
Efficient Reductions for  
k-Nearest Neighbor Search

Rasmus Pagh 
BARC and IT University of Copenhagen  

Workshop on Sublinear Algorithms  
and Nearest Neighbor Search

 
Simons Institute for Theory of Computing  

November 29, 2018

06/02/2017, 08.30

Page 1 of 1file:///Users/pagh/Downloads/potrace-1.13.mac-x86_64/barc.svg

1101101010001001010100010101100101111

0000010010001

010001

010001

Joint work with Tobias Christiani and Mikkel Thorup

SCALABLE
SIMILARITY
SEARCH

Nearest neighbor search

 2

P = {x1, …, xn }

Nearest neighbor search

 2

q

P = {x1, …, xn }

Nearest neighbor search

 2

q
NN(q)

P = {x1, …, xn }

radius r

Nearest neighbor search

 2

q
NN(q)

✗
P = {x1, …, xn }

k-nearest neighbor search

 3

q
kNN(q)

k=2

P = {x1, …, xn }

Some application areas

 4

• Association rule mining
• Automation
• Bio-chemistry (finding motifs)
• Bio-informatics (homology

search)
• Clustering
• Computer vision and pattern

recognition
• Databases
• Data cleaning
• Data stream computation
• Data privacy
• First story detection (with

application to Twitter)

• Identifying trends in time
series

• Linear algebra
• Motion planning for robots
• Near-duplicate detection
• News personalization

(collaborative filtering)
• Privacy preserving data

mining
• Search engines for 3D models
• Sensor networks
• …

Some application areas

 4

Hardness of NN search
•[Williams ’04], [Alman & Williams ’15]:  
NN search on P ⊆ {0,1}d in time n0.99 2o(d) with
preprocessing time poly(n) 2o(d) ⟹  

k-SAT w. n variables can be solved in time cn, c < 2

 5

Hardness of NN search
•[Williams ’04], [Alman & Williams ’15]:  
NN search on P ⊆ {0,1}d in time n0.99 2o(d) with
preprocessing time poly(n) 2o(d) ⟹  

k-SAT w. n variables can be solved in time cn, c < 2

 5

Under strong exponential time
hypothesis, this is not possible!

Hardness of NN search
•[Williams ’04], [Alman & Williams ’15]:  
NN search on P ⊆ {0,1}d in time n0.99 2o(d) with
preprocessing time poly(n) 2o(d) ⟹  

k-SAT w. n variables can be solved in time cn, c < 2

 5

Under strong exponential time
hypothesis, this is not possible!

In practice: “Curse of dimensionality”

makes NN search slow in high dimension.

Approximate nearest neighbor

 6

Approximate nearest neighbor

 6

r

cr

Approximate nearest neighbor

 6

r

cr

Approximate nearest neighbor

 6

c-approximate NN
(return any one)

r

cr

Approximate nearest neighbor

 6

c-approximate NN
(return any one)

Time n ρ(c) and space n 1+ ρ(c), ρ(c) < 1 for c > 1

r

 7

Approximate NN in practice

an
n-

be
nc

hm
ar

ks
.co

m

http://ann-benchmarks.com

 7

Recall = fraction of nearest
neighbors found for set of queries

Approximate NN in practice

an
n-

be
nc

hm
ar

ks
.co

m

http://ann-benchmarks.com

 7

Recall = fraction of nearest
neighbors found for set of queries

Approximate NN in practice

an
n-

be
nc

hm
ar

ks
.co

m

Achieving a given recall
is an empirical task

http://ann-benchmarks.com

NN recall guarantee?

 8

Black-box reduction: Choose c small enough to
distinguish nearest neighbor from other points.

NN recall guarantee?

 8

Black-box reduction: Choose c small enough to
distinguish nearest neighbor from other points.

NN recall guarantee?

 8

c-approximate NN  
= nearest neighbor

Black-box reduction: Choose c small enough to
distinguish nearest neighbor from other points.

