An instance of symbolic determinant identity testing via $*$-algebras

Gábor Ivanyos ${ }^{1} \quad$ Youming Qiao ${ }^{2}$
4 Dec 2018, Algebraic Methods Workshop @ Simons Institute
${ }^{1}$ Institute for Computer Science and Control, Hungarian Academy of Sciences
${ }^{2}$ Centre for Quantum Software and Information, University of Technology Sydney

Table of Contents

The ϵ-symmetrization problem for matrix tuples

Motivation: singularity witnesses for singular matrix spaces

Tackling the ϵ-symmetrization problem

Concluding remarks

The ϵ-symmetrization problem for matrix tuples

ϵ-symmetrizable matrix tuples

- \mathbb{F} is of characteristic $\neq 2$ and large enough.
- $\mathrm{M}_{n}(\mathbb{F})$: the linear space of $n \times n$ matrices.
- A matrix space is a linear subspace of $\mathrm{M}_{n}(\mathbb{F})$.

ϵ-symmetrizable matrix tuples

- \mathbb{F} is of characteristic $\neq 2$ and large enough.
- $\mathrm{M}_{n}(\mathbb{F})$: the linear space of $n \times n$ matrices.
- A matrix space is a linear subspace of $\mathrm{M}_{n}(\mathbb{F})$.
- $\epsilon \in\{1,-1\}$. An $n \times n$ matrix A is ϵ-symmetric, if $A^{t}=\epsilon A$.
- $S_{n}^{\epsilon}(\mathbb{F})$: the linear space of $n \times n \epsilon$-symmetric matrices.

ϵ-symmetrizable matrix tuples

- \mathbb{F} is of characteristic $\neq 2$ and large enough.
- $\mathrm{M}_{n}(\mathbb{F})$: the linear space of $n \times n$ matrices.
- A matrix space is a linear subspace of $\mathrm{M}_{n}(\mathbb{F})$.
- $\epsilon \in\{1,-1\}$. An $n \times n$ matrix A is ϵ-symmetric, if $A^{t}=\epsilon A$.
- $S_{n}^{\epsilon}(\mathbb{F})$: the linear space of $n \times n \epsilon$-symmetric matrices.
- $\mathrm{GL}_{n}(\mathbb{F})$: the general linear group of degree n.
- $\mathrm{M}_{n}(\mathbb{F})^{m}$: the linear space of m-tuples of $n \times n$ matrices.

ϵ-symmetrizable matrix tuples

- \mathbb{F} is of characteristic $\neq 2$ and large enough.
- $\mathrm{M}_{n}(\mathbb{F})$: the linear space of $n \times n$ matrices.
- A matrix space is a linear subspace of $M_{n}(\mathbb{F})$.
- $\epsilon \in\{1,-1\}$. An $n \times n$ matrix A is ϵ-symmetric, if $A^{t}=\epsilon A$.
- $S_{n}^{\epsilon}(\mathbb{F})$: the linear space of $n \times n \epsilon$-symmetric matrices.
- $\mathrm{GL}_{n}(\mathbb{F})$: the general linear group of degree n.
- $\mathrm{M}_{n}(\mathbb{F})^{m}$: the linear space of m-tuples of $n \times n$ matrices.

Definition

$\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in \mathrm{M}_{n}(\mathbb{F})^{m}$ is ϵ-symmetrizable, if
$\exists C, D \in \mathrm{GL}_{n}(\mathbb{F})$, such that every $C A_{i} D$ is ϵ-symmetric.

The ϵ-symmetrization problem and polynomial identity testing

Recall: given $\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in \mathrm{M}_{n}(\mathbb{F})^{m}$, decide whether $\exists C, D \in \mathrm{GL}_{n}(\mathbb{F})$, such that every $C A_{i} D$ is ϵ-symmetric.

1. Enough to search for $E \in G L_{n}(\mathbb{F})$, such that every $E A_{i}$ is ϵ-symmetric.

- As $D^{-t} C A_{i}=D^{-t}\left(C A_{i} D\right) D^{-1}$ is also ϵ-symmetric.

