An instance of symbolic determinant identity testing via *-algebras

Gábor Ivanyos¹ Youming Qiao²

4 Dec 2018, Algebraic Methods Workshop @ Simons Institute

¹Institute for Computer Science and Control, Hungarian Academy of Sciences

²Centre for Quantum Software and Information, University of Technology Sydney

The $\epsilon\text{-symmetrization}$ problem for matrix tuples

Motivation: singularity witnesses for singular matrix spaces

Tackling the $\epsilon\text{-symmetrization}$ problem

Concluding remarks

The ϵ -symmetrization problem for matrix tuples

ϵ -symmetrizable matrix tuples

- \mathbb{F} is of characteristic $\neq 2$ and large enough.
- $M_n(\mathbb{F})$: the linear space of $n \times n$ matrices.
- A matrix space is a linear subspace of $M_n(\mathbb{F})$.

ϵ -symmetrizable matrix tuples

- \mathbb{F} is of characteristic $\neq 2$ and large enough.
- $M_n(\mathbb{F})$: the linear space of $n \times n$ matrices.
- A matrix space is a linear subspace of $M_n(\mathbb{F})$.
- $\epsilon \in \{1, -1\}$. An $n \times n$ matrix A is ϵ -symmetric, if $A^t = \epsilon A$.
- $S_n^{\epsilon}(\mathbb{F})$: the linear space of $n \times n \epsilon$ -symmetric matrices.

ϵ -symmetrizable matrix tuples

- \mathbb{F} is of characteristic $\neq 2$ and large enough.
- $M_n(\mathbb{F})$: the linear space of $n \times n$ matrices.
- A matrix space is a linear subspace of M_n(𝔅).
- $\epsilon \in \{1, -1\}$. An $n \times n$ matrix A is ϵ -symmetric, if $A^t = \epsilon A$.
- $S_n^{\epsilon}(\mathbb{F})$: the linear space of $n \times n \epsilon$ -symmetric matrices.
- $\operatorname{GL}_n(\mathbb{F})$: the general linear group of degree n.
- $M_n(\mathbb{F})^m$: the linear space of *m*-tuples of $n \times n$ matrices.

ϵ-symmetrizable matrix tuples

- \mathbb{F} is of characteristic $\neq 2$ and large enough.
- $M_n(\mathbb{F})$: the linear space of $n \times n$ matrices.
- A matrix space is a linear subspace of $M_n(\mathbb{F})$.
- $\epsilon \in \{1, -1\}$. An $n \times n$ matrix A is ϵ -symmetric, if $A^t = \epsilon A$.
- S^ϵ_n(𝔅): the linear space of n × n ϵ-symmetric matrices.
- $\operatorname{GL}_n(\mathbb{F})$: the general linear group of degree n.
- $M_n(\mathbb{F})^m$: the linear space of *m*-tuples of $n \times n$ matrices.

Definition

 $\vec{A} = (A_1, \dots, A_m) \in M_n(\mathbb{F})^m$ is ϵ -symmetrizable, if $\exists C, D \in GL_n(\mathbb{F})$, such that every CA_iD is ϵ -symmetric.

The ϵ -symmetrization problem and polynomial identity testing

Recall: given $\vec{A} = (A_1, \ldots, A_m) \in M_n(\mathbb{F})^m$, decide whether $\exists C, D \in GL_n(\mathbb{F})$, such that every CA_iD is ϵ -symmetric.

- 1. Enough to search for $E \in \operatorname{GL}_n(\mathbb{F})$, such that every EA_i is ϵ -symmetric.
 - As $D^{-t}CA_i = D^{-t}(CA_iD)D^{-1}$ is also ϵ -symmetric.
- 2. Let $L(\vec{A}) := \{E \in M(n, \mathbb{F}) : EA_i = \epsilon A_i^t E^t\}$. Then $L(\vec{A})$ is a matrix space.
- The problem reduces to decide whether L(A) contains a full-rank matrix. This is an instance of the symbolic determinant identity testing (SDIT) problem.
 - As $\mathbb F$ is large enough, this problem admits a randomized efficient algorithm.

