Fast NN prediction with no Statistical tradeoff

Samory Kpotufe

ORFE, Princeton University Statistics, Columbia University

Vanilla NN prediction:

Vanilla NN prediction:

Regression:
Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in \mathbb{R}$.
Learn: $f_{k}(x)=$ average $\left(Y_{i}\right)$ of k - $\mathrm{NN}(x)$.

Reduces to regression:

Vanilla NN prediction:

Classification:
Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: $h_{k}(x)=$ majority $\left(Y_{i}\right)$ of $k-\mathrm{NN}(x)$.

Reduces to regression:

then: $h,(x)=\pi\{f,(x) \geq 1 / 2\}$

Vanilla NN prediction:

Classification:
Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: $h_{k}(x)=$ majority $\left(Y_{i}\right)$ of $k-\mathrm{NN}(x)$.

Reduces to regression: let $f_{k}(x)=\operatorname{avg}\left(Y_{i}\right)$ of k - $\mathrm{NN}(x)$
... then: $h_{k}(x) \equiv \mathbb{1}\left\{f_{k}(x) \geq 1 / 2\right\}$.
Prediction Time:
Irrespective of fast search method.

Vanilla NN prediction:

Classification:
Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: $h_{k}(x)=$ majority $\left(Y_{i}\right)$ of $k-\mathrm{NN}(x)$.

Reduces to regression: let $f_{k}(x)=\operatorname{avg}\left(Y_{i}\right)$ of k - $\mathrm{NN}(x)$
... then: $h_{k}(x) \equiv \mathbb{1}\left\{f_{k}(x) \geq 1 / 2\right\}$.
Prediction Time: at least order k,

Vanilla NN prediction:

Classification:
Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: $h_{k}(x)=$ majority $\left(Y_{i}\right)$ of $k-\mathrm{NN}(x)$.

Reduces to regression: let $f_{k}(x)=\operatorname{avg}\left(Y_{i}\right)$ of k - $\mathrm{NN}(x)$
... then: $h_{k}(x) \equiv \mathbb{1}\left\{f_{k}(x) \geq 1 / 2\right\}$.
Prediction Time: at least order k, Irrespective of fast search method.

Vanilla NN prediction:

Classification:
Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: $h_{k}(x)=$ majority $\left(Y_{i}\right)$ of $k-\mathrm{NN}(x)$.

Reduces to regression: let $f_{k}(x)=\operatorname{avg}\left(Y_{i}\right)$ of k - $\mathrm{NN}(x)$
... then: $h_{k}(x) \equiv \mathbb{1}\left\{f_{k}(x) \geq 1 / 2\right\}$.
Prediction Time: at least order k, Irrespective of fast search method.

Unfortunately, optimal accuracy requires large $k=\Omega($ root $\mathbf{o f}(n))$...

Statistical performance of k-NN:

Consider regression: $Y=f(X)+$ noise, $\operatorname{dim}(X)=d$
Suppose $f(x) \doteq \mathbb{T}[V \mid x]$ is Lipschitz:

Statistical performance of k-NN:

Consider regression: $Y=f(X)+$ noise, $\operatorname{dim}(X)=d$

Statistical performance of k-NN:

Consider regression: $Y=f(X)+$ noise, $\operatorname{dim}(X)=d$
Suppose $f(x) \doteq \mathbb{E}[Y \mid x]$ is Lipschitz:

Statistical performance of k-NN:

Consider regression: $Y=f(X)+$ noise, $\operatorname{dim}(X)=d$
Suppose $f(x) \doteq \mathbb{E}[Y \mid x]$ is Lipschitz:

$$
\mathbb{E}\left(f_{k}(X)-f(X)\right)^{2} \approx \frac{1}{k}+\left(\frac{k}{n}\right)^{2 / d}
$$

Statistical performance of k-NN:

Consider regression: $Y=f(X)+$ noise, $\operatorname{dim}(X)=d$
Suppose $f(x) \doteq \mathbb{E}[Y \mid x]$ is Lipschitz:

$$
\mathbb{E}\left(f_{k}(X)-f(X)\right)^{2} \approx \frac{1}{k}+\left(\frac{k}{n}\right)^{2 / d} \text { minimized at } k \propto n^{2 /(2+d)}
$$

Statistical performance of k-NN:

Consider regression: $Y=f(X)+$ noise, $\operatorname{dim}(X)=d$
Suppose $f(x) \doteq \mathbb{E}[Y \mid x]$ is Lipschitz:

$$
\mathbb{E}\left(f_{k}(X)-f(X)\right)^{2} \approx \frac{1}{k}+\left(\frac{k}{n}\right)^{2 / d} \text { minimized at } k \propto n^{2 /(2+d)}
$$

