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Weakness of occurrence obstructions

Orbit closures of determinant and permanent

detn :=
∑
π∈Sn

sgn(π)
∏n

i=1 xi,π(i), perm :=
∑
π∈Sm

∏m
i=1 xi,π(i)

For a linear map g : Cn2

→ Cn2

define gdetn via (gdetn)(x) := detn(g t(x))

Cn2×n2

detn = {determinants of n× n matrices whose entries are homog. lin. polyn.}

Example:

det

(
x1,1 + x1,2 x1,2 − 2x2,2

x2,1 x1,1 + x1,2

)
= x2

1,1 + 2x1,1x1,2 + x2
1,2 − x1,2x2,1 + 2x2,1x2,2 ∈ C4×4det2

Valiant 1979: For all m there exists n ≥ m such that xn−m
1,1 perm ∈ Cn2×n2

detn.

Closure: Cn2×n2detn = GLn2detn

Define dc(perm) to be the smallest n such that xn−m
1,1 perm ∈ GLn2detn.

GCT Conjecture: dc(perm) grows superpolynomially.

Observation:

xn−m
1,1 perm ∈ GLn2detn iff GLn2 (xn−m

1,1 perm) ⊆ GLn2detn.

Example of a (weak) lower bound technique:

If dim GLn2 (xn−m
1,1 perm) > dim GLn2 (detn), then dc(perm) > n.
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Weakness of occurrence obstructions

Coordinate rings

PolynCN := homog. degree n polyn. in N variables.
dimPolynCN =

(
N+n−1

n

)
C[PolynCN ]d := homog. degree d polyn. in

(
N+n−1

n

)
many variables

Example: n = N = 2
I Poly2C2 has basis {x2, xy , y2}.

I Every element in Poly2C2 can be expressed as ax2 + bxy + cy2

I C[Poly2C2]2 has basis {a2, ab, ac, b2, bc, c2}

I The discriminant b2 − 4ac ∈ C[Poly2C2]2

I b2 − 4ac = 0 iff ax2 + bxy + cy2 = (αx + βy)2 for some α, β ∈ C

Action of GLN on C[PolynCN ]d : Define (gf )(p) := f (g tp)

For Z ⊆ PolynCN , define the coordinate ring:

C[Z ] := C[PolynCN ]|
Z

(restrict domain of definition to Z)

If Y ⊆ Z , then this gives a natural surjection:

C[Z ] � C[Y ]

If Z is closed under the action of GLN , then C[Z ] inherits the action of GLN .
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Weakness of occurrence obstructions

Obstructions based on representation theoretic multiplicities

Goal: To prove GLn2 (xn−m
1,1 perm) 6⊆ GLn2detn

If GLn2 (xn−m
1,1 perm) ⊆ GLn2detn, then C[GLn2detn]d � C[GLn2 (xn−m

1,1 perm)]d

The group action of GLn2 lets us decompose into irreducibles:

C[GLn2detn]d =
⊕

λ V
⊕multλ(C[GL

n2detn ]d )

λ ,

C[GLn2 (xn−m
1,1 perm)]d =

⊕
λ V
⊕multλ(C[GL

n2 (xn−m
1,1 perm)]d )

λ

Since the surjection is GLn2 -equivariant, Schur’s lemma implies:

multλ(C[GLn2detn]d) ≥ multλ(C[GLn2 (xn−m
1,1 perm)]d).

Multiplicity obstruction:

If ∃λ with multλ(C[GLn2detn]d) < multλ(C[GLn2 (xn−m
1,1 perm)]d), then dc(perm) > n.

Occurrence obstruction:
If ∃λ with multλ(C[GLn2detn]d) = 0 < multλ(C[GLn2 (xn−m

1,1 perm)]d), then dc(perm) > n.

Theorem [Bürgisser, I, Panova 2016], disproving a conj. by Mulmuley and Sohoni

There are no occurrence obstrucions that prove dc(perm) ≥ m25.

Proof relies on the padding of the permanent.
Replace detn by homogeneous iterated matrix multiplication to avoid this: Boot camp talk
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Weakness of occurrence obstructions

Summary of part 1

If multλ(C[GLn2detn]d) < multλ(C[GLn2 (xn−m
1,1 perm)]d), then dc(perm) > n.

