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The ϵ-symmetrization problem for
matrix tuples



ϵ-symmetrizable matrix tuples

• F is of characteristic ̸= 2 and large enough.
• Mn(F): the linear space of n × n matrices.
• A matrix space is a linear subspace of Mn(F).

• ϵ ∈ {1,−1}. An n × n matrix A is ϵ-symmetric, if At = ϵA.
• Sϵ

n(F): the linear space of n × n ϵ-symmetric matrices.
• GLn(F): the general linear group of degree n.
• Mn(F)m: the linear space of m-tuples of n × n matrices.

Definition
A⃗ = (A1, . . . ,Am) ∈ Mn(F)m is ϵ-symmetrizable, if
∃C,D ∈ GLn(F), such that every CAiD is ϵ-symmetric.
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The ϵ-symmetrization problem and polynomial identity testing

Recall: given A⃗ = (A1, . . . ,Am) ∈ Mn(F)m, decide whether
∃C,D ∈ GLn(F), such that every CAiD is ϵ-symmetric.

1. Enough to search for E ∈ GLn(F), such that every EAi is
ϵ-symmetric.

• As D−tCAi = D−t(CAiD)D−1 is also ϵ-symmetric.

2. Let L(A⃗) := {E ∈ M(n,F) : EAi = ϵAt
i Et}. Then L(A⃗) is a

matrix space.
3. The problem reduces to decide whether L(A⃗) contains a

full-rank matrix. This is an instance of the symbolic
determinant identity testing (SDIT) problem.

• As F is large enough, this problem admits a randomized
efficient algorithm.
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Main result

Theorem
There exists a deterministic efficient algorithm that:

• Given n × n matrices A1, . . . ,Am;
• Decide whether there exist invertible matrices C,D, such that

every CAiD is ϵ-symmetric.

• Inspired by the ∗-algebra technique [Wilson’09] and the
module isomoprhism techniques [Chistov-Ivanyos-Karpinski’97,
Brooksbank-Luks’08, Ivanyos-Karpinski-Saxena’10].

• Our original motivation was from understanding singularity
witnesses for matrix spaces beyond shrunk subspaces.
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Motivation: singularity witnesses for
singular matrix spaces



Singularity witnesses for singular matrix spaces

• By Kabanets-Impagliazzo, putting SDIT in NP already implies
strong arithmetic circuit lower bounds.

• This amounts to finding small witnesses responsible for the
singularity of a singularity matrix space.

The non-commutative rank problem is concerned about one type
of singularity witnesses, namely shrunk subspaces.

• U ≤ Fn is a shrunk subspace for A ≤ Mn(F)m, if
dim(A(U)) < dim(U), where A(U) = ⟨∪A∈AA(U)⟩.

Matrix tuples with shrunk subspaces are the points in the nullcone
of the left-right action by SLn(F)× SLn(F) on Mn(F)m [King,BD].

• Mulmuley conjectured that this problem could be put in P in
GCT 5. Now it admits deterministic polynomial-time
algorithms by [GGOW, IQS].
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Singularity witnesses: shrunk subspaces are not enough

There are singular matrix spaces without shrunk subspaces:
consider the space of 3 × 3 skew-symmetric matrices. That is, the
analogue of Hall’s marriage theorem does not hold.
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Singularity witnesses beyond shrunk subspaces

Two classical examples from [Eisenbud-Harris, Lovász, Atkinson]:

1. Subspaces of the space of odd-size skew-symmetric matrices.
2. Skew-symmetric induced matrix spaces.

• Given n × n skew-symmetric matrices A1, . . . ,An, for i ∈ [n],
construct Bi = [A1ei, . . . ,Anei], ei the ith standard basis vector.

• Then B = ⟨B1, . . . ,Bn⟩ is singular: B = α1B1 + · · ·+αnBn has
(α1, . . . , αn) in the left kernel.

…and those spaces equivalent to them.

Corollary
Given B = ⟨B1, . . . ,Bm⟩ ≤ Mn(F), there exists a deterministic
efficient algorithm that decides whether B is equivalent to either
a subspace of a skew-symmetric matrix space, or a
skew-symmetric induced matrix space.
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Tackling the ϵ-symmetrization
problem



The strategy

Given A⃗ = (A1, . . . ,Am) ∈ Mn(F)m, decide whether there is a
full-rank matrix in Lϵ(A⃗) = {D ∈ Mn(F) : ∀i,DtAi = ϵAt

i D}.

Compute a linear basis of Lϵ(A⃗). Given D ∈ Lϵ(A⃗), we want to

• either conclude that D is of maximal rank;
• or find another D′ ∈ Lϵ(A⃗) of higher rank.