Same story for classification ...
So for optimal accuracy,

Statistical performance of k-NN:

Consider regression: $Y=f(X)+$ noise, $\operatorname{dim}(X)=d$
Suppose $f(x) \doteq \mathbb{E}[Y \mid x]$ is Lipschitz:

$$
\mathbb{E}\left(f_{k}(X)-f(X)\right)^{2} \approx \frac{1}{k}+\left(\frac{k}{n}\right)^{2 / d} \text { minimized at } k \propto n^{2 /(2+d)}
$$

Same story for classification ...
So for optimal accuracy, prediction time $=\Omega\left(n^{2 /(2+d)}\right)$ (Irrespective of fast proximity search)

Statistical performance of k-NN:

Consider regression: $Y=f(X)+$ noise, $\operatorname{dim}(X)=d$
Suppose $f(x) \doteq \mathbb{E}[Y \mid x]$ is Lipschitz:

$$
\mathbb{E}\left(f_{k}(X)-f(X)\right)^{2} \approx \frac{1}{k}+\left(\frac{k}{n}\right)^{2 / d} \text { minimized at } k \propto n^{2 /(2+d)}
$$

Same story for classification ...
So for optimal accuracy, prediction time $=\Omega\left(n^{2 /(2+d)}\right)$ (Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time $=O(\log n)$

Fast prediction with no tradeoff:

Data quantization or Sub-sampling + (simple Variance correction)

ϵ-NN: use all samples ϵ-close to x

1. MIN' : use the 1 closest samples to $2 x$

Fast prediction with no tradeoff:

How to achieve this:
Data quantization or Sub-sampling + (simple Variance correction)

Fast prediction with no tradeoff:

How to achieve this:
Data quantization or Sub-sampling + (simple Variance correction)

We'll consider common NN approaches:
ϵ - NN: use all samples ϵ-close to x
k-NN: use the k closest samples to x

Outline:

- NN and Data Quantization
- NN and Subsampling
- Overview and Open Questions

Quantization: reduce the data

Quantization: reduce the data

Assign $\left\{X_{i}\right\}$ to representatives $\mathbf{Q} \equiv\{q\}$
Two options: Pick k closest q 's to x or Pick all q 's in $B(x, \epsilon)$.

Quantization: reduce the data

Pick q 's in Q close to x
Two options: Pick k closest q 's to x or Pick all q 's in $B(x, \epsilon)$.

Main issues:
Size of Q... How to choose Q ... How to use Q

Quantization: reduce the data

Pick q 's in Q close to x
Two options: Pick k closest q 's to x or Pick all q 's in $B(x, \epsilon)$.

Quantization: reduce the data

$$
x
$$

$$
\text { Pick } q \text { 's in } \mathrm{Q} \text { close to } x
$$

Two options: Pick k closest q 's to x or Pick all q 's in $B(x, \epsilon)$.

Main issues:
Size of Q ... How to choose Q ... How to use Q
ϵ-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

ϵ-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Pick Q to (1) have small size, and (2) be close to $\left\{X_{i}\right\} \ldots$

ϵ-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Pick Q to (1) have small size, and (2) be close to $\left\{X_{i}\right\} \ldots$
Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.

ϵ - NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Pick Q to (1) have small size, and (2) be close to $\left\{X_{i}\right\} \ldots$
Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: $Y_{q} \equiv \operatorname{avg}\left(Y_{i}\right)$ of $\left\{X_{i} \rightarrow q\right\}$

ϵ-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Pick Q to (1) have small size, and (2) be close to $\left\{X_{i}\right\} \ldots$

$$
\begin{aligned}
& \text { Data: }\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\} . \\
& \text { Learn: } Y_{q} \equiv \operatorname{avg}\left(Y_{i}\right) \text { of }\left\{X_{i} \rightarrow q\right\} \\
& f_{\mathbf{Q}}(x)=\operatorname{avg}\left(Y_{q}\right) \text { of } q^{\prime} \sin B(x, \epsilon) \\
& h_{\mathbf{Q}}(x)=\mathbb{1}\left\{f_{\mathbf{Q}}(x) \geq 1 / 2\right\} .
\end{aligned}
$$

We'll make a few changes for the guarantees we want ..