Main result

Theorem

There exists a deterministic efficient algorithm that:

- Given n × n matrices A₁,..., A_m;
- Decide whether there exist invertible matrices C, D, such that every CA_iD is ε-symmetric.
- Inspired by the *-algebra technique [Wilson'09] and the module isomoprhism techniques [Chistov-Ivanyos-Karpinski'97, Brooksbank-Luks'08, Ivanyos-Karpinski-Saxena'10].
- Our original motivation was from understanding singularity witnesses for matrix spaces beyond shrunk subspaces.

Motivation: singularity witnesses for singular matrix spaces

Singularity witnesses for singular matrix spaces

- By Kabanets-Impagliazzo, putting SDIT in NP already implies strong arithmetic circuit lower bounds.
- This amounts to finding small witnesses responsible for the singularity of a singularity matrix space.

Singularity witnesses for singular matrix spaces

- By Kabanets-Impagliazzo, putting SDIT in NP already implies strong arithmetic circuit lower bounds.
- This amounts to finding small witnesses responsible for the singularity of a singularity matrix space.

The non-commutative rank problem is concerned about one type of singularity witnesses, namely shrunk subspaces.

 U ≤ ℝⁿ is a shrunk subspace for A ≤ M_n(ℝ)^m, if dim(A(U)) < dim(U), where A(U) = ⟨∪_{A∈A}A(U)⟩.

Singularity witnesses for singular matrix spaces

- By Kabanets-Impagliazzo, putting SDIT in NP already implies strong arithmetic circuit lower bounds.
- This amounts to finding small witnesses responsible for the singularity of a singularity matrix space.

The non-commutative rank problem is concerned about one type of singularity witnesses, namely shrunk subspaces.

• $U \leq \mathbb{F}^n$ is a *shrunk subspace* for $\mathcal{A} \leq M_n(\mathbb{F})^m$, if $\dim(\mathcal{A}(U)) < \dim(U)$, where $\mathcal{A}(U) = \langle \cup_{\mathcal{A} \in \mathcal{A}} \mathcal{A}(U) \rangle$.

Matrix tuples with shrunk subspaces are the points in the nullcone of the left-right action by $SL_n(\mathbb{F}) \times SL_n(\mathbb{F})$ on $M_n(\mathbb{F})^m$ [King,BD].

 Mulmuley conjectured that this problem could be put in P in GCT 5. Now it admits deterministic polynomial-time algorithms by [GGOW, IQS]. There are singular matrix spaces without shrunk subspaces: consider the space of 3×3 skew-symmetric matrices. That is, the analogue of Hall's marriage theorem does not hold.

Singularity witnesses beyond shrunk subspaces

Two classical examples from [Eisenbud-Harris, Lovász, Atkinson]:

- 1. Subspaces of the space of odd-size skew-symmetric matrices.
- 2. Skew-symmetric induced matrix spaces.
 - Given n × n skew-symmetric matrices A₁,..., A_n, for i ∈ [n], construct B_i = [A₁e_i,..., A_ne_i], e_i the *i*th standard basis vector.
 - Then $\mathcal{B} = \langle B_1, \dots, B_n \rangle$ is singular: $B = \alpha_1 B_1 + \dots + \alpha_n B_n$ has $(\alpha_1, \dots, \alpha_n)$ in the left kernel.

...and those spaces equivalent to them.

Singularity witnesses beyond shrunk subspaces

Two classical examples from [Eisenbud-Harris, Lovász, Atkinson]:

- 1. Subspaces of the space of odd-size skew-symmetric matrices.
- 2. Skew-symmetric induced matrix spaces.
 - Given n × n skew-symmetric matrices A₁,..., A_n, for i ∈ [n], construct B_i = [A₁e_i,..., A_ne_i], e_i the ith standard basis vector.
 - Then $\mathcal{B} = \langle B_1, \dots, B_n \rangle$ is singular: $B = \alpha_1 B_1 + \dots + \alpha_n B_n$ has $(\alpha_1, \dots, \alpha_n)$ in the left kernel.

...and those spaces equivalent to them.

