorname{per}_{m}\right)>n$.
- Occurrence obstruction: mult $\lambda_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}} \text { det }_{n}}\right]_{d}\right)=0<\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n^{2}}\left(x_{1,1}^{n-m} \operatorname{per}_{m}\right)}\right]_{d}\right)$
- But mult $\lambda_{\lambda}\left(\mathbb{C}\left[\mathrm{GL}_{n^{2}} \operatorname{det}_{n}\right]_{d}\right)>0$ in all relevant cases, so that $\underline{\text { dc }}\left(\right.$ per $\left._{m}\right)>m^{25}$ cannot be proved using occurrence obstructions.
- The proof works in all computational models that involve padding.
(1) Weakness of occurrence obstructions (with Bürgisser and Panova)
(2) Multiplicities are strictly stronger than occurrences (with Dörfler and Panova)
(3) Using multiplicities: connecting orbits with their closures (with Kandasamy)

Good news: There are group varieties that

- cannot be separated with occurrence obstructions, but
- can be separated with multiplicity obstructions.
(no padding involved)

Factorizing power sums

Two GL_{m}-varieties:

- Product of homogeneous linear forms:

$$
\mathrm{Ch}_{m}^{n}:=\left\{\ell_{1} \cdots \ell_{n} \mid \ell_{i} \in \operatorname{Poly}^{1} \mathbb{C}^{m}\right\} \subseteq \operatorname{Poly}^{n} \mathbb{C}^{m}
$$

- Border Waring rank $\leq k$ polynomials:

$$
\operatorname{Pow}_{m, k}^{n}:=\overline{\left\{\ell_{1}^{n}+\cdots+\ell_{k}^{n} \mid \ell_{i} \in \operatorname{Poly}^{1} \mathbb{C}^{m}\right\}} \subseteq \operatorname{Poly}^{n} \mathbb{C}^{m}
$$

Theorem [Dörfler, I, Panova 2019]

For any $m \geq 3, n \geq 2$, let $k=d=n+1, \lambda=\left(n^{2}-2, n, 2\right)$. Then mult $_{\lambda}\left(\mathbb{C}\left[\mathrm{Ch}_{m}^{n}\right]_{d}\right)<\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\operatorname{Pow}_{m, k}^{n}\right]_{d}\right)$,
i.e., λ is a multiplicity obstruction that shows $\operatorname{Pow}_{m, k}^{n} \nsubseteq \mathrm{Ch}_{m}^{n}$.

In a finite case we can rule out the existence of occurrence obstructions:

Theorem [Dörfler, I, Panova 2019]

Let $k=4, n=6, m=3, d=7, \lambda=\left(n^{2}-2, n, 2\right)=(34,6,2)$. Then

$$
\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\mathrm{Ch}_{m}^{n}\right]_{d}\right)=7<8=\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\mathrm{Pow}_{m, k}^{n}\right]_{d}\right)
$$

and hence

$$
\operatorname{Pow}_{m, k}^{n} \nsubseteq \mathrm{Ch}_{m}^{n} .
$$

For all μ : If mult $_{\mu}\left(\mathbb{C}\left[\mathrm{Pow}_{m, k}^{n}\right]_{d}\right)>0$, then mult $_{\mu}\left(\mathbb{C}\left[\mathrm{Ch}_{m}^{n}\right]_{d}\right)>0$.

No occurrence obstructions

- Goal: If mult ${ }_{\mu}\left(\mathbb{C}\left[\right.\right.$ Poly $\left.\left.^{6} \mathbb{C}^{3}\right]\right)>0$, then mult ${ }_{\mu}\left(\mathbb{C}\left[\mathrm{Ch}_{3}^{6}\right]\right)>0$.
- Partitions: $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right) \in \mathbb{N}^{3}, \quad \mu_{1} \geq \mu_{2} \geq \mu_{3}$

Proposition (Semigroup properties)

Let μ and ν be partitions with mult ${ }_{\mu}\left(\mathbb{C}\left[\operatorname{Poly}^{6} \mathbb{C}^{3}\right]\right)>0$ and $\operatorname{mult}_{\nu}\left(\mathbb{C}\left[\right.\right.$ Poly $\left.\left.^{6} \mathbb{C}^{3}\right]\right)>0$. Then mult ${ }_{\mu+\nu}\left(\mathbb{C}\left[\right.\right.$ Poly $\left.\left.^{6} \mathbb{C}^{3}\right]\right)>0$.
Let μ and ν be partitions with mult $_{\mu}\left(\mathbb{C}\left[\mathrm{Ch}_{3}^{6}\right]\right)>0$ and $\operatorname{mult}_{\nu}\left(\mathbb{C}\left[\mathrm{Ch}_{3}^{6}\right]\right)>0$. Then mult ${ }_{\mu+\nu}\left(\mathbb{C}\left[\mathrm{Ch}_{3}^{6}\right]\right)>0$.