2. Let $L(\vec{A}):=\left\{E \in \mathrm{M}(n, \mathbb{F}): E A_{i}=\epsilon A_{i}^{t} E^{t}\right\}$. Then $L(\vec{A})$ is a matrix space.
3. The problem reduces to decide whether $L(\vec{A})$ contains a full-rank matrix. This is an instance of the symbolic determinant identity testing (SDIT) problem.

- As \mathbb{F} is large enough, this problem admits a randomized efficient algorithm.

Main result

Theorem

There exists a deterministic efficient algorithm that:

- Given $n \times n$ matrices A_{1}, \ldots, A_{m};
- Decide whether there exist invertible matrices C, D, such that every $C A_{i} D$ is ϵ-symmetric.
- Inspired by the $*$-algebra technique [Wilson'09] and the module isomoprhism techniques [Chistov-Ivanyos-Karpinski'97, Brooksbank-Luks'08, Ivanyos-Karpinski-Saxena'10].
- Our original motivation was from understanding singularity witnesses for matrix spaces beyond shrunk subspaces.

Motivation: singularity witnesses for singular matrix spaces

Singularity witnesses for singular matrix spaces

- By Kabanets-Impagliazzo, putting SDIT in NP already implies strong arithmetic circuit lower bounds.
- This amounts to finding small witnesses responsible for the singularity of a singularity matrix space.

Singularity witnesses for singular matrix spaces

- By Kabanets-Impagliazzo, putting SDIT in NP already implies strong arithmetic circuit lower bounds.
- This amounts to finding small witnesses responsible for the singularity of a singularity matrix space.

The non-commutative rank problem is concerned about one type of singularity witnesses, namely shrunk subspaces.

- $U \leq \mathbb{F}^{n}$ is a shrunk subspace for $\mathcal{A} \leq \mathrm{M}_{n}(\mathbb{F})^{m}$, if $\operatorname{dim}(\mathcal{A}(U))<\operatorname{dim}(U)$, where $\mathcal{A}(U)=\left\langle\cup_{A \in \mathcal{A}} A(U)\right\rangle$.

Singularity witnesses for singular matrix spaces

- By Kabanets-Impagliazzo, putting SDIT in NP already implies strong arithmetic circuit lower bounds.
- This amounts to finding small witnesses responsible for the singularity of a singularity matrix space.

The non-commutative rank problem is concerned about one type of singularity witnesses, namely shrunk subspaces.

- $U \leq \mathbb{F}^{n}$ is a shrunk subspace for $\mathcal{A} \leq \mathrm{M}_{n}(\mathbb{F})^{m}$, if $\operatorname{dim}(\mathcal{A}(U))<\operatorname{dim}(U)$, where $\mathcal{A}(U)=\left\langle\cup_{A \in \mathcal{A}} A(U)\right\rangle$.

Matrix tuples with shrunk subspaces are the points in the nullcone of the left-right action by $\mathrm{SL}_{n}(\mathbb{F}) \times \mathrm{SL}_{n}(\mathbb{F})$ on $\mathrm{M}_{n}(\mathbb{F})^{m}$ [King,BD].

- Mulmuley conjectured that this problem could be put in P in GCT 5. Now it admits deterministic polynomial-time algorithms by [GGOW, IQS].

Singularity witnesses: shrunk subspaces are not enough

There are singular matrix spaces without shrunk subspaces: consider the space of 3×3 skew-symmetric matrices. That is, the analogue of Hall's marriage theorem does not hold.

