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Prehistory

Linial, Samorodnitsky, W 2000 Cool algorithm
Discovered many times before

Kruithof 1937 in telephone forecasting,
Deming-Stephan 1940 in transportation science,
Brown 1959 in engineering,

Wilkinson 1959 in numerical analysis,
Friedlander 1961, Sinkhorn 1964 in statistics.

Stone 1964 in economics,



Matrix Scaling algorithm

A non-negative matrix. Try making it doubly stochastic.

Alternating scaling rows and columns




Matrix Scaling algorithm

A non-negative matrix. Try making it doubly stochastic.

Alternating scaling rows and columns 1/3 | 1/3 | 1/3

1/2 | 1/2 0




Matrix Scaling algorithm

A non-negative matrix. Try making it doubly stochastic.

Alternating scaling rows and columns

2/11 | 2/5

3/11 | 3/5

6/11 0




Matrix Scaling algorithm

A non-negative matrix. Try making it doubly stochastic.

Alternating scaling rows and columns

10/87 ]| 22/87 | 55/87

15/48 | 33/48 0




Matrix Scaling algorithm

A non-negative matrix. Try making it doubly stochastic.

Alternating scaling rows and columns

Converges (fast) iff Per(A) >0
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Linear actions of groups

Group G acts linearly on vector space IV (= F%).
Action: Matrix-Vector multiplication reductive.

rational.

M:G — GL(V) (dxd matrices) group homomorphism.
M,:V -V  invertible linear map V g € G.

My 4, = My My, and M;; = id.

Ex1 G = S, actsonlV = C" by permuting coordinates.
M, (X1, ., Xx,) = (xg(l), ...,xg(n)).

Ex2 G = GL,(C)actsonV = M, (C) by conjugation.
My, X =AXA™1Y  (d =n? > nvariables).




Objects of study

Group G acts linearly on vector space V = €%), and
also on polynomials C[V ]| = C[x4, ..., x4]

* Invariant polynomials: under action of
p s.t. p(Mgv) =p(v)forallge G, velv.

* Orbits: Orbit of vector v, O, =. {Mgv : g € G}

* Orbit-closures: An orbit O, may not be closed.
Take its closure in Euclidean topology.

0, =cl {Mgv : g € G}.



Example 1

G =S, actsonV = C" by permuting coordinates.

M, (xq, ., %) — (xg(l), ...,xa(n)).
* Invariants: symmetric polynomials.

* Orbits: x, v in same orbit iff they are of same type.
VvceC, |{i:x; =c}| = |{i:y; = c}l.

* Orbit-closures: same as orbits.



Example 2

G =GL,(C)actsonV =M, (C) = c’ by conjugation.
My X = AXA™L.

e Invariants: trace of powers: tr(X?").

* Orbits: Characterized by Jordan normal form.

* Orbit-closures: differ from orbits.

1. Oy # Oy iff X is not diagonalizable.

2. Oy and Oy intersect iff X, Y have the same eigenvalues.



Orbits and orbit-closures in TCS

* Graph isomorphism: Whether orbits of two graphs the same.
Group action: permuting the vertices.

* Border rank: Whether a tensor lies in the orbit-closure of the

diagonal unit 3-tensor. | : Matrix Multi exponent]
Group action: Natural action of GL,,(C)XGL,,(C)XGL,,(C).

* PIT Does an nxXn symbolic determinant on m variables vanish?
Group action: Natural action of GL,,(C)XGL,,(C)XGL,,(C).
* Property testing: Graphs — Group action: Symmetric group,
Codes - Group action: Affine group
* Arithmetic circuits: The VP vs VNP question via GCT program:
Whether permanent lies in the orbit-closure of the determinant.

Group action = Reductions : Action on polynomials induced by
linear transformation on variables.



Invariant ring

Group G acts linearly on vector space V.
C[V]%: ring of invariant polynomials.

[Hilbert 1890, 93]: C[V]¢ is finitely generated !

Nullstellansatz, Finite Basis Theorem etc. proved in these papers
as “lemmas”! Also origin of Grobner Basis Algorithm

1. G =S5, actsonV = C" by permuting coordinates.
C[V1% generated by elementary symmetric polynomials.

2. G =GL,(C)actsonV = M, (C) by conjugation.
C[V]¢ generated by tr(X!), 1<i<n. ‘

[Derksen 2000]: C[V]¢ is generated by degree exp(n)



Computational invariant theory

Highly algorithmic field. e
Algorithms sought and well developed. -

Polynomial eq sys solving, ideal bases, 1‘,!3;’:?;',‘.2‘?.,‘20,,
comp algebra, FFT, MM via groups,... ‘~ -

N

Main problems:

* Describe all invariants (generators, relations).
 Simpler: degree bounds for generating set.

