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Some application areas

Association rule mining
Automation

Bio-chemistry (finding motifs)
Bio-informatics (homology
search)

Clustering

Computer vision and pattern
recognition

Databases

Data cleaning

Data stream computation
Data privacy

First story detection (with
application to Twitter)

Identifying trends in time
series

Linear algebra

Motion planning for robots
Near-duplicate detection
News personalization
(collaborative filtering)
Privacy preserving data
mining

Search engines for 3D models
Sensor networks



Hardness of NN search
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NN search on P c {0,1}" in time n%% 2°@) with
preprocessing time poly(n) 2°¥ =

k-SAT w. n variables can be solved in time ¢", c < 2

Under strong exponential time
hypothesis, this is not possible!



Hardness of NN search

o [Williams ’04], | Alman & Williams "15]:
NN search on P c {0,11% in time n%% 2°4) with
preprocessing time poly(n) 2°¢9) =

k-SAT w. n variables can be solved in time ¢”, ¢ <2




Approximate nearest neighbor
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Approximate nearest neighbor

Approximate nearest neighbors: towards removing the curse of dimensionality 3794 1998

P Indyk, R Motwani
| Proceedings of the thirtieth annual ACM symposium on Theory of computing ...

— _ - = —— = — e =

Time »”9 and space n' 1, p(c) < 1 for ¢ > 1
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° c-approximate NN
= nearest neighbor
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LSH with multi-probing

* Building block: Linear space data structure (a hash table) that

allows us to retrieve x; with probability p;.

* Let p1 = retrieval probability of nearest neighbor
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From FALCONN documentation

1 ilyaraz #1 @ Judwigschmidt #2

. 152 commits 165,070 ++ 63,535 -- 90 commits 278,244 ++ 16,349 --

Choosing parameters

All in all, we have three parameters:

e K, the number of hash functions (space partitions) per hash table.
e |, the number of hash tables (each of which has K hash functions).

e T, the number of probes (total number of buckets probed across all hash tables).

Usually, it is a good idea to choose L first based on the available memory. Then, we have a trade-
off between K and T: the larger K is, the more probes we need to achieve a given probability of
success, and vice versa. The best way to choose K and T is usually the following parameter search:
Try increasing values of K, and for each value of K, find the right number of probes T so that we get
the desired accuracy on a set of sample queries. Varying the parameter T does not require
rebuilding the hash table (as opposed to K and L). Moreover, we can search over T using a binary
search. Usually, this means that we can find the optimal parameter setting fairly quickly.
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[Dong et al. "08]
Adaptive stopping

Idea:

« Suppose that after searching t hash tables the nearest neighbor

retrieved so far is x™.
* Let p* denote the probability that x* is retrieved in a hash table.
e If t >1In(1/6)/p” then stop and return x™.
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Confirmation sampling
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neighbor candidate y;, independently for each i.

* Let 3; be the nearest neighbor of g in Y;= {y1,...,yi}.
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Confirmation sampling

» Notation: Repetition 1 produces one nearest

neighbor candidate y;, independently for each i.
* Let 3; be the nearest neighbor of g in Y;= {ys,...,yi}

* Stop after repetition i if 3; appears t+1 times in Y;
. : .

1kely NN Canaidate
1S “confirmed”
f times

Claim: If nearest neighbor 1 most 1
to be a candidate, the probability of

returning a different pointis at most 2.

14



Confirmation sampling
e  t=1

15



Confirmation sampling
e  t=1

15



*°Yy

Confirmation sampling
e  t=1

15



Confirmation sampling
e  t=1

15



Confirmation sampling
e  t=1

15



Confirmation sampling
e  t=1

15

*°Y



Confirmation sampling
e  t=1

15



Confirmation sampling
e  t=1

15



Confirmation sampling
e  t=1

15



Confirmation sampling
e  t=1

15



Confirmation sampling
e  t=1

15



Why confirmation sampling works

 Suppose x1 is the nearest neighbor.

* For 1> 1, if y; = Bi1 but y; # x1 we say step 11s a false confirmation.
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Why confirmation sampling works

 Suppose x1 is the nearest neighbor.
* For 1> 1, if y; = Bi1 but y; # x1 we say step 11s a false confirmation.

 Consider the first t steps where we either sample x; or produce

a false confirmation:

- If sampling x1 is more likely than sampling (3i.1 = x1, the

probability of false confirmation is at most 1/2 in each step.

- Probability of f false confirmations is at most 2.
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Abstract confirmation sampling

Algorithm 1: CONFIRMATIONSAMPLING(Q, t, <)

B < 00, count <+ 0
while count < ¢t do
sample X ~ O
if X = [ then

‘ count < count + 1
else if X < 8 then
fg<+— X
count < 0

W N O Ot W NN =

return [

Ne




Algorithm 1: CONFIRMATIONSAMPLING(Q, t, <)

B < 0o, count < 0
while count < ¢t do
sample X ~ Q
if X = (3 then

| count < count + 1
else if X < 5 then
B+ X
count < 0

R NN O O b W N =

return (3

Ne

Theorem 3. Let Q denote a probability distribution with finite support S. For x1 = min(S) and
X ~ Q let py = Pr|X = x1] and let po = max{Pr|X = x| | z € S\{z1}} be the largest sampling
probability among elements of S other than x1. Then:

t
Pr{CONFIRMATIONSAMPLING(Q, t) # x1] < (1 — p1) ( P2 )
P1 + P2

The expected number of samples made by CONFIRMATIONSAMPLING 4s bounded by (t + 1)/p1.



Application to nearest neighbor

Theorem 1. Suppose there is a sequence of independent, randomized data structures Dy,Da,. ..,
such that on query q, D; returns the nearest netghbor of q in P with probability at least p, and
each other point in P with probability at most p,. Let 0 > 0 be given. There is an algorithm
that depends on 0 but not on py that on input q queries data structures Dy,...,Dj, , performs j,
distance computations, where E[j,] = O(In(1/0)/p1), and returns the nearest neighbor of q with
probability at least 1 — 9.
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Theorem 1. Suppose there is a sequence of independent, randomized data structures Dy,Da,. ..,
such that on query q, D; returns the nearest netghbor of q in P with probability at least p, and
each other point in P with probability at most p,. Let 0 > 0 be given. There is an algorithm
that depends on 0 but not on py that on input q queries data structures Dy,...,D;, , performs j,
distance computations, where E[j,] = O(In(1/0)/p1), and returns the nearest neighbor of q with
probability at least 1 — 9.

* Finding the nearest neighbor quickly boils down to

minimizing the product of the expected time for

querying 2; and 1/p.

* Question: Can this be done optimally without

knowledge of the distance to the nearest neighbor?



Partial answer for LSH forest




Partial answer for LSH forest




Partial answer for LSH forest




Partial answer for LS rest

Works if number of trees is high enough,
depending on distance to nearest neighbor.
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Open question

» s it possible to achieve space and time
that is O(1)-competitive with the best LSH
scheme, adapted to the guery and to the data

distribution, for a given expected recall?
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