All bipartite graphs

- Has Hall obstructions
\square Has perfect matchings

All matrix spaces

Singularity witnesses beyond shrunk subspaces

Two classical examples from [Eisenbud-Harris, Lovász, Atkinson]:

1. Subspaces of the space of odd-size skew-symmetric matrices.
2. Skew-symmetric induced matrix spaces.

- Given $n \times n$ skew-symmetric matrices A_{1}, \ldots, A_{n}, for $i \in[n]$, construct $B_{i}=\left[A_{1} e_{i}, \ldots, A_{n} e_{i}\right], e_{i}$ the i th standard basis vector.
- Then $\mathcal{B}=\left\langle B_{1}, \ldots, B_{n}\right\rangle$ is singular: $B=\alpha_{1} B_{1}+\cdots+\alpha_{n} B_{n}$ has $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ in the left kernel.
...and those spaces equivalent to them.

Singularity witnesses beyond shrunk subspaces

Two classical examples from [Eisenbud-Harris, Lovász, Atkinson]:

1. Subspaces of the space of odd-size skew-symmetric matrices.
2. Skew-symmetric induced matrix spaces.

- Given $n \times n$ skew-symmetric matrices A_{1}, \ldots, A_{n}, for $i \in[n]$, construct $B_{i}=\left[A_{1} e_{i}, \ldots, A_{n} e_{i}\right], e_{i}$ the ith standard basis vector.
- Then $\mathcal{B}=\left\langle B_{1}, \ldots, B_{n}\right\rangle$ is singular: $B=\alpha_{1} B_{1}+\cdots+\alpha_{n} B_{n}$ has $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ in the left kernel.
... and those spaces equivalent to them.

Corollary

Given $\mathcal{B}=\left\langle B_{1}, \ldots, B_{m}\right\rangle \leq \mathrm{M}_{n}(\mathbb{F})$, there exists a deterministic efficient algorithm that decides whether \mathcal{B} is equivalent to either a subspace of a skew-symmetric matrix space, or a skew-symmetric induced matrix space.

Tackling the ϵ-symmetrization problem

The strategy

Given $\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in \mathrm{M}_{n}(\mathbb{F})^{m}$, decide whether there is a full-rank matrix in $L^{\epsilon}(\vec{A})=\left\{D \in \mathrm{M}_{n}(\mathbb{F}): \forall i, D^{t} A_{i}=\epsilon A_{i}^{t} D\right\}$.

The strategy

Given $\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in \mathrm{M}_{n}(\mathbb{F})^{m}$, decide whether there is a full-rank matrix in $L^{\epsilon}(\vec{A})=\left\{D \in \mathrm{M}_{n}(\mathbb{F}): \forall i, D^{t} A_{i}=\epsilon A_{i}^{t} D\right\}$.
Compute a linear basis of $L^{\epsilon}(\vec{A})$. Given $D \in L^{\epsilon}(\vec{A})$, we want to

- either conclude that D is of maximal rank;
- or find another $D^{\prime} \in L^{\epsilon}(\vec{A})$ of higher rank.

The strategy

Given $\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in \mathrm{M}_{n}(\mathbb{F})^{m}$, decide whether there is a full-rank matrix in $L^{\epsilon}(\vec{A})=\left\{D \in \mathrm{M}_{n}(\mathbb{F}): \forall i, D^{t} A_{i}=\epsilon A_{i}^{t} D\right\}$.
Compute a linear basis of $L^{\epsilon}(\vec{A})$. Given $D \in L^{\epsilon}(\vec{A})$, we want to

- either conclude that D is of maximal rank;
- or find another $D^{\prime} \in L^{\epsilon}(\vec{A})$ of higher rank.

One simple rank increasing setting is the following.

- If $C, D \in \mathrm{M}_{\ell}(\mathbb{F}), C(\operatorname{ker}(D)) \nsubseteq \operatorname{im}(D)$.
- Then $\operatorname{rk}(C+\lambda D)>\operatorname{rk}(D)$ for all but at most $\ell \lambda \in \mathbb{F}$.