One simple rank increasing setting is the following.

• If C,D ∈ Mℓ(F), C(ker(D)) ̸⊆ im(D).
• Then rk(C + λD) > rk(D) for all but at most ℓ λ ∈ F.

Essentially, we will show that, if D is not of maximal rank, then
any linear basis of Lϵ(A⃗) contains a matrix that can be used as C.
…But not in the usual action!
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The adjoint algebra of an ϵ-symmetric matrix tuple

Let A⃗ = (A1, . . . ,Am) ∈ Sϵ
n(F)m. We assume that A⃗ is

non-degenerate, e.g. the common kernel of Ai’s is trivial, and the
union of images of Ai’s spans the full space.

Definition
Let A⃗ = (A1, . . . ,Am) ∈ Sϵ

n(F)m. The adjoint algebra of A⃗ is

Adj(A⃗) = {D ∈ Mn(F) : ∃!C ∈ Mn(F),∀i,CtAi = AiD} ⊆ Mn(F).

Adj(A⃗) admits an anti-automorphism ∗ of order 2, i.e. D∗ = C.

Algebras with anti-automorphisms of order 2 are termed as
involutive algebras or ∗-algebras.

• Consider the transpose on Mn(F).
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The ∗-symmetric elements of the adjoint algebra

Recall that for A⃗ ∈ Sϵ
n(F)m, we defined the adjoint algebra Adj(A⃗).

Definition
The linear space of ∗-symmetric elements in Adj(A⃗) is

Sym∗(A⃗) = {D ∈ Adj(A⃗) : D∗ = D}
= {D ∈ Mn(F) : ∀i,DtAi = AiD}.

Recall that for A⃗ ∈ Mn(F)m, we defined

Lϵ(A⃗) = {D ∈ Mn(F) : ∀i,DtAi = ϵAt
i D}.

So for A⃗ ∈ Sϵ
n(F), Lϵ(A⃗) = Sym∗(A⃗).

10



The ∗-symmetric elements of the adjoint algebra

Recall that for A⃗ ∈ Sϵ
n(F)m, we defined the adjoint algebra Adj(A⃗).

Definition
The linear space of ∗-symmetric elements in Adj(A⃗) is

Sym∗(A⃗) = {D ∈ Adj(A⃗) : D∗ = D}
= {D ∈ Mn(F) : ∀i,DtAi = AiD}.

Recall that for A⃗ ∈ Mn(F)m, we defined

Lϵ(A⃗) = {D ∈ Mn(F) : ∀i,DtAi = ϵAt
i D}.

So for A⃗ ∈ Sϵ
n(F), Lϵ(A⃗) = Sym∗(A⃗).

10



The key lemma

Let A⃗ ∈ Sϵ
n(F)m, D ∈ Sym∗(A⃗) ⊆ Adj(A⃗), and dim(Adj(A⃗)) = ℓ.

Key idea
Consider D’s action on Adj(A⃗), e.g. D sends E ∈ Adj(A⃗) to DE.

• As a vector space, Adj(A⃗) ∼= Fℓ, so D̃ ∈ Mℓ(F).
• ker(D̃) = Annr(D), the space of right annihilators of D.
• im(D̃) = DAdj(A⃗), the right ideal generated by D.
• D is full-rank if and only if D̃ is full-rank.

Lemma (Key lemma)
If Adj(A⃗) is semisimple, then for any non-full-rank D ∈ Sym∗(A⃗),
there exists C ∈ Sym∗(A) s.t. C(Annr(D)) ̸⊆ DAdj(A⃗).

In other words, C̃(ker(D̃)) ̸⊆ im(D̃). (Simple rank increasing!)
And any linear basis of Sym∗(A⃗) contains (at least) one such C.

11



The key lemma

Let A⃗ ∈ Sϵ
n(F)m, D ∈ Sym∗(A⃗) ⊆ Adj(A⃗), and dim(Adj(A⃗)) = ℓ.

Key idea
Consider D’s action on Adj(A⃗), e.g. D sends E ∈ Adj(A⃗) to DE.
• As a vector space, Adj(A⃗) ∼= Fℓ, so D̃ ∈ Mℓ(F).
• ker(D̃) = Annr(D), the space of right annihilators of D.
• im(D̃) = DAdj(A⃗), the right ideal generated by D.
• D is full-rank if and only if D̃ is full-rank.

Lemma (Key lemma)
If Adj(A⃗) is semisimple, then for any non-full-rank D ∈ Sym∗(A⃗),
there exists C ∈ Sym∗(A) s.t. C(Annr(D)) ̸⊆ DAdj(A⃗).