Corollary

Given $\mathcal{B} = \langle B_1, \ldots, B_m \rangle \leq M_n(\mathbb{F})$, there exists a deterministic efficient algorithm that decides whether \mathcal{B} is equivalent to either a subspace of a skew-symmetric matrix space, or a skew-symmetric induced matrix space.

Tackling the ϵ -symmetrization problem

Given $\vec{A} = (A_1, \ldots, A_m) \in M_n(\mathbb{F})^m$, decide whether there is a full-rank matrix in $L^{\epsilon}(\vec{A}) = \{D \in M_n(\mathbb{F}) : \forall i, D^t A_i = \epsilon A_i^t D\}.$

Given $\vec{A} = (A_1, \ldots, A_m) \in M_n(\mathbb{F})^m$, decide whether there is a full-rank matrix in $L^{\epsilon}(\vec{A}) = \{D \in M_n(\mathbb{F}) : \forall i, D^t A_i = \epsilon A_i^t D\}$. Compute a linear basis of $L^{\epsilon}(\vec{A})$. Given $D \in L^{\epsilon}(\vec{A})$, we want to

- either conclude that D is of maximal rank;
- or find another $D' \in L^{\epsilon}(\vec{A})$ of higher rank.

Given $\vec{A} = (A_1, \ldots, A_m) \in M_n(\mathbb{F})^m$, decide whether there is a full-rank matrix in $L^{\epsilon}(\vec{A}) = \{D \in M_n(\mathbb{F}) : \forall i, D^t A_i = \epsilon A_i^t D\}$. Compute a linear basis of $L^{\epsilon}(\vec{A})$. Given $D \in L^{\epsilon}(\vec{A})$, we want to

- either conclude that D is of maximal rank;
- or find another $D' \in L^{\epsilon}(\vec{A})$ of higher rank.

One simple rank increasing setting is the following.

- If $C, D \in M_{\ell}(\mathbb{F})$, $C(\ker(D)) \not\subseteq \operatorname{im}(D)$.
- Then $\operatorname{rk}(C + \lambda D) > \operatorname{rk}(D)$ for all but at most $\ell \ \lambda \in \mathbb{F}$.

Given $\vec{A} = (A_1, \ldots, A_m) \in M_n(\mathbb{F})^m$, decide whether there is a full-rank matrix in $L^{\epsilon}(\vec{A}) = \{D \in M_n(\mathbb{F}) : \forall i, D^t A_i = \epsilon A_i^t D\}$. Compute a linear basis of $L^{\epsilon}(\vec{A})$. Given $D \in L^{\epsilon}(\vec{A})$, we want to

- either conclude that D is of maximal rank;
- or find another $D' \in L^{\epsilon}(\vec{A})$ of higher rank.

One simple rank increasing setting is the following.

- If $C, D \in M_{\ell}(\mathbb{F})$, $C(\ker(D)) \not\subseteq \operatorname{im}(D)$.
- Then $\operatorname{rk}(\mathcal{C} + \lambda \mathcal{D}) > \operatorname{rk}(\mathcal{D})$ for all but at most $\ell \ \lambda \in \mathbb{F}$.

Essentially, we will show that, if D is not of maximal rank, then any linear basis of $L^{\epsilon}(\vec{A})$ contains a matrix that can be used as C. ...But not in the usual action!

The adjoint algebra of an ϵ -symmetric matrix tuple

Let $\vec{A} = (A_1, \ldots, A_m) \in S_n^{\epsilon}(\mathbb{F})^m$. We assume that \vec{A} is *non-degenerate*, e.g. the common kernel of A_i 's is trivial, and the union of images of A_i 's spans the full space.

The adjoint algebra of an ϵ -symmetric matrix tuple

Let $\vec{A} = (A_1, \ldots, A_m) \in S_n^{\epsilon}(\mathbb{F})^m$. We assume that \vec{A} is *non-degenerate*, e.g. the common kernel of A_i 's is trivial, and the union of images of A_i 's spans the full space.