The strategy

Given $\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in \mathrm{M}_{n}(\mathbb{F})^{m}$, decide whether there is a full-rank matrix in $L^{\epsilon}(\vec{A})=\left\{D \in \mathrm{M}_{n}(\mathbb{F}): \forall i, D^{t} A_{i}=\epsilon A_{i}^{t} D\right\}$.
Compute a linear basis of $L^{\epsilon}(\vec{A})$. Given $D \in L^{\epsilon}(\vec{A})$, we want to

- either conclude that D is of maximal rank;
- or find another $D^{\prime} \in L^{\epsilon}(\vec{A})$ of higher rank.

One simple rank increasing setting is the following.

- If $C, D \in \mathrm{M}_{\ell}(\mathbb{F}), C(\operatorname{ker}(D)) \nsubseteq \operatorname{im}(D)$.
- Then $\operatorname{rk}(C+\lambda D)>\operatorname{rk}(D)$ for all but at most $\ell \lambda \in \mathbb{F}$.

Essentially, we will show that, if D is not of maximal rank, then any linear basis of $L^{\epsilon}(\vec{A})$ contains a matrix that can be used as C. ... But not in the usual action!

The adjoint algebra of an ϵ-symmetric matrix tuple

Let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in S_{n}^{\epsilon}(\mathbb{F})^{m}$. We assume that \vec{A} is
non-degenerate, e.g. the common kernel of A_{i} 's is trivial, and the union of images of A_{i} 's spans the full space.

The adjoint algebra of an ϵ-symmetric matrix tuple

Let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in S_{n}^{\epsilon}(\mathbb{F})^{m}$. We assume that \vec{A} is non-degenerate, e.g. the common kernel of A_{i} 's is trivial, and the union of images of A_{i} 's spans the full space.

Definition

Let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in S_{n}^{\epsilon}(\mathbb{F})^{m}$. The adjoint algebra of \vec{A} is
$\operatorname{Adj}(\vec{A})=\left\{D \in \mathrm{M}_{n}(\mathbb{F}): \exists!C \in \mathrm{M}_{n}(\mathbb{F}), \forall i, C^{t} A_{i}=A_{i} D\right\} \subseteq \mathrm{M}_{n}(\mathbb{F})$.
$\operatorname{Adj}(\vec{A})$ admits an anti-automorphism $*$ of order 2, i.e. $D^{*}=C$.

The adjoint algebra of an ϵ-symmetric matrix tuple

Let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in S_{n}^{\epsilon}(\mathbb{F})^{m}$. We assume that \vec{A} is non-degenerate, e.g. the common kernel of A_{i} 's is trivial, and the union of images of A_{i} 's spans the full space.

Definition

Let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in S_{n}^{\epsilon}(\mathbb{F})^{m}$. The adjoint algebra of \vec{A} is

$$
\operatorname{Adj}(\vec{A})=\left\{D \in \mathrm{M}_{n}(\mathbb{F}): \exists!C \in \mathrm{M}_{n}(\mathbb{F}), \forall i, C^{t} A_{i}=A_{i} D\right\} \subseteq \mathrm{M}_{n}(\mathbb{F})
$$

$\operatorname{Adj}(\vec{A})$ admits an anti-automorphism $*$ of order 2, i.e. $D^{*}=C$.
Algebras with anti-automorphisms of order 2 are termed as involutive algebras or $*$-algebras.

- Consider the transpose on $\mathrm{M}_{n}(\mathbb{F})$.

The $*$-symmetric elements of the adjoint algebra

Recall that for $\vec{A} \in S_{n}^{\epsilon}(\mathbb{F})^{m}$, we defined the adjoint algebra $\operatorname{Adj}(\vec{A})$.

Definition

The linear space of $*$-symmetric elements in $\operatorname{Adj}(\vec{A})$ is

$$
\begin{aligned}
\operatorname{Sym}^{*}(\vec{A}) & =\left\{D \in \operatorname{Adj}(\vec{A}): D^{*}=D\right\} \\
& =\left\{D \in \mathrm{M}_{n}(\mathbb{F}): \forall i, D^{t} A_{i}=A_{i} D\right\} .
\end{aligned}
$$

The $*$-symmetric elements of the adjoint algebra

Recall that for $\vec{A} \in S_{n}^{\epsilon}(\mathbb{F})^{m}$, we defined the adjoint algebra $\operatorname{Adj}(\vec{A})$.

