Extremal Mechanisms in Differential Privacy

Quan Geng, Sewoong Oh, Pramod Viswanath,

University of Illinois

December 12, 2013
Information Theory and Differential Privacy

- Communication -- small error probability
- Privacy -- large error probability
Information Theory and Differential Privacy

- Communication -- multi hypothesis testing
- Privacy -- binary hypothesis testing

Designer \[\rightarrow\] Enc \[\rightarrow\] Channel \[\rightarrow\] Dec \[\rightarrow\] data

Nature

Designer

Adversary

Friday, December 27, 13
Binary Inference Errors

- Two error types
 - False Alarm and Missed Detection

- Privacy: guarantee enough error
Differential Privacy

- A specific way of enforcing inference errors
 - WZ11
- Original formulation involves likelihood ratios
 - DKMNS05
- ϵ controls privacy level

![Diagram showing the relationship between P_{FA} and P_{MD} with a shaded region indicating $e^{-\epsilon}$ and e^{ϵ} boundaries.]
Differential Privacy

• For competing hypotheses D1 and D2

\[e^{-\epsilon} \leq \frac{\Pr(K(D_1) \in S)}{\Pr(K(D_2) \in S)} \leq e^{\epsilon} \]

• Equivalently:

\[P_{MD} + e^{-\epsilon} P_{FA} \geq e^{-\epsilon} \]
\[P_{FA} + e^{-\epsilon} P_{MD} \geq e^{-\epsilon} \]

• Likelihood ratios in a bounded interval
• \(\epsilon \) small is high privacy
• \(\epsilon \) large is low privacy
Information Theory is Mature

- Shannon, 1948
 - A mathematical theory of communication

- Success
 - extremal limits
 - capacity, single-letter expressions
 - fundamental benchmarks
 - practical schemes
 - operational interpretation
 - data processing inequalities

Designer Channel Designer

data → Enc → Channel → Dec → data
This Talk

• Similar program for differential privacy
 • extremal mechanisms
 • fundamental limits
 • operational interpretation

• Results
 • Staircase mechanism
 • universally optimal noise adding mechanism
 • Optimal Composition theorems
 • Abstract Staircase mechanism
 • dominates every other privacy mechanism
State of the Art

- Noise adding mechanisms
- Real valued query
 - Laplacian noise
 - regular differential privacy
 - Gaussian noise
 - approximate differential privacy
- No exact optimality results
State of the Art

- Integer valued query
- Count queries (sensitivity is one)

- **Geometric noise added**
 - **universal optimality** in Bayesian cost minimization framework [GRS09]
 - no natural generalization
 - larger sensitivity [GS10]

- No operational interpretation
 - **Hint**: Log Likelihood ratio $\in \{-\varepsilon, +\varepsilon\}$
Staircase Mechanism

- Universally optimal noise adding mechanism
- worst case setting
- generalization of GRS09 ($\Delta = 1$)

- no operational interpretation
 - Log Likelihood ratio $\in \{-\varepsilon, 0, +\varepsilon\}$
Example Cost Functions

- Privacy mechanism involves adding noise

 \[K(D) = q(D) + X \]

- Amplitude of noise

 \[E[|X|] \hspace{1cm} L(x) = |x| \]

- Variance of noise

 \[E[X^2] \hspace{1cm} L(x) = x^2 \]

- In general any cost function

 - monotonically increasing

 - symmetric around origin

- \[\min \ E[L(X)] \]
Universal Optimality

- Theorem: Optimal Noise is Staircase shaped

(a) Laplace Mechanism

(b) Staircase Mechanism

- Geometric mixture of uniform random variables
Staircase Mechanism

- Theorem: Optimal Noise is universally Staircase shaped

- Geometric decaying
 - $\gamma \in [0, 1]$ depends on cost function
Price of Privacy

- For \(L(x) = |x| \)

- Minimum noise magnitude \(\frac{\Delta e^{-\varepsilon/2}}{1-e^{-\varepsilon/2}} \)

- Laplace noise magnitude \(\frac{\Delta}{\varepsilon} \)

- High privacy
 - gap is small

- Low privacy
 - exponential improvement

- Low privacy costs exponentially less
Price of Privacy

- For $L(x) = x^2$

- Minimum noise variance $\Theta\left(\frac{\Delta^2 e^{-2\varepsilon/3}}{(1-e^{-\varepsilon})^2}\right)$