Definition

Let
$$\vec{A} = (A_1, \dots, A_m) \in S^{\epsilon}_n(\mathbb{F})^m$$
. The *adjoint algebra* of \vec{A} is

$$\mathrm{Adj}(\vec{A}) = \{ D \in \mathrm{M}_n(\mathbb{F}) : \exists ! C \in \mathrm{M}_n(\mathbb{F}), \forall i, C^t A_i = A_i D \} \subseteq \mathrm{M}_n(\mathbb{F}).$$

 $\operatorname{Adj}(\vec{A})$ admits an anti-automorphism * of order 2, i.e. $D^* = C$.

The adjoint algebra of an ϵ -symmetric matrix tuple

Let $\vec{A} = (A_1, \ldots, A_m) \in S_n^{\epsilon}(\mathbb{F})^m$. We assume that \vec{A} is *non-degenerate*, e.g. the common kernel of A_i 's is trivial, and the union of images of A_i 's spans the full space.

Definition

Let
$$ec{A}=(A_1,\ldots,A_m)\in S^\epsilon_n(\mathbb{F})^m.$$
 The *adjoint algebra* of $ec{A}$ is

$$\mathrm{Adj}(\vec{A}) = \{ D \in \mathrm{M}_n(\mathbb{F}) : \exists ! C \in \mathrm{M}_n(\mathbb{F}), \forall i, C^t A_i = A_i D \} \subseteq \mathrm{M}_n(\mathbb{F}).$$

 $\operatorname{Adj}(\vec{A})$ admits an anti-automorphism * of order 2, i.e. $D^* = C$.

Algebras with anti-automorphisms of order 2 are termed as *involutive algebras* or *-*algebras*.

• Consider the transpose on $M_n(\mathbb{F})$.

The *-symmetric elements of the adjoint algebra

Recall that for $\vec{A} \in S_n^{\epsilon}(\mathbb{F})^m$, we defined the adjoint algebra $\mathrm{Adj}(\vec{A})$.

Definition

The linear space of *-symmetric elements in $\operatorname{Adj}(\vec{A})$ is

$$\begin{split} \mathrm{Sym}^*(\vec{A}) &= \{ D \in \mathrm{Adj}(\vec{A}) : D^* = D \} \\ &= \{ D \in \mathrm{M}_n(\mathbb{F}) : \forall i, D^t A_i = A_i D \}. \end{split}$$

The *-symmetric elements of the adjoint algebra

Recall that for $ec{A}\in S^\epsilon_n(\mathbb{F})^m$, we defined the adjoint algebra $\mathrm{Adj}(ec{A}).$

Definition

The linear space of *-symmetric elements in $\operatorname{Adj}(\vec{A})$ is

$$\begin{split} \mathrm{Sym}^*(\vec{A}) &= \{ D \in \mathrm{Adj}(\vec{A}) : D^* = D \} \\ &= \{ D \in \mathrm{M}_n(\mathbb{F}) : \forall i, D^t A_i = A_i D \} \end{split}$$

Recall that for $ec{A} \in \mathrm{M}_n(\mathbb{F})^m$, we defined

 $L^{\epsilon}(\vec{A}) = \{ D \in \mathrm{M}_{n}(\mathbb{F}) : \forall i, D^{t}A_{i} = \epsilon A_{i}^{t}D \}.$

So for $\vec{A} \in S_n^{\epsilon}(\mathbb{F})$, $L^{\epsilon}(\vec{A}) = \operatorname{Sym}^*(\vec{A})$.

The key lemma

Let $\vec{A} \in S_n^{\epsilon}(\mathbb{F})^m$, $D \in \operatorname{Sym}^*(\vec{A}) \subseteq \operatorname{Adj}(\vec{A})$, and dim $(\operatorname{Adj}(\vec{A})) = \ell$. Key idea

Consider D's action on $\operatorname{Adj}(\vec{A})$, e.g. D sends $E \in \operatorname{Adj}(\vec{A})$ to DE.

The key lemma

Let $\vec{A} \in S_n^{\epsilon}(\mathbb{F})^m$, $D \in \operatorname{Sym}^*(\vec{A}) \subseteq \operatorname{Adj}(\vec{A})$, and dim $(\operatorname{Adj}(\vec{A})) = \ell$. Key idea

Consider D's action on $\operatorname{Adj}(\vec{A})$, e.g. D sends $E \in \operatorname{Adj}(\vec{A})$ to DE.