Definition

The linear space of $*$-symmetric elements in $\operatorname{Adj}(\vec{A})$ is

$$
\begin{aligned}
\operatorname{Sym}^{*}(\vec{A}) & =\left\{D \in \operatorname{Adj}(\vec{A}): D^{*}=D\right\} \\
& =\left\{D \in \mathrm{M}_{n}(\mathbb{F}): \forall i, D^{t} A_{i}=A_{i} D\right\} .
\end{aligned}
$$

Recall that for $\vec{A} \in \mathrm{M}_{n}(\mathbb{F})^{m}$, we defined

$$
L^{\epsilon}(\vec{A})=\left\{D \in \mathrm{M}_{n}(\mathbb{F}): \forall i, D^{t} A_{i}=\epsilon A_{i}^{t} D\right\} .
$$

So for $\vec{A} \in S_{n}^{\epsilon}(\mathbb{F}), L^{\epsilon}(\vec{A})=\operatorname{Sym}^{*}(\vec{A})$.

The key lemma

Let $\vec{A} \in S_{n}^{\epsilon}(\mathbb{F})^{m}, D \in \operatorname{Sym}^{*}(\vec{A}) \subseteq \operatorname{Adj}(\vec{A})$, and $\operatorname{dim}(\operatorname{Adj}(\vec{A}))=\ell$.
Key idea
Consider D 's action on $\operatorname{Adj}(\vec{A})$, e.g. D sends $E \in \operatorname{Adj}(\vec{A})$ to $D E$.

The key lemma

Let $\vec{A} \in S_{n}^{\epsilon}(\mathbb{F})^{m}, D \in \operatorname{Sym}^{*}(\vec{A}) \subseteq \operatorname{Adj}(\vec{A})$, and $\operatorname{dim}(\operatorname{Adj}(\vec{A}))=\ell$.

Key idea

Consider D 's action on $\operatorname{Adj}(\vec{A})$, e.g. D sends $E \in \operatorname{Adj}(\vec{A})$ to $D E$.

- As a vector space, $\operatorname{Adj}(\vec{A}) \cong \mathbb{F}^{\ell}$, so $\tilde{D} \in \mathrm{M}_{\ell}(\mathbb{F})$.
- $\operatorname{ker}(\tilde{D})=\operatorname{Ann}_{r}(D)$, the space of right annihilators of D.
- $\operatorname{im}(\tilde{D})=\operatorname{DAdj}(\vec{A})$, the right ideal generated by D.
- D is full-rank if and only if \tilde{D} is full-rank.

The key lemma

Let $\vec{A} \in S_{n}^{\epsilon}(\mathbb{F})^{m}, D \in \operatorname{Sym}^{*}(\vec{A}) \subseteq \operatorname{Adj}(\vec{A})$, and $\operatorname{dim}(\operatorname{Adj}(\vec{A}))=\ell$.

Key idea

Consider D 's action on $\operatorname{Adj}(\vec{A})$, e.g. D sends $E \in \operatorname{Adj}(\vec{A})$ to $D E$.

- As a vector space, $\operatorname{Adj}(\vec{A}) \cong \mathbb{F}^{\ell}$, so $\tilde{D} \in \mathrm{M}_{\ell}(\mathbb{F})$.
- $\operatorname{ker}(\tilde{D})=\operatorname{Ann}_{r}(D)$, the space of right annihilators of D.
- $\operatorname{im}(\tilde{D})=\operatorname{DAd}(\vec{A})$, the right ideal generated by D.
- D is full-rank if and only if \tilde{D} is full-rank.

