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Nearest neighbor search
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• Association rule mining
• Automation
• Bio-chemistry (finding motifs)
• Bio-informatics (homology 

search)
• Clustering
• Computer vision and pattern 

recognition
• Databases
• Data cleaning
• Data stream computation
• Data privacy 
• First story detection (with 

application to Twitter)

• Identifying trends in time 
series

• Linear algebra
• Motion planning for robots
• Near-duplicate detection
• News personalization 

(collaborative filtering)
• Privacy preserving data 

mining
• Search engines for 3D models
• Sensor networks
• …

Some application areas

 4



Hardness of NN search
•[Williams ’04], [Alman & Williams ’15]:  
NN search on P ⊆ {0,1}d in time n0.99 2o(d) with 
preprocessing time poly(n) 2o(d)  ⟹  

k-SAT w. n variables can be solved in time cn, c < 2
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k-SAT w. n variables can be solved in time cn, c < 2

 5

Under strong exponential time 
hypothesis, this is not possible!

In practice: “Curse of dimensionality” 

makes NN search slow in high dimension.
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r



cr

Approximate nearest neighbor

 6

c-approximate NN
(return any one)

Time n ρ(c) and space n 1+ ρ(c), ρ(c) < 1 for c > 1

r
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Approximate NN in practice
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Recall = fraction of nearest 
neighbors found for set of queries
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Recall = fraction of nearest 
neighbors found for set of queries
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Achieving a given recall 
is an empirical task

http://ann-benchmarks.com
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c-approximate NN  
= nearest neighbor

Black-box reduction: Choose c small enough to 
distinguish nearest neighbor from other points.
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Black-box reduction does not 
distinguish easy and hard cases

easy hard

NN recall guarantee?



LSH with multi-probing

• Building block: Linear space data structure (a hash table) that 
allows us to retrieve xi with probability pi.

• Let p1 = retrieval probability of nearest neighbor
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[Panigrahy ’06, Lv et al. ‘07]

O (K + T + ∑
i

pi)
(1 − p1)L

Parameters K, T

Need L ≈ ln(1/!)/p1 for expected recall 1-!
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From FALCONN documentation

Achieving a given recall using 
LSH methods is an empirical task



From FALCONN documentation

Achieving a given recall using 
LSH methods is an empirical task

In theory: “Only polylog n different parameter choices”



Adaptive stopping
Idea: 
• Suppose that after searching t hash tables the nearest neighbor 

retrieved so far is x*.
• Let p* denote the probability that x* is retrieved in a hash table.
• If t > ln(1/!)/p* then stop and return x*.
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Adaptive stopping
Idea: 
• Suppose that after searching t hash tables the nearest neighbor 

retrieved so far is x*.
• Let p* denote the probability that x* is retrieved in a hash table.
• If t > ln(1/!)/p* then stop and return x*.

 12

[Dong et al. ’08]

Yields expected recall 1-! if the nearest 

neighbor has the largest retrieval probability

Issue: Need way of computing p*.



Abstract view

 13

q



Abstract view

 13

q



Abstract view

 13

q

β



Abstract view

 13

q

β



Abstract view

 13

q

β



Abstract view

 13

q

β



Abstract view

 13

q
β



Abstract view

 13

q
β



Abstract view

 13

q
β



Abstract view

 13

q
β



Abstract view

 13

q
β

How can we know if β is likely to 

be the nearest neighbor?



Abstract view
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β

How can we know if β is likely to 

be the nearest neighbor?



Confirmation sampling
• Notation: Repetition i produces one nearest 

neighbor candidate yi, independently for each i.

• Let βi be the nearest neighbor of q in Yi = {y1,…,yi}.
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NN candidate 
is “confirmed” 

t times
Claim: If nearest neighbor is most likely 

to be a candidate, the probability of 

returning a different point is at most 2-t.
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Confirmation sampling
t = 1
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Confirmation sampling

y

t = 1

β
q

Confirmation:  
Return β



Why confirmation sampling works

• Suppose x1 is the nearest neighbor. 

• For i > 1, if yi = βi-1 but yi ≠ x1 we say step i is a false confirmation.
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Why confirmation sampling works

• Suppose x1 is the nearest neighbor. 

• For i > 1, if yi = βi-1 but yi ≠ x1 we say step i is a false confirmation.

• Consider the first t steps where we either sample x1 or produce 
a false confirmation:

- If sampling x1 is more likely than sampling βi-1 ≠ x1, the 
probability of false confirmation is at most 1/2 in each step.

- Probability of t false confirmations is at most 2-t.
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Abstract confirmation sampling





Application to nearest neighbor



• Finding the nearest neighbor quickly boils down to 
minimizing the product of the expected time for 
querying Di and 1/p1.
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• Finding the nearest neighbor quickly boils down to 
minimizing the product of the expected time for 
querying Di and 1/p1.

• Question: Can this be done optimally without 
knowledge of the distance to the nearest neighbor?

Application to nearest neighbor
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Standard query algorithm: Search level where number of points in q’s space partition is O(1) on average.

Tree = recursive 
space partitioning

Works if number of trees is high enough, depending on distance to nearest neighbor.
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Partial answer for LSH forest
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Modified query algorithm: Search higher levels until 

confirmation search says we found the nearest neighbor.

Tree = recursive 
space partitioning

Also consider partially searching a level.

Competitive with best way of 

searching LSH forest for given query



Open question

• Is it possible to achieve space and time 
that is O(1)-competitive with the best LSH 
scheme, adapted to the query and to the data 
distribution, for a given expected recall?
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