Occurrence obstruction: multλ(C[GLn2detn]d) = 0 < multλ(C[GLn2 (xn−m
1,1 perm)]d)

But multλ(C[GLn2detn]d) > 0 in all relevant cases, so that dc(perm) > m25 cannot
be proved using occurrence obstructions.

The proof works in all computational models that involve padding.
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Multiplicities are strictly stronger than occurrences

1 Weakness of occurrence obstructions (with Bürgisser and Panova)

2 Multiplicities are strictly stronger than occurrences (with Dörfler and Panova)

3 Using multiplicities: connecting orbits with their closures (with Kandasamy)

Good news: There are group varieties that

cannot be separated with occurrence obstructions, but

can be separated with multiplicity obstructions.

(no padding involved)
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Multiplicities are strictly stronger than occurrences

Factorizing power sums
Two GLm-varieties:

Product of homogeneous linear forms:

Chn
m := {`1 · · · `n | `i ∈ Poly1Cm} ⊆ PolynCm.

Border Waring rank ≤ k polynomials:

Pown
m,k := {`n1 + · · ·+ `nk | `i ∈ Poly1Cm} ⊆ PolynCm.

Theorem [Dörfler, I, Panova 2019]

For any m ≥ 3, n ≥ 2, let k = d = n + 1, λ = (n2 − 2, n, 2). Then

multλ(C[Chn
m]d) < multλ(C[Pown

m,k ]d),

i.e., λ is a multiplicity obstruction that shows Pown
m,k 6⊆ Chn

m.

In a finite case we can rule out the existence of occurrence obstructions:

Theorem [Dörfler, I, Panova 2019]

Let k = 4, n = 6, m = 3, d = 7, λ = (n2 − 2, n, 2) = (34, 6, 2). Then

multλ(C[Chn
m]d) = 7 < 8 = multλ(C[Pown

m,k ]d)

and hence Pown
m,k 6⊆ Chn

m.

For all µ: If multµ(C[Pown
m,k ]d) > 0, then multµ(C[Chn

m]d) > 0.
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Multiplicities are strictly stronger than occurrences

No occurrence obstructions

Goal: If multµ(C[Poly6C3]) > 0, then multµ(C[Ch6
3]) > 0.

Partitions: µ = (µ1, µ2, µ3) ∈ N3, µ1 ≥ µ2 ≥ µ3

Proposition (Semigroup properties)

Let µ and ν be partitions with multµ(C[Poly6C3]) > 0 and multν(C[Poly6C3]) > 0.
Then multµ+ν(C[Poly6C3]) > 0.

Let µ and ν be partitions with multµ(C[Ch6
3]) > 0 and multν(C[Ch6

3]) > 0.
Then multµ+ν(C[Ch6

3]) > 0.

Conclusion: {µ | multµ(C[Poly6C3]) > 0} and {µ | multµ(C[Ch6
3]) > 0} are semigroups.

{µ | multµ(C[Poly6C3]) > 0} has 89 generators:

(6), (6, 6), (8, 4), (10, 2), (6, 6, 6), (8, 6, 4), (10, 4, 4), (9, 6, 3), (8, 8, 2), (10, 6, 2), (11, 5, 2), (10, 7, 1), (12, 4, 2), (11, 6, 1), (10, 8),
(14, 2, 2), (13, 4, 1), (13, 5), (15, 3), (8, 8, 8), (10, 8, 6), (11, 7, 6), (10, 9, 5), (11, 8, 5), (10, 10, 4), (12, 7, 5), (11, 9, 4), (13, 6, 5), (12, 8, 4),
(11, 10, 3), (13, 7, 4), (12, 9, 3), (13, 8, 3), (12, 10, 2), (15, 5, 4), (14, 7, 3), (13, 9, 2), (13, 10, 1), (16, 5, 3), (15, 7, 2), (14, 9, 1), (17, 4, 3),
(15, 8, 1), (15, 9), (19, 3, 2), (18, 5, 1), (17, 7), (10, 10, 10), (11, 10, 9), (12, 10, 8), (13, 9, 8), (12, 11, 7), (13, 10, 7), (14, 9, 7), (13, 11, 6),
(15, 8, 7), (13, 12, 5), (16, 7, 7), (15, 9, 6), (14, 11, 5), (13, 13, 4), (15, 10, 5), (15, 11, 4), (14, 13, 3), (16, 11, 3), (15, 13, 2), (15, 14, 1), (17, 13),
(13, 12, 11), (14, 11, 11), (13, 13, 10), (15, 11, 10), (14, 13, 9), (16, 11, 9), (15, 13, 8), (15, 14, 7), (18, 9, 9), (15, 15, 6), (17, 17, 2), (18, 17, 1),
(26, 5, 5), (15, 14, 13), (16, 13, 13), (15, 15, 12), (17, 17, 8), (18, 15, 15), (17, 17, 14), (25, 23), (45, 45).