- As a vector space, $\mathrm{Adj}(ec{\mathcal{A}})\cong\mathbb{F}^\ell$, so $ilde{D}\in\mathrm{M}_\ell(\mathbb{F}).$
- $\ker(\tilde{D}) = \operatorname{Ann}_r(D)$, the space of right annihilators of D.
- $\operatorname{im}(\tilde{D}) = D\operatorname{Adj}(\vec{A})$, the right ideal generated by D.
- D is full-rank if and only if \tilde{D} is full-rank.

The key lemma

Let $\vec{A} \in S_n^{\epsilon}(\mathbb{F})^m$, $D \in \operatorname{Sym}^*(\vec{A}) \subseteq \operatorname{Adj}(\vec{A})$, and dim $(\operatorname{Adj}(\vec{A})) = \ell$. Key idea

Consider D's action on $\operatorname{Adj}(\vec{A})$, e.g. D sends $E \in \operatorname{Adj}(\vec{A})$ to DE.

- As a vector space, $\mathrm{Adj}(\vec{A})\cong\mathbb{F}^\ell$, so $\tilde{D}\in\mathrm{M}_\ell(\mathbb{F}).$
- $\ker(\tilde{D}) = \operatorname{Ann}_r(D)$, the space of right annihilators of D.
- $\operatorname{im}(\tilde{D}) = D\operatorname{Adj}(\vec{A})$, the right ideal generated by D.
- D is full-rank if and only if D
 is full-rank.

Lemma (Key lemma)

If $\operatorname{Adj}(\vec{A})$ is semisimple, then for any non-full-rank $D \in \operatorname{Sym}^*(\vec{A})$, there exists $C \in \operatorname{Sym}^*(\mathcal{A})$ s.t. $C(\operatorname{Ann}_r(D)) \not\subseteq D\operatorname{Adj}(\vec{A})$.

In other words, $\tilde{C}(\ker(\tilde{D})) \not\subseteq \operatorname{im}(\tilde{D})$. (Simple rank increasing!) And any linear basis of $\operatorname{Sym}^*(\vec{A})$ contains (at least) one such C.

The algorithm: without a mask

Suppose $\vec{A} \in S_n^{\epsilon}(\mathbb{F})^m$. Let C_1, \ldots, C_k be a basis of $\operatorname{Sym}^*(\vec{A})$. Let $F = \{\lambda_1, \ldots, \lambda_{\ell+1}\} \subseteq \mathbb{F}$, where $\ell = \dim(\operatorname{Adj}(\vec{A}))$.

The algorithm: without a mask

Suppose $\vec{A} \in S_n^{\epsilon}(\mathbb{F})^m$. Let C_1, \ldots, C_k be a basis of $\operatorname{Sym}^*(\vec{A})$. Let $F = \{\lambda_1, \ldots, \lambda_{\ell+1}\} \subseteq \mathbb{F}$, where $\ell = \dim(\operatorname{Adj}(\vec{A}))$.

If $\operatorname{Adj}(\vec{A})$ is semisimple, for a non-full-rank $D \in \operatorname{Sym}^*(\vec{A})$, we can choose $D' = C_i + \lambda_j D$ s.t. $\dim((C_i + \lambda_j D)\operatorname{Adj}(\vec{A}))$ is larger than $\dim(D\operatorname{Adj}(\vec{A}))$.

The algorithm: without a mask

Suppose $\vec{A} \in S_n^{\epsilon}(\mathbb{F})^m$. Let C_1, \ldots, C_k be a basis of $\operatorname{Sym}^*(\vec{A})$. Let $F = \{\lambda_1, \ldots, \lambda_{\ell+1}\} \subseteq \mathbb{F}$, where $\ell = \dim(\operatorname{Adj}(\vec{A}))$.

If $\operatorname{Adj}(\vec{A})$ is semisimple, for a non-full-rank $D \in \operatorname{Sym}^*(\vec{A})$, we can choose $D' = C_i + \lambda_j D$ s.t. $\dim((C_i + \lambda_j D)\operatorname{Adj}(\vec{A}))$ is larger than $\dim(D\operatorname{Adj}(\vec{A}))$.