Conclusion: $\left\{\mu \mid \operatorname{mult}_{\mu}\left(\mathbb{C}\left[\right.\right.\right.$ Poly $\left.\left.\left.^{6} \mathbb{C}^{3}\right]\right)>0\right\}$ and $\left\{\mu \mid \operatorname{mult}_{\mu}\left(\mathbb{C}\left[\mathrm{Ch}_{3}^{6}\right]\right)>0\right\}$ are semigroups. $\left\{\mu \mid\right.$ mult $_{\mu}\left(\mathbb{C}\left[\right.\right.$ Poly $\left.\left.\left.^{6} \mathbb{C}^{3}\right]\right)>0\right\}$ has 89 generators:
$(6),(6,6),(8,4),(10,2),(6,6,6),(8,6,4),(10,4,4),(9,6,3),(8,8,2),(10,6,2),(11,5,2),(10,7,1),(12,4,2),(11,6,1),(10,8)$,
$(14,2,2),(13,4,1),(13,5),(15,3),(8,8,8),(10,8,6),(11,7,6),(10,9,5),(11,8,5),(10,10,4),(12,7,5),(11,9,4),(13,6,5),(12,8,4)$,
$(11,10,3),(13,7,4),(12,9,3),(13,8,3),(12,10,2),(15,5,4),(14,7,3),(13,9,2),(13,10,1),(16,5,3),(15,7,2),(14,9,1),(17,4,3)$,
$(15,8,1),(15,9),(19,3,2),(18,5,1),(17,7),(10,10,10),(11,10,9),(12,10,8),(13,9,8),(12,11,7),(13,10,7),(14,9,7),(13,11,6)$,
$(15,8,7),(13,12,5),(16,7,7),(15,9,6),(14,11,5),(13,13,4),(15,10,5),(15,11,4),(14,13,3),(16,11,3),(15,13,2),(15,14,1),(17,13)$. $(13,12,11),(14,11,11),(13,13,10),(15,11,10),(14,13,9),(16,11,9),(15,13,8),(15,14,7),(18,9,9),(15,15,6),(17,17,2),(18,17,1)$, $(26,5,5),(15,14,13),(16,13,13),(15,15,12),(17,17,8),(18,15,15),(17,17,14),(25,23),(45,45)$.

For each generator μ we construct an occurrence of \mathscr{V}_{μ} in $\mathbb{C}\left[\mathrm{Ch}_{3}^{6}\right]$ by computer.

Multiplicity obstructions exist

Theorem [Dörfler, I, Panova 2019]

For any $m \geq 3, n \geq 2$, let $k=d=n+1, \lambda=\left(n^{2}-2, n, 2\right)$. Then $\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\mathrm{Ch}_{m}^{n}\right]_{d}\right)<\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\operatorname{Pow}_{m, k}^{n}\right]_{d}\right)$,
i.e., λ is a multiplicity obstruction that shows $\operatorname{Pow}_{m, k}^{n} \nsubseteq \mathrm{Ch}_{m}^{n}$.

Proof:
The plethysm coefficient $a_{\lambda}(d, n):=\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\operatorname{Poly}^{n} \mathbb{C}^{N}\right]_{d}\right)$

Proposition [Bürgisser, I, Panova 2016]

If $k \geq d$, then $\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\operatorname{Pow}_{m, k}^{n}\right]_{d}\right)=a_{\lambda}(d, n)$.
In other words: $\mathrm{Pow}_{m, k}^{n}$ is a hitting set for degree $\leq k$ polynomials
Remains to show: $\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\mathrm{Ch}_{m}^{n}\right]_{d}\right)<a_{\lambda}(d, n)$