 9

Black-box reduction does not
distinguish easy and hard cases

easy hard

NN recall guarantee?

LSH with multi-probing

• Building block: Linear space data structure (a hash table) that
allows us to retrieve xi with probability pi.

• Let p1 = retrieval probability of nearest neighbor

 10

[Panigrahy ’06, Lv et al. ‘07]

LSH with multi-probing

• Building block: Linear space data structure (a hash table) that
allows us to retrieve xi with probability pi.

• Let p1 = retrieval probability of nearest neighbor

• Expected cost

 10

[Panigrahy ’06, Lv et al. ‘07]

O (K + T + ∑
i

pi) Parameters K, T

LSH with multi-probing

• Building block: Linear space data structure (a hash table) that
allows us to retrieve xi with probability pi.

• Let p1 = retrieval probability of nearest neighbor

• Expected cost

• Repeat independently L times; fails to find NN with probability

 10

[Panigrahy ’06, Lv et al. ‘07]

O (K + T + ∑
i

pi)
(1 − p1)L

Parameters K, T

LSH with multi-probing

• Building block: Linear space data structure (a hash table) that
allows us to retrieve xi with probability pi.

• Let p1 = retrieval probability of nearest neighbor

• Expected cost

• Repeat independently L times; fails to find NN with probability

 10

[Panigrahy ’06, Lv et al. ‘07]

O (K + T + ∑
i

pi)
(1 − p1)L

Parameters K, T

Need L ≈ ln(1/!)/p1 for expected recall 1-!

From FALCONN documentation

From FALCONN documentation

From FALCONN documentation

Achieving a given recall using
LSH methods is an empirical task

From FALCONN documentation

Achieving a given recall using
LSH methods is an empirical task

In theory: “Only polylog n different parameter choices”

Adaptive stopping
Idea:
• Suppose that after searching t hash tables the nearest neighbor

retrieved so far is x*.
• Let p* denote the probability that x* is retrieved in a hash table.
• If t > ln(1/!)/p* then stop and return x*.

 12

[Dong et al. ’08]

Adaptive stopping
Idea:
• Suppose that after searching t hash tables the nearest neighbor

retrieved so far is x*.
• Let p* denote the probability that x* is retrieved in a hash table.
• If t > ln(1/!)/p* then stop and return x*.

 12

[Dong et al. ’08]

Yields expected recall 1-! if the nearest

neighbor has the largest retrieval probability

Adaptive stopping
Idea:
• Suppose that after searching t hash tables the nearest neighbor

retrieved so far is x*.
• Let p* denote the probability that x* is retrieved in a hash table.
• If t > ln(1/!)/p* then stop and return x*.

 12

[Dong et al. ’08]

Yields expected recall 1-! if the nearest

neighbor has the largest retrieval probability

Issue: Need way of computing p*.

Abstract view

 13

q

Abstract view

 13

q

Abstract view

 13

q

β

Abstract view

 13

q

β

Abstract view

 13

q

β

Abstract view

 13

q

β

Abstract view

 13

q
β

Abstract view

 13

q
β

Abstract view

 13

q
β

Abstract view

 13

q
β

Abstract view

 13

q
β

How can we know if β is likely to

be the nearest neighbor?

Abstract view

 13

q
β

How can we know if β is likely to

be the nearest neighbor?

Confirmation sampling
• Notation: Repetition i produces one nearest

neighbor candidate yi, independently for each i.

• Let βi be the nearest neighbor of q in Yi = {y1,…,yi}.

 14

Confirmation sampling
• Notation: Repetition i produces one nearest

neighbor candidate yi, independently for each i.

• Let βi be the nearest neighbor of q in Yi = {y1,…,yi}.

• Stop after repetition i if βi appears t+1 times in Yi.

 14

Confirmation sampling
• Notation: Repetition i produces one nearest

neighbor candidate yi, independently for each i.