When $\operatorname{Adj}(\vec{A})$ is not semisimple, but $\operatorname{Rad}(\operatorname{Adj}(\vec{A}))$ is efficiently computable, the same strategy works after modulo the radical.

 This new assumption holds for fields of characteristic 0 [Dickson] and finite fields [Rónyai].

The algorithm: with a mask

- Given $\vec{A} \in M_n(\mathbb{F})^m$, $\vec{A} = E\vec{B}$ for some $\vec{B} \in S_n^{\epsilon}(\mathbb{F})^m$ and $E \in GL_n(\mathbb{F})$.
- Let $D \in L^{\epsilon}(\vec{A})$. $D = D'E^{-1}$ for some $D' \in L^{\epsilon}(\vec{B}) = \operatorname{Sym}^{*}(\vec{B})$.
- Goal: compute $D' \operatorname{Adj}(\vec{B})$.

The algorithm: with a mask

- Given $\vec{A} \in M_n(\mathbb{F})^m$, $\vec{A} = E\vec{B}$ for some $\vec{B} \in S_n^{\epsilon}(\mathbb{F})^m$ and $E \in GL_n(\mathbb{F})$.
- Let $D \in L^{\epsilon}(\vec{A})$. $D = D' E^{-1}$ for some $D' \in L^{\epsilon}(\vec{B}) = \operatorname{Sym}^{*}(\vec{B})$.
- Goal: compute $D' \operatorname{Adj}(\vec{B})$.
- Adj(A) = Adj(B) because of the non-degeneracy condition and the projection to the second component.
 - $C^t(EA_i) = (EA_i)D$ if and only if $(E^tCE^{-t})A_i = A_iD$.
- $DL^{\epsilon}(\epsilon \vec{A}^t) = D'L^{\epsilon}(\vec{B}).$
 - $L^{\epsilon}(\epsilon \vec{A}^t) = L^{\epsilon}(\epsilon (\vec{EB})^t) = L^{\epsilon}(\epsilon \vec{B}^t E^t) = L^{\epsilon}(\vec{B}E^t) = EL^{\epsilon}(\vec{B}).$
- $DL^{\epsilon}(\epsilon \vec{A}^{t}) \operatorname{Adj}(\vec{A}) = D' L^{\epsilon}(\vec{B}) \operatorname{Adj}(\vec{B}) = D' \operatorname{Adj}(\vec{B}).$

This means that we can work with $D' \operatorname{Adj}(\vec{B})$ without knowing the mask E!

Concluding remarks

Concluding remarks

We also have algorithms when

- \mathbb{F} is large enough without computing the radical;
- F is small.

Open questions:

- characteristic 2 fields?
- More examples of singular matrix spaces with no shrunk subspaces?

Concluding remarks

We also have algorithms when

- \mathbb{F} is large enough without computing the radical;
- F is small.

Open questions:

- characteristic 2 fields?
- More examples of singular matrix spaces with no shrunk subspaces?

Let $\mathcal A$ be a finite dimensional associative algebra over $\mathbb F.$ By Wedderburn et al., we have:

- Rad(A): the radical, e.g. the largest nilpotent ideal.
- A/Rad(A): semisimple, that is, isomorphic to a direct sum of simple algebras.
- S_i ≅ M(n_i, D_i): a full matrix algebra over D_i, a division algebra over F.

Let $*: \mathcal{A} \to \mathcal{A}$ be an involution, e.g. an anti-automorphism such that $\forall a \in \mathcal{A}$, $(a^*)^* = a$. By Albert et al., we have:

- Rad(A) is invariant under *: * induces an involution on A/Rad(A).
- Recall that $S_i \cong M(n_i, D_i)$.
 - 1. (Exchange type) $S_i^* = S_j$, $i \neq j$. Then $S_i \cong S_j$, and $(a, b)^* = (b, a)$, $(a, b) \in S_i \oplus S_j$.
 - 2. (Classical type) $S_i^* = S_i$. There is a classical form $F \in M(n_i, D_i)$, such that $A^* = F^{-1}A^tF$.