* [somorphism/Word problem: When are two objects the “same”?
Orbit intersection.

Orbit-closure intersection.

Noether normalization, Mulmuley’s GCTS5,...

Orbit-closure containment.

Simpler: null cone. When is an object “like” 0? Is 0 € 0,?

e W e



Geometric invariant theory (GIT)

Planet nine,




Null cone Captures many interesting questions.

Group G acts linearly on vector space V.
Null cone: Vectors v s.t. O lies in the orbit-closure of v.
N (V) ={v: 0€ 0,}.
Sequence of group elements gy, ..., gk, ... s.t. lim M, v = 0.

k—o0

Problem: Given v € I/, decide if it is in the null cone.
Optimization/Analytic: Is inf |[[M v|[ =07
geG

Algebraic:[Hilbert 1893; Mumford 1965]: v in null cone iff
p(v) = 0 for all homogeneous invariant polynomials p.
* One direction clear (polynomials are continuous).
* Other direction uses Nullstellansatz and algebraic geometry.
analytic & algebraic
optimization & complexity



Example 1

G = S, actson VV = C" by permuting coordinates.

Ma(xl, ...,Xn) — (xO'(l)' ...,Xo-(n)).
Null cone = {0}.

No closures ( same for all finite group actions).



Example 2

G = GL,(C)actsonV = M, (C) by conjugation.
My X =AXA™L

* Invariants: generated by tr(Xi).

* Null cone: nilpotent matrices.



Example 3

G =SL,(C)XSL,(C)actsonV = M, (C)
by left-right multiplication.
M(A,B) X = AXB.

* Invariants: generated by Det(X).

* Null cone: Singular matrices.



e N N
Matrix Scaling

A X B

ST,,: group of nxXn diagonal matrices with determinant 1.
G = ST, XST,, actsonV = M,,(C) by left-right multiplication.
M(A,B) X = AXB.

* Invariants: generated by matchings X1 51)X2,5(2) ** Xn,o(n)-
* Null cone & Per(X)=0

* Ay isinnull cone & H has no perfect matching.

11111
11010
110 1|1




Example 5: I:I I:I
Operator Scaling A B
X

G = SL,(C)XSL,(C)actsonV = M, (C)P™
by simultaneous left-right multiplication.

Mapy (X1, o Xm) = (AX1B, ...,AXmB)..

* Invariants [DW 00, DZ 01, SdB 01]: generated by Det(};; D; ® X;).
* Null cone & Non-commutative singularity of symbolic matrices.
< Non-commutative rational identity testing & ...

[GGOW 16, 1QS 16]: Deterministic polynomial time algorithms.

[DM 16]: Polynomial degree bounds on generators.



Example 6: Linear programming

G = T,: (Abelian!) group of nxXn diagonal matrices.
V: Laurent polynomials. g € V (poly w/some exponents negative).
(: actson VV by scaling variables. t €T,, t=diag(t,...,t,).

My q(xq, ..., X)) = q(t1X1, oo, tnXp).

q = Yaeq Cax™.  supp (q) = {a € Q:cq # O}
Null cone & Linear Programming
g not in null cone < 0 € conv{supp(q)}. (=Newton polytope (q))

In non-Abelian groups, the null cone (membership) problem is a
non-commutative analogue of Linear Programming.



GIT: computational perspective

What is complexity of null cone membership?
GIT putsitin NP N coNP (morally).

* Hilbert-Mumford criterion:
how to certify membership in null cone.
* Kempf-Ness theorem:
how to certify non-membership in null cone.

Many mathematical characterizations have this flavor.

Begs for complexity theoretic quantification
(e.g proof complexity approach to Nullstellensatz, Positivstellensatz...)



Hilbert-Mumford

Group G acts linearly on vector space I/.

How to certify v € N, (V') (null cone)?

Sequence of group elements g4, ..., gk, -
such that  lim M, v = 0.

k—oo

Compact description of the sequence?
Given by one-parameter subgroups.

[Hilbert 1893; Mumford 1965]: v € N (I/) iff 3 one-
parameter subgroup A: C* — G s.t. lim;_,y M) v = 0.