Remains to show: $\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\mathrm{Ch}_{m}^{n}\right]_{d}\right)<a_{\lambda}(d, n) \quad$ for $d=n+1, \lambda=\left(n^{2}-2, n, 2\right)$
Use inheritance theorem: $\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\mathrm{Ch}_{m}^{n}\right]\right)=\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n}\left(x_{1} \cdots x_{n}\right)}\right]\right)$
$\mathbb{C}\left[\mathrm{GL}_{n}\left(x_{1} \cdots x_{n}\right)\right]:=$ rational functions that are defined everywhere on $\operatorname{GL}_{n}\left(x_{1} \cdots x_{n}\right)$. $\mathbb{C}\left[\overline{\mathrm{GL}} \mathrm{L}_{n}\left(x_{1} \cdots x_{n}\right)\right] \subseteq \mathbb{C}\left[\mathrm{GL}_{n}\left(x_{1} \cdots x_{n}\right)\right]$, in particular

$$
\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n}\left(x_{1} \cdots x_{n}\right)}\right]\right) \leq \operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\mathrm{GL}_{n}\left(x_{1} \cdots x_{n}\right)\right]\right)
$$

$$
\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[G L_{n}\left(x_{1} \cdots x_{n}\right)\right]\right)=\underbrace{\operatorname{dim} \mathscr{V}_{\lambda^{*}}^{H}}_{=a_{\lambda}(n, d)} \quad \text { for }|\lambda|=n d,
$$

where $H \subseteq \mathrm{GL}_{n}$ is the stabilizer of $x_{1} \cdots x_{n}$.
Proof:

$$
\mathbb{C}\left[\mathrm{GL}_{n}\left(x_{1} \cdots x_{n}\right)\right]=\mathbb{C}\left[\mathrm{GL}_{n} / H\right]=\mathbb{C}\left[\mathrm{GL}_{n}\right]^{H} \stackrel{\substack{\text { Algebraic } \\ \text { Peter-Weyl }}}{=} \bigoplus_{\lambda} \mathscr{V}_{\lambda} \otimes \mathscr{V}_{\lambda^{*}}^{H}
$$

Proposition (proof based on symmetric functions)

For $\lambda=\left(n^{2}-2, n, 2\right): \quad a_{\lambda}(n+1, n)=1+a_{\lambda}(n, n+1)$.
$\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\mathrm{Ch}_{m}^{n}\right]\right)=\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n}\left(x_{1} \cdots x_{n}\right)}\right]\right) \leq \operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\mathrm{GL}_{n}\left(x_{1} \cdots x_{n}\right)\right]\right)=a_{\lambda}(n, d)<a_{\lambda}(d, n)$.

Summary of part 2

- mult $\lambda_{\lambda}\left(\mathbb{C}\left[\mathrm{Ch}_{m}^{n}\right]_{d}\right)<$ mult $_{\lambda}\left(\mathbb{C}\left[\operatorname{Pow}_{m, k}^{n}\right]_{d}\right)$, therefore Pow $_{m, k}^{n} \nsubseteq \mathrm{Ch}_{m}^{n}$.
- Proof based on relationship "orbit vs orbit closure": $\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\overline{\mathrm{GL}_{n}\left(x_{1} \cdots x_{n}\right)}\right]\right) \leq \operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\mathrm{GL}_{n}\left(x_{1} \cdots x_{n}\right)\right]\right)$.
- In a finite case we verified by computer: there are no occurrence obstructions showing $\mathrm{Pow}_{m, k}^{n} \nsubseteq \mathrm{Ch}_{m}^{n}$, but multiplicity obstructions work
(1) Weakness of occurrence obstructions (with Bürgisser and Panova)
(2) Multiplicities are strictly stronger than occurrences (with Dörfler and Panova)
(3) Using multiplicities: connecting orbits with their closures (with Kandasamy)
[Bürgisser, I 2017] connects orbit and orbit closure more closely:
- Let $0 \neq \Phi \in \mathbb{C}\left[\overline{\mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)}\right]$ be invariant under SL_{m} ($x_{1}^{n}+\cdots+x_{m}^{n}$ is not in the null cone)
- Then Φ is nonzero everywhere on $\mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)$
- It turns out: Φ vanishes on the boundary $\overline{\mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)} \backslash \mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)$ (proof uses Hilbert-Mumford criterion and refinement by Luna and Kempf)
- As a result:

$$
\mathbb{C}\left[\mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)\right]=\mathbb{C}\left[\overline{\mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)}\right]_{\Phi}
$$

is the localization at Φ.