For each generator µ we construct an occurrence of Vµ in C[Ch6
3] by computer.
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Multiplicities are strictly stronger than occurrences

Multiplicity obstructions exist

Theorem [Dörfler, I, Panova 2019]

For any m ≥ 3, n ≥ 2, let k = d = n + 1, λ = (n2 − 2, n, 2). Then

multλ(C[Chn
m]d) < multλ(C[Pown

m,k ]d),

i.e., λ is a multiplicity obstruction that shows Pown
m,k 6⊆ Chn

m.

Proof:

The plethysm coefficient aλ(d , n) := multλ(C[PolynCN ]d)

Proposition [Bürgisser, I, Panova 2016]

If k ≥ d , then multλ(C[Pown
m,k ]d) = aλ(d , n).

In other words: Pown
m,k is a hitting set for degree ≤ k polynomials

Remains to show: multλ(C[Chn
m]d) < aλ(d , n)
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Multiplicities are strictly stronger than occurrences

Remains to show: multλ(C[Chn
m]d) < aλ(d , n) for d = n + 1, λ = (n2 − 2, n, 2)

Use inheritance theorem: multλ(C[Chn
m]) = multλ(C[GLn(x1 · · · xn)])

C[GLn(x1 · · · xn)] := rational functions that are defined everywhere on GLn(x1 · · · xn).

C[GLn(x1 · · · xn)] ⊆ C[GLn(x1 · · · xn)], in particular

multλ(C[GLn(x1 · · · xn)]) ≤ multλ(C[GLn(x1 · · · xn)]).

multλ(C[GLn(x1 · · · xn)]) = dim V H
λ∗︸ ︷︷ ︸

=aλ(n,d)

for |λ| = nd ,

where H ⊆ GLn is the stabilizer of x1 · · · xn.

Proof:

C[GLn(x1 · · · xn)] = C[GLn/H] = C[GLn]H
Algebraic

Peter-Weyl
=

⊕
λ

Vλ ⊗ V H
λ∗ �

Proposition (proof based on symmetric functions)

For λ = (n2 − 2, n, 2): aλ(n + 1, n) = 1 + aλ(n, n + 1).

multλ(C[Chn
m]) = multλ(C[GLn(x1 · · · xn)]) ≤ multλ(C[GLn(x1 · · · xn)]) = aλ(n, d) < aλ(d , n).�
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Multiplicities are strictly stronger than occurrences

Summary of part 2

multλ(C[Chn
m]d) < multλ(C[Pown

m,k ]d), therefore Pown
m,k 6⊆ Chn

m.

Proof based on relationship “orbit vs orbit closure”:
multλ(C[GLn(x1 · · · xn)]) ≤ multλ(C[GLn(x1 · · · xn)]).