One-parameter subgroups

One-parameter subgroup: Group homomorphism A: C* — G.
Also this map is algebraic.

cG=C": AMt)=t% a€elZ.
G =T, =(C)"™ At) = diag(t®, ..., t%), a;€Z.
(G = ST,;: A(t) = diag(t“l, .., tn), a; € Z, Zi a; =0,

*G = GL,: A(t) = S diag(t™, ...,t")S™ 1, S € GL,, ,a; € Z.
(Abelian, up to a basis change S )



Example: Matrix Scaling & Perfect Matching

G = ST, XST, (ST,,: nXn diagonal matrices with det 1)
actsonl/ = M, (X an nXn matrix)
M(A,B) X = AXB.

X innullcone < 3 aq,...,a,, by, ...,b, € Z:

2 a; = Zj bj =0

st.a;+b; >0 vV (i,j) € supp(X).
& Supp(X) has no perfect matching (Hall’s theorem)

Supp(X) = {(i,)) € [n]x[n]: X; ; # 0} (adjacency matrix of X)

1-parameter subgroups: A(t) = ((t“l, o, t9), (01 ...,tbn))
Cli,bj SA Ziai — Zjb] = 0.
A(t) sendsXto0 < a;+b; >0 V(i,j) €supp(X)



Kempf-Ness

Group G acts linearly on vector space V.
How to certify v is not in null cone?

Algebraic: Exhibit invariant polynomial p s.t. p(v) # 0.
Typically doubly exponential time...

Invariants hard to find, high degree, high complexity etc.

Analytic: Kempf-Ness provides a more efficient way.



An optimization perspective (+ duality!)

Finding minimal norm elements in orbit-closures!

Group G acts linearly on vector space V. v 0

_ 2
cap(v) = érel(f?”Mg UHZ' argmin = v*

cap(v) =0 < v € Null cone

cap(v) >0 < v & Null cone
o u(v) =0 Ue moment map (gradient)

< v can be scaled”

Minimizing . is a dual optimization problem.




Moment map

Group G acts linearly on vector space V.

Moment map Us(v): gradient of ||Mg v||z at g = id.

How much norm of v decreases by infinitesimal action near id.

Ue (v): alinear function (like the familiar gradient),
on a linear space called the Lie algebra of the group G.

U can be defined in more general contexts.
Moment - momentum.

Fundamental in symplectic geometry and physics.

Minimizing us(v)=0 (finding us(v™)=0) isascaling problem!




Example 1: Matrix Scaling

G = ST, XST,; actson V' = M,,. Mgy X = AXB.

Consider only w: 2 w() =0

J

A(s) = diagexp(s q1),  B(s) = diag exp(s q3)
Directional derivative: action of (A(S), B(s))on X,s =0.
ue(X) = (p1,p2), 2ip1(D) = 2;p2() =0 st

d 2
(P1,q1) + (D2, q2) = — [”M(A,B) X”F”szo

= (r0.q0) + (e 02)

= (rx —al,qq) + (cx — al,qy)

.uG(X)z(rX_alicX_al)l (a=<rX11>=<CX)1>)
Ty, Cx vectors of row and column €5 norms of X.
Scaling = Minimizing us(X) = DS G-scaling Y of the matrix X.



Example 2: Scaling polynomials

T,,: (Abelian!) group of nxXn diagonal matrices.

V: Laurent polynomials  (with negative exponents).

(: actson VV by scaling variables. t €T,, t=diag(t,,...,t,).
My q(xq, ..., X)) = q(t1X1, «oe) EnXp).

T(s)= diagexp(sw),w € R"
Directional derivative: action of T(s) on g, s = 0.
uc(q) =u, u€R"st.

(ww) = |[Mroall,|| _ = (grad a(1), w)

Uuc(gq) = grad g(1) (the usual gradient)

q = YaeqCax” q = Zaeﬂlcalzxa

Scaling = Minimizing 1 (q) = finding extrema of §



Kempf-Ness

Group G acts linearly on vector space V.

[Kempf, Ness 79]: v not in null cone iff there exist a
non-zero w in orbit-closure of v s.t. uz(w) = 0.
w certifies v not in null cone.

Easy direction.

* v not in null cone. Take w vector of minimal norm in the
orbit-closure of v. W non-zero.

* w minimal norm in its orbit. = Norm does not decrease by
infinitesimal action around id. = u; (w) = 0.

* global minimum = /ocal minimum.



Kempf-Ness

Hard direction: local minimum = global minimum.
Some “convexity”.

* Commutative group actions — Euclidean convexity .
(change of variables) [exercise].

* Non-commutative group actions: geodesic convexity.



Example: Matrix Scaling

G =S5T,XST,,actsonV = M,,.
M(A,B)X — AXB

[Hilbert-Mumford]: X in null cone iff bipartite graph defined
by supp(X) does not have a perfect matching.