• Let βi be the nearest neighbor of q in Yi = {y1,…,yi}.

• Stop after repetition i if βi appears t+1 times in Yi.

 14

NN candidate
is “confirmed”

t times

Confirmation sampling
• Notation: Repetition i produces one nearest

neighbor candidate yi, independently for each i.

• Let βi be the nearest neighbor of q in Yi = {y1,…,yi}.

• Stop after repetition i if βi appears t+1 times in Yi.

 14

NN candidate
is “confirmed”

t times
Claim: If nearest neighbor is most likely

to be a candidate, the probability of

returning a different point is at most 2-t.

 15

Confirmation sampling
t = 1

 15

Confirmation sampling
t = 1

q

 15

Confirmation sampling

y

t = 1

q

 15

Confirmation sampling

y

t = 1

β

q

 15

Confirmation sampling

y

t = 1

β

q

 15

Confirmation sampling

y

t = 1

β

q

 15

Confirmation sampling

y

t = 1

β

q

 15

Confirmation sampling

y

t = 1

β

q

 15

Confirmation sampling

y

t = 1

β
q

 15

Confirmation sampling

y

t = 1

β
q

 15

Confirmation sampling

y

t = 1

β
q

Confirmation:  
Return β

Why confirmation sampling works

• Suppose x1 is the nearest neighbor.

• For i > 1, if yi = βi-1 but yi ≠ x1 we say step i is a false confirmation.

 16

Why confirmation sampling works

• Suppose x1 is the nearest neighbor.

• For i > 1, if yi = βi-1 but yi ≠ x1 we say step i is a false confirmation.

• Consider the first t steps where we either sample x1 or produce
a false confirmation:

- If sampling x1 is more likely than sampling βi-1 ≠ x1, the
probability of false confirmation is at most 1/2 in each step.

- Probability of t false confirmations is at most 2-t.

 16

Abstract confirmation sampling

Application to nearest neighbor

• Finding the nearest neighbor quickly boils down to
minimizing the product of the expected time for
querying Di and 1/p1.

Application to nearest neighbor

• Finding the nearest neighbor quickly boils down to
minimizing the product of the expected time for
querying Di and 1/p1.

• Question: Can this be done optimally without
knowledge of the distance to the nearest neighbor?

Application to nearest neighbor

Partial answer for LSH forest

 20

Partial answer for LSH forest

 20

Tree = recursive
space partitioning

Partial answer for LSH forest

 20

Standard query algorithm: Search level where number of points in q’s space partition is O(1) on average.

Tree = recursive
space partitioning

Partial answer for LSH forest

 20

Standard query algorithm: Search level where number of points in q’s space partition is O(1) on average.

Tree = recursive
space partitioning

Works if number of trees is high enough, depending on distance to nearest neighbor.

Partial answer for LSH forest

 21

Tree = recursive
space partitioning

Partial answer for LSH forest

 21

Modified query algorithm: Search higher levels until

confirmation search says we found the nearest neighbor.

Tree = recursive
space partitioning

Partial answer for LSH forest

 21

Modified query algorithm: Search higher levels until

confirmation search says we found the nearest neighbor.

Tree = recursive
space partitioning

Partial answer for LSH forest

 21

Modified query algorithm: Search higher levels until

confirmation search says we found the nearest neighbor.

Tree = recursive
space partitioning

Partial answer for LSH forest

 22

Modified query algorithm: Search higher levels until

confirmation search says we found the nearest neighbor.

Tree = recursive
space partitioning

Also consider partially searching a level.

Partial answer for LSH forest

 22

Modified query algorithm: Search higher levels until

confirmation search says we found the nearest neighbor.

Tree = recursive
space partitioning

Also consider partially searching a level.

Competitive with best way of

searching LSH forest for given query

Open question

• Is it possible to achieve space and time
that is O(1)-competitive with the best LSH
scheme, adapted to the query and to the data
distribution, for a given expected recall?

 23