In a finite case we verified by computer:
there are no occurrence obstructions showing Pown

m,k 6⊆ Chn
m, but multiplicity

obstructions work

Christian Ikenmeyer Recent Progress on Representation Theoretic Multiplicities in GCT 12



Using multiplicities: connecting orbits with their closures

1 Weakness of occurrence obstructions (with Bürgisser and Panova)

2 Multiplicities are strictly stronger than occurrences (with Dörfler and Panova)

3 Using multiplicities: connecting orbits with their closures (with Kandasamy)
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Using multiplicities: connecting orbits with their closures

[Bürgisser, I 2017] connects orbit and orbit closure more closely:

Let 0 6= Φ ∈ C[GLm(xn
1 + · · ·+ xn

m)] be invariant under SLm

(xn
1 + · · ·+ xn

m is not in the null cone)

Then Φ is nonzero everywhere on GLm(xn
1 + · · ·+ xn

m)

It turns out: Φ vanishes on the boundary GLm(xn
1 + · · ·+ xn

m) \ GLm(xn
1 + · · ·+ xn

m)
(proof uses Hilbert-Mumford criterion and refinement by Luna and Kempf)

As a result:
C[GLm(xn

1 + · · ·+ xn
m)] = C[GLm(xn

1 + · · ·+ xn
m)]Φ

is the localization at Φ.

Theorem [Bürgisser, I 2017]

For all d there is e:

C[GLm(xn
1 + · · ·+xn

m)]d
γ
↪→ C[GLm(xn

1 + · · ·+ xn
m)]d+em ⊆ C[GLm(xn

1 + · · ·+xn
m)]d+em,

where γ(f ) := Φe f .

Theorem [I, Kandasamy 2019]

For even n, an upper bound on the required e is m + 4 d
n

.
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Using multiplicities: connecting orbits with their closures

Theorem [Bürgisser, I 2017]

For all d there is e:

C[GLm(xn
1 + · · ·+ xn

m)]d
·Φe

↪→ C[GLm(xn
1 + · · ·+ xn

m)]d+em ⊆ C[GLm(xn
1 + · · ·+ xn

m)]d+em.

Theorem [I, Kandasamy 2019]

For even n, an upper bound on the required e is m + 4 d
n

.

Given a Young tableau T , we can explicitly construct a function fT in
C[GLm(xn

1 + · · ·+ xn
m)]

All highest weight functions in C[GLm(xn
1 + · · ·+ xn

m)] can be constructed in this way

We have a combinatorial/linear algebra way of evaluating at points

We have a similar situation in C[GLm(xn
1 + · · ·+ xn

m)]:

Given a Young tableau S , we can explicitly construct a function fS in
C[GLm(xn

1 + · · ·+ xn
m)] ' V H

λ

All highest weight functions in C[GLm(xn
1 + · · ·+ xn

m)] can be constructed in this way

We have a combinatorial/linear algebra way of evaluating at points

Proof idea of I-Kandasamy: Given a tableau S , construct a slightly larger tableau T
such that fT and fS coincide on SLm(xn

1 + · · ·+ xn
m).
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Using multiplicities: connecting orbits with their closures

Summary of part 3

The representation theory of C[GLNp] can usually be much better understood than
the representation theory of C[GLNp]

In many cases of interest: the representation theory of C[GLNp] and C[GLNp] is
connected by a fundamental invariant Φ

In the case of power sums, this connection is very close

The hope is that C[GLNp] and C[GLNp] are closely related in more involved cases
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Where does the hope for multiplicities come from?
Let H ⊆ GLN be the stabilizer of p.

multλ(C[GLNp]) = dim V H
λ

Theorem [Larsen and Pink 1990, Inventiones math.]

H ⊆ GLN . Under reasonable assumptions, the group H is determined (up to group
isomorphism) by the dimensions dim V H

λ .

Pick H to be the stabilizer of a point p that is characterized by its stabilizer:

determinant

permanent

iterated matrix multiplication polynomial

power sum polynomial

multilinear monomial

matrix multiplication tensor

unit tensor

Conclusion: A strengthening of this theorem would yield that p is characterized by its
multiplicities.
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Summary

In the computational models with padding there are no occurence obstructions that
prove strong lower bounds

The padding can be removed: Iterated matrix multiplication

But even in small explicit unpadded cases: multiplicity obstructions are stronger than
occurrence obstructions

Multiplicities in C[GLNp] can be studied with algebraic combinatorics.

The connection to C[GLNp] is hopefully close.

(This works for power sums)

Larsen and Pink: Give hope for multiplicity obstructions

Thank you for your attention!
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