[Kempf-Ness]: X notin null cone &
& non-zero Y in orbit-closure s.t. u;(Y) =0 &
< X is scalable to ""Doubly Stochasticz

Matrix scaling theorem [Rothblum, Schneider 89].



Moment polytopes



Moment polytopes

Group G acts linearly on vector space V.

A= {all gradients} = {ucs(w): w €V}
A,={all gradients in the orbit closure of v} = {us(w) : w € 0,}

[Atiyah, Hilbert, Mumford]: All “such” are convex polytopes
( u; needs to be normalized, standardized)

Uniform Scaling: Given v,does 0 € A,?  (null cone problem)
Non-uniform Scaling: Givenv €V, v, does r € A,?

We have algorithms!
Polyhedral combinatorics!!



Non-uniform matrix scaling

C1 Cn
(r, c): probability distributions over {1, ..., n}. )
1
Non-negative n X n matrix X.
Scaling of X with row sums r, ..., 1, : Y = AXB

and column sums ¢4, ..., C,,?
Ay={(r,c): r=Y1,c=Y"1).

T

[...; Rothblum, Schneider 89]: Ay convex polytope!
Membership: Linear programming

Ay ={(r,c):3 Z,supp(Z) € supp(X), Z marginals (r,c)}.
Commutative group actions: classical marginal problems.
Also related to maximum entropy distributions.



Quantum marginals

Pure quantum state [)s <. (d quantum systems): Y isa d -tensor

Underlying group action: Products of GL’s on d —tensors.
(“local” basis changes in each system)

Characterize marginals ps , ..., ps, (marginal states on systems)?

Only the spectra of ps, matter (local rotations for free).

* Collection of such spectra A, convex polytope!

* Follows from theory of moment polytopes.
* [BFGOWW 18]: Membership via

non-uniform tensor scaling.




More examples of moment polytopes

Schur-Horn: A nXn symmetric matrix.

A,= {diag(B) : B similarto A } £ R"
Horn: A= {(A4,Ag,Ac): A+ B =C} € R3"
Brascamp-Lieb: Feasibility of analytic inequalities

Newton: g = Y 4eqCax® € C|x4, ..., X,], homogeneous polynomial

Ag= convia:a € O} € R"

Edmonds: M, M’ matroids on [n] (over the Reals).
Ap = conv{ 1g: S basis for M, M'} € R™



Algorithms: membership in moment polytopes

Group G acts linearly on vector space I/.
veEV & A, € R" moment polytope.

Non-uniform scaling: Givenv €V ,r € R"*, ¢>0
does r € A,
or e—far from A,

For general settings we have efficient:

- Alternating minimization: convergence poly(1/¢)
- Geodesic optimization: convergence polylog(1/¢)



Conclusions & Open problems



Summary: Invariant Theory + ToC

Lots of similar type questions, notions, results

* Algorithms are important, sought and discovered

* Has both an algebraic and analytic nature

* Quantitative, with many asymptotic notions

e Studies families of objects

* Needs comp theory structure, reductions, completeness
 Symmetry is becoming more central in ToC



Summary: Conseguences

New efficient algorithmic techniques, solving classes of:
- non-convex optimization problems

- systems of quadratic equations

- linear programs of exponential size

Applicable (or potentially applicable) in:

- Derandomization (PIT)

- Analysis (Brascamp-Lieb inequalities)

- Non-commutative algebra (word problem)

- Quantum information theory (distillation, marginals, SLOCC)
- Representation theory (asymptotic Kronecker coefficients)

- Operator theory (Paulsen problem)

- Combinatorial optimization (moment polytopes)



Open problems

- PITinP?
- Is PIT a null cone problem?

- Polynomial time algorithms for
1. Null cone membership.

2. Moment polytopes membership, separation,
optimization.

- Extend algorithmic theory to group actions on
algebraic varieties, Riemannian/symplectic manifolds



Learn more?

EATCS survey [Garg,Oliveira]

https://arxiv.org/abs/1808.09669

My CCC’17 tutorial:
http://www.computationalcomplexity.org/Archive/2017/tutorial.php
STOC 2018 tutorial:
https://staff.fnwi.uva.nl/m.walter/focs2018scaling/

A week of tutorials:
https://www.math.ias.edu/ocit2018

Mathematics and Computation
New book on my website


https://arxiv.org/abs/1808.09669
http://www.computationalcomplexity.org/Archive/2017/tutorial.php
https://staff.fnwi.uva.nl/m.walter/focs2018scaling/
https://www.math.ias.edu/ocit2018