- Laplace noise variance $\frac{\Delta^2}{\varepsilon^2}$

- High privacy
 - gap is small

- Low privacy
 - exponential improvement

- Low privacy costs exponentially less
Properties of γ^*

- Need to pick γ^*; depends on cost function

- General Properties:
 \[
 \gamma^* \rightarrow \frac{1}{2}, \quad \epsilon \rightarrow 0
 \]
 \[
 \gamma^* \rightarrow 0, \quad \epsilon \rightarrow \infty
 \]

- Log Likelihood ratio $\in \{-\epsilon, 0, +\epsilon\}$
Canonical Result

- Laplacian mechanism (and variants) widely used
 - many papers on differential privacy

- Staircase mechanism applies
 - in nearly each case
 - improves performance nearly each time
 - pronounced improvement in moderate/low privacy regimes

- Two limitations
 - intuition missing
 - generalization hard
 - data/query dependent mechanisms
FA-MD Tradeoff Curves

- Operational setting
 - binary hypothesis testing

- too complicated
- multiple query output values
Binary Query

- **Binary** output
 - Yes or No answer

- **Natural mechanism**
 - randomized response; W59

- **Potentially suboptimal** in general
 - more complicated outputs
 - 2-party distributed AND computation GMPS13
Operational Look

- Binary output
 - randomized response X
 - likelihood ratio $\in \{-\varepsilon, +\varepsilon\}$

- Exactly meets the privacy region

- Any other mechanism Y
 - only inside the triangular region

- Reverse Data Processing Theorem: B53
 - $D \perp X \perp Y$ -- Y can be simulated from X
 - Implications for GMPS13 -- distributed AND computation
Approximate Differential Privacy

- Privatized response has **four** output letters

\[
\frac{(1-\delta)e^\varepsilon}{1+e^\varepsilon}
\]

- Exactly meets the privacy region
- Any other mechanism Y
 - only inside the privacy region
 - \(D - X - Y \)
Composition Theorem

- Privacy region met exactly
 - every other mechanism can be simulated
- Optimal Composition Theorem
 - Composing k queries
 - privacy region is intersection
 - of \(((k - 2i)\varepsilon, \delta_i)\) privacy regions for i=1..k
Composition Theorem Simplified

- Optimal Composition Theorem
 - conceptually straightforward

- Can be expressed as \((\tilde{\varepsilon}, \delta)\) privacy
 - \(k\)-fold composition, each \((\varepsilon, 0)\) private

\[
\tilde{\varepsilon} \approx k\varepsilon^2 + \varepsilon \sqrt{2k \log(e + (\sqrt{k\varepsilon^2} / \delta))}
\]

- contrast with state of the art [DRV10]

\[
\tilde{\varepsilon} \approx k\varepsilon^2 + \varepsilon \sqrt{2k \log(1/\delta)}
\]

- saving of log factor
Applications of the Composition Theorem

- Order optimality
 - for many mechanisms
 - Laplace
 - Staircase
 - Gaussian

- Direct composition improves performance of Gaussian mechanism
 - sharper concentration analysis
 - chernoff bound
 - direct expression for privacy region

- Immediate applications
 - each intermediate step has less noise
Back to the Staircase Mechanism

- Ternary query output
 - each pair is neighboring
- View through the operational lens
 - three FA-MD diagrams, one for each pair

- tradeoff among the privacy regions
 - all three regions cannot meet the full triangular region
Back to the Staircase Mechanism

- Ternary query output
 - each pair is neighboring
- Tradeoff among the privacy regions

- Staircase mechanism universally dominates
- **Theorem:** Every mechanism can be simulated from the staircase mechanism
 - Special reverse data processing inequality
Summary

- Fundamental Mechanisms
 - Staircase mechanism

- Universality
 - cost framework
 - Markov chain framework

- Operational Lens
 - data processing inequalities

- Connections to statistics
 - Blackwell, LeCam
 - converse results to Neyman-Pearson
• Q. Geng and P. Viswanath,
 The Optimal Mechanism for Differential Privacy
 arxiv.org/1212.1186

• Q. Geng and P. Viswanath,
 The Optimal Mechanism for Differential Privacy: Multidimensional Setting
 arxiv.org/1312.0655

• S. Oh and P. Viswanath
 The Composition Theorem for Differential Privacy
 arxiv.org/1311.0776

• Q. Geng and P. Viswanath
 Optimal Mechanisms for Approximate Differential Privacy
 arxiv.org/1305.1330

• Acknowledgement: K Chaudhury, M Hardt and A Smith