Lemma (Key lemma)

If $\operatorname{Adj}(\vec{A})$ is semisimple, then for any non-full-rank $D \in \operatorname{Sym}^{*}(\vec{A})$, there exists $C \in \operatorname{Sym}^{*}(\mathcal{A})$ s.t. $C\left(\operatorname{Ann}_{r}(D)\right) \nsubseteq D \operatorname{Adj}(\vec{A})$.

In other words, $\tilde{C}(\operatorname{ker}(\tilde{D})) \notin \operatorname{im}(\tilde{D})$. (Simple rank increasing!) And any linear basis of $\operatorname{Sym}^{*}(\vec{A})$ contains (at least) one such C.

The algorithm: without a mask
Suppose $\vec{A} \in S_{n}^{\epsilon}(\mathbb{F})^{m}$. Let C_{1}, \ldots, C_{k} be a basis of $\operatorname{Sym}^{*}(\vec{A})$. Let $F=\left\{\lambda_{1}, \ldots, \lambda_{\ell+1}\right\} \subseteq \mathbb{F}$, where $\ell=\operatorname{dim}(\operatorname{Adj}(\vec{A}))$.

The algorithm: without a mask

Suppose $\vec{A} \in S_{n}^{\epsilon}(\mathbb{F})^{m}$. Let C_{1}, \ldots, C_{k} be a basis of $\operatorname{Sym}^{*}(\vec{A})$. Let $F=\left\{\lambda_{1}, \ldots, \lambda_{\ell+1}\right\} \subseteq \mathbb{F}$, where $\ell=\operatorname{dim}(\operatorname{Adj}(\vec{A}))$.

If $\operatorname{Adj}(\vec{A})$ is semisimple, for a non-full-rank $D \in \operatorname{Sym}^{*}(\vec{A})$, we can choose $D^{\prime}=C_{i}+\lambda_{j} D$ s.t. $\operatorname{dim}\left(\left(C_{i}+\lambda_{j} D\right) \operatorname{Adj}(\vec{A})\right)$ is larger than $\operatorname{dim}(\operatorname{DAdj}(\vec{A}))$.

The algorithm: without a mask

Suppose $\vec{A} \in S_{n}^{\epsilon}(\mathbb{F})^{m}$. Let C_{1}, \ldots, C_{k} be a basis of $\operatorname{Sym}^{*}(\vec{A})$. Let $F=\left\{\lambda_{1}, \ldots, \lambda_{\ell+1}\right\} \subseteq \mathbb{F}$, where $\ell=\operatorname{dim}(\operatorname{Adj}(\vec{A}))$.

If $\operatorname{Adj}(\vec{A})$ is semisimple, for a non-full-rank $D \in \operatorname{Sym}^{*}(\vec{A})$, we can choose $D^{\prime}=C_{i}+\lambda_{j} D$ s.t. $\operatorname{dim}\left(\left(C_{i}+\lambda_{j} D\right) \operatorname{Adj}(\vec{A})\right)$ is larger than $\operatorname{dim}(\operatorname{DAdj}(\vec{A}))$.

When $\operatorname{Adj}(\vec{A})$ is not semisimple, but $\operatorname{Rad}(\operatorname{Adj}(\vec{A}))$ is efficiently computable, the same strategy works after modulo the radical.

- This new assumption holds for fields of characteristic 0 [Dickson] and finite fields [Rónyai].

The algorithm: with a mask

- Given $\vec{A} \in \mathrm{M}_{n}(\mathbb{F})^{m}, \vec{A}=E \vec{B}$ for some $\vec{B} \in S_{n}^{\epsilon}(\mathbb{F})^{m}$ and $E \in \mathrm{GL}_{n}(\mathbb{F})$.
- Let $D \in L^{\epsilon}(\vec{A})$. $D=D^{\prime} E^{-1}$ for some $D^{\prime} \in L^{\epsilon}(\vec{B})=\operatorname{Sym}^{*}(\vec{B})$.
- Goal: compute $D^{\prime} \operatorname{Adj}(\vec{B})$.