In other words, C̃(ker(D̃)) ̸⊆ im(D̃). (Simple rank increasing!)
And any linear basis of Sym∗(A⃗) contains (at least) one such C.

11



The key lemma

Let A⃗ ∈ Sϵ
n(F)m, D ∈ Sym∗(A⃗) ⊆ Adj(A⃗), and dim(Adj(A⃗)) = ℓ.

Key idea
Consider D’s action on Adj(A⃗), e.g. D sends E ∈ Adj(A⃗) to DE.
• As a vector space, Adj(A⃗) ∼= Fℓ, so D̃ ∈ Mℓ(F).
• ker(D̃) = Annr(D), the space of right annihilators of D.
• im(D̃) = DAdj(A⃗), the right ideal generated by D.
• D is full-rank if and only if D̃ is full-rank.

Lemma (Key lemma)
If Adj(A⃗) is semisimple, then for any non-full-rank D ∈ Sym∗(A⃗),
there exists C ∈ Sym∗(A) s.t. C(Annr(D)) ̸⊆ DAdj(A⃗).

In other words, C̃(ker(D̃)) ̸⊆ im(D̃). (Simple rank increasing!)
And any linear basis of Sym∗(A⃗) contains (at least) one such C.

11



The algorithm: without a mask

Suppose A⃗ ∈ Sϵ
n(F)m. Let C1, . . . ,Ck be a basis of Sym∗(A⃗). Let

F = {λ1, . . . , λℓ+1} ⊆ F, where ℓ = dim(Adj(A⃗)).

If Adj(A⃗) is semisimple, for a non-full-rank D ∈ Sym∗(A⃗), we can
choose D′ = Ci + λjD s.t. dim((Ci + λjD)Adj(A⃗)) is larger than
dim(DAdj(A⃗)).

When Adj(A⃗) is not semisimple, but Rad(Adj(A⃗)) is efficiently
computable, the same strategy works after modulo the radical.

• This new assumption holds for fields of characteristic 0
[Dickson] and finite fields [Rónyai].
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The algorithm: with a mask

• Given A⃗ ∈ Mn(F)m, A⃗ = EB⃗ for some B⃗ ∈ Sϵ
n(F)m and

E ∈ GLn(F).
• Let D ∈ Lϵ(A⃗). D = D′E−1 for some D′ ∈ Lϵ(B⃗) = Sym∗(B⃗).
• Goal: compute D′Adj(B⃗).

• Adj(A⃗) = Adj(B⃗) because of the non-degeneracy condition
and the projection to the second component.

• Ct(EAi) = (EAi)D if and only if (EtCE−t)Ai = AiD.
• DLϵ(ϵA⃗t) = D′Lϵ(B⃗).

• Lϵ(ϵA⃗t) = Lϵ(ϵ(EB⃗)t) = Lϵ(ϵB⃗tEt) = Lϵ(B⃗Et) = ELϵ(B⃗).
• DLϵ(ϵA⃗t)Adj(A⃗) = D′Lϵ(B⃗)Adj(B⃗) = D′Adj(B⃗).

This means that we can work with D′Adj(B⃗) without knowing the
mask E!
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Concluding remarks



Concluding remarks

We also have algorithms when

• F is large enough without computing the radical;
• F is small.

Open questions:

• characteristic 2 fields?
• More examples of singular matrix spaces with no shrunk

subspaces?
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Structure of algebras

Let A be a finite dimensional associative algebra over F. By
Wedderburn et al., we have:

• Rad(A): the radical, e.g. the
largest nilpotent ideal.

• A/Rad(A): semisimple, that is,
isomorphic to a direct sum of
simple algebras.

• Si ∼= M(ni,Di): a full matrix
algebra over Di, a division algebra
over F.
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Structure of ∗-algebras

Let ∗ : A → A be an involution, e.g. an anti-automorphism such
that ∀a ∈ A, (a∗)∗ = a. By Albert et al., we have:

• Rad(A) is invariant under ∗: ∗
induces an involution on A/Rad(A).

• Recall that Si ∼= M(ni,Di).
1. (Exchange type) S∗

i = Sj, i ̸= j.
Then Si ∼= Sj, and (a, b)∗ = (b, a),
(a, b) ∈ Si ⊕ Sj.

2. (Classical type) S∗
i = Si. There is

a classical form F ∈ M(ni,Di),
such that A∗ = F−1AtF.

16


	The -symmetrization problem for matrix tuples
	Motivation: singularity witnesses for singular matrix spaces
	Tackling the -symmetrization problem
	Concluding remarks