Theorem [Bürgisser, I 2017]

For all d there is e :
$\mathbb{C}\left[\mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)\right]_{d} \stackrel{\gamma}{\hookrightarrow} \mathbb{C}\left[\overline{\mathrm{GL}}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)\right]_{d+e m} \subseteq \mathbb{C}\left[\mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)\right]_{d+e m}$, where $\gamma(f):=\Phi^{e} f$.

Theorem [I, Kandasamy 2019]

For even n, an upper bound on the required e is $m+4 \frac{d}{n}$.

Theorem [Bürgisser, I 2017]

For all d there is e :
$\mathbb{C}\left[\mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)\right]_{d} \stackrel{\Phi^{e}}{\hookrightarrow} \mathbb{C}\left[\overline{\mathrm{GL}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)}\right]_{d+e m} \subseteq \mathbb{C}\left[\mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)\right]_{d+e m}$.

Theorem [I, Kandasamy 2019]

For even n, an upper bound on the required e is $m+4 \frac{d}{n}$.

- Given a Young tableau T, we can explicitly construct a function f_{T} in $\mathbb{C}\left[\overline{\mathrm{GL}}{ }_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)\right]$
- All highest weight functions in $\mathbb{C}\left[\overline{G L_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)}\right]$ can be constructed in this way
- We have a combinatorial/linear algebra way of evaluating at points

We have a similar situation in $\mathbb{C}\left[\mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)\right]$:

- Given a Young tableau S, we can explicitly construct a function f_{S} in $\mathbb{C}\left[\mathrm{GL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)\right] \simeq \mathscr{V}_{\lambda}^{H}$
- All highest weight functions in $\mathbb{C}\left[G L_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)\right]$ can be constructed in this way
- We have a combinatorial/linear algebra way of evaluating at points
- Proof idea of I-Kandasamy: Given a tableau S, construct a slightly larger tableau T such that f_{T} and f_{S} coincide on $\mathrm{SL}_{m}\left(x_{1}^{n}+\cdots+x_{m}^{n}\right)$.

Summary of part 3

- The representation theory of $\mathbb{C}\left[G L_{N} p\right]$ can usually be much better understood than the representation theory of $\mathbb{C}\left[G \mathrm{~L}_{N} p\right]$
- In many cases of interest: the representation theory of $\mathbb{C}\left[\mathrm{GL}_{N} p\right]$ and $\mathbb{C}\left[\overline{\mathrm{GL}}{ }_{N} p\right]$ is connected by a fundamental invariant Φ
- In the case of power sums, this connection is very close
- The hope is that $\mathbb{C}\left[G L_{N} p\right]$ and $\mathbb{C}\left[\overline{G L_{N} p}\right]$ are closely related in more involved cases

Where does the hope for multiplicities come from?

Let $H \subseteq \mathrm{GL}_{N}$ be the stabilizer of p.

$$
\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[G L_{N} p\right]\right)=\operatorname{dim} \mathscr{V}_{\lambda}^{H}
$$

Theorem [Larsen and Pink 1990, Inventiones math.]

$H \subseteq \mathrm{GL}_{N}$. Under reasonable assumptions, the group H is determined (up to group isomorphism) by the dimensions $\operatorname{dim} \mathscr{V}_{\lambda}^{H}$.

Pick H to be the stabilizer of a point p that is characterized by its stabilizer:

- determinant
- permanent
- iterated matrix multiplication polynomial
- power sum polynomial
- multilinear monomial
- matrix multiplication tensor
- unit tensor

Conclusion: A strengthening of this theorem would yield that p is characterized by its multiplicities.

Summary

- In the computational models with padding there are no occurence obstructions that prove strong lower bounds
- The padding can be removed: Iterated matrix multiplication
- But even in small explicit unpadded cases: multiplicity obstructions are stronger than occurrence obstructions
- Multiplicities in $\mathbb{C}\left[G L_{N} p\right]$ can be studied with algebraic combinatorics.

The connection to $\mathbb{C}\left[\overline{\mathrm{GL}_{N} p}\right]$ is hopefully close.
(This works for power sums)

- Larsen and Pink: Give hope for multiplicity obstructions

Thank you for your attention!