The algorithm: with a mask

- Given $\vec{A} \in \mathrm{M}_{n}(\mathbb{F})^{m}, \vec{A}=E \vec{B}$ for some $\vec{B} \in S_{n}^{\epsilon}(\mathbb{F})^{m}$ and $E \in \mathrm{GL}_{n}(\mathbb{F})$.
- Let $D \in L^{\epsilon}(\vec{A})$. $D=D^{\prime} E^{-1}$ for some $D^{\prime} \in L^{\epsilon}(\vec{B})=\operatorname{Sym}^{*}(\vec{B})$.
- Goal: compute $D^{\prime} \operatorname{Adj}(\vec{B})$.
- $\operatorname{Adj}(\vec{A})=\operatorname{Adj}(\vec{B})$ because of the non-degeneracy condition and the projection to the second component.
- $C^{t}\left(E A_{i}\right)=\left(E A_{i}\right) D$ if and only if $\left(E^{t} C E^{-t}\right) A_{i}=A_{i} D$.
- $D L^{\epsilon}\left(\epsilon \vec{A}^{t}\right)=D^{\prime} L^{\epsilon}(\vec{B})$.
- $L^{\epsilon}\left(\epsilon \vec{A}^{t}\right)=L^{\epsilon}\left(\epsilon(E \vec{B})^{t}\right)=L^{\epsilon}\left(\epsilon \vec{B}^{t} E^{t}\right)=L^{\epsilon}\left(\vec{B} E^{t}\right)=E L^{\epsilon}(\vec{B})$.
- $D L^{\epsilon}\left(\epsilon \vec{A}^{t}\right) \operatorname{Adj}(\vec{A})=D^{\prime} L^{\epsilon}(\vec{B}) \operatorname{Adj}(\vec{B})=D^{\prime} \operatorname{Adj}(\vec{B})$.

This means that we can work with $D^{\prime} \operatorname{Adj}(\vec{B})$ without knowing the mask E!

Concluding remarks

Concluding remarks

We also have algorithms when

- \mathbb{F} is large enough without computing the radical;
- \mathbb{F} is small.

Open questions:

- characteristic 2 fields?
- More examples of singular matrix spaces with no shrunk subspaces?

Concluding remarks

We also have algorithms when

- \mathbb{F} is large enough without computing the radical;
- \mathbb{F} is small.

Open questions:

- characteristic 2 fields?
- More examples of singular matrix spaces with no shrunk subspaces?

Structure of algebras

Let \mathcal{A} be a finite dimensional associative algebra over \mathbb{F}. By Wedderburn et al., we have:

- $\operatorname{Rad}(\mathcal{A})$: the radical, e.g. the largest nilpotent ideal.
- $\mathcal{A} / \operatorname{Rad}(\mathcal{A})$: semisimple, that is, isomorphic to a direct sum of simple algebras.
- $S_{i} \cong M\left(n_{i}, D_{i}\right)$: a full matrix
 over \mathbb{F}.

Structure of $*$-algebras

Let $*: \mathcal{A} \rightarrow \mathcal{A}$ be an involution, e.g. an anti-automorphism such that $\forall a \in \mathcal{A},\left(a^{*}\right)^{*}=a$. By Albert et al., we have:

- $\operatorname{Rad}(\mathcal{A})$ is invariant under $*: *$ induces an involution on $\mathcal{A} / \operatorname{Rad}(\mathcal{A})$.
- Recall that $S_{i} \cong M\left(n_{i}, D_{i}\right)$.

1. (Exchange type) $S_{i}^{*}=S_{j}, i \neq j$. Then $S_{i} \cong S_{j}$, and $(a, b)^{*}=(b, a)$, $(a, b) \in S_{i} \oplus S_{j}$.
2. (Classical type) $S_{i}^{*}=S_{i}$. There is a classical form $F \in M\left(n_{i}, D_{i}\right)$, such that $A^{*}=F^{-1} A^{t} F$.