ϵ-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Pick Q to (1) have small size, and (2) be close to $\left\{X_{i}\right\} \ldots$

$$
\begin{aligned}
& \text { Data: }\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\} . \\
& \text { Learn: } Y_{q} \equiv \operatorname{avg}\left(Y_{i}\right) \text { of }\left\{X_{i} \rightarrow q\right\} \\
& f_{\mathbf{Q}}(x)=\operatorname{avg}\left(Y_{q}\right) \text { of } q^{\prime} \sin B(x, \epsilon) \\
& h_{\mathbf{Q}}(x)=\mathbb{1}\left\{f_{\mathbf{Q}}(x) \geq 1 / 2\right\} .
\end{aligned}
$$

We'll make a few changes for the guarantees we want ..

ϵ - NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Pick Q as (1) $(\alpha \cdot \epsilon)$-packing, and (2) an $(\alpha \cdot \epsilon)$-cover of $\left\{X_{i}\right\}$.

$$
\begin{aligned}
& \text { Data: }\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\} . \\
& \text { Learn: } Y_{q} \equiv \operatorname{avg}\left(Y_{i}\right) \text { of }\left\{X_{i} \rightarrow q\right\} \\
& f_{\mathbf{Q}}(x)=\operatorname{avg}\left(Y_{q}\right) \text { of } q^{\prime} \sin B(x, \epsilon) \\
& h_{\mathbf{Q}}(x)=\mathbb{1}\left\{f_{\mathbf{Q}}(x) \geq 1 / 2\right\} .
\end{aligned}
$$

We'll make a few changes for the guarantees we want ..

ϵ - NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Pick Q as (1) $(\alpha \cdot \epsilon)$-packing, and (2) an $(\alpha \cdot \epsilon)$-cover of $\left\{X_{i}\right\}$.

$$
\begin{aligned}
& \text { Data: }\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\} . \\
& \text { Learn: } Y_{q} \equiv \operatorname{avg}\left(Y_{i}\right) \text { of }\left\{X_{i} \rightarrow q\right\} \\
& f_{\mathbf{Q}}(x)=\text { weighted avg }\left(Y_{q}\right) \text { of } q \text { 's in } B(x, \epsilon) \\
& h_{\mathbf{Q}}(x)=\mathbb{1}\left\{f_{\mathbf{Q}}(x) \geq 1 / 2\right\} .
\end{aligned}
$$

We'll make a few changes for the guarantees we want ..

Intuition: Suppose (\mathcal{X}, ρ) has doubling dimension d

Relate $f_{\mathbf{Q}}$ to ϵ - $\mathbf{N N} f_{\epsilon}$ (on n samples) \ldots Pick Q as (1) $(\alpha \cdot \epsilon)$-packing, and (2) an $(\alpha \cdot \epsilon)$-cover of $\left\{X_{i}\right\}$

Intuition: Suppose (\mathcal{X}, ρ) has doubling dimension d

Relate $f_{\mathbf{Q}}$ to ϵ-NN f_{ϵ} (on n samples) ...
Pick Q as (1) $(\alpha \cdot \epsilon)$-packing, and (2) an $(\alpha \cdot \epsilon)$-cover of $\left\{X_{i}\right\}$.

Intuition: Suppose (\mathcal{X}, ρ) has doubling dimension d

Relate $f_{\mathbf{Q}}$ to ϵ-NN f_{ϵ} (on n samples) ...
Pick Q as (1) $(\alpha \cdot \epsilon)$-packing, and (2) an $(\alpha \cdot \epsilon)$-cover of $\left\{X_{i}\right\}$.

- $\mathrm{Q} \cap B(x, \epsilon)$ is small (of size $O\left(\alpha^{-d}\right)$)

Intuition: Suppose (\mathcal{X}, ρ) has doubling dimension d

Relate $f_{\mathbf{Q}}$ to ϵ-NN f_{ϵ} (on n samples) ...
Pick Q as (1) $(\alpha \cdot \epsilon)$-packing, and (2) an $(\alpha \cdot \epsilon)$-cover of $\left\{X_{i}\right\}$.

- $\mathrm{Q} \cap B(x, \epsilon)$ is small (of size $O\left(\alpha^{-d}\right)$)
- Relevant X_{i} 's are 2ϵ-close to $x\left(\approx\right.$ bias of $\left.f_{\epsilon}\right)$

Intuition: Suppose (\mathcal{X}, ρ) has doubling dimension d

Relate $f_{\mathbf{Q}}$ to ϵ-NN f_{ϵ} (on n samples) ...
Pick Q as (1) $(\alpha \cdot \epsilon)$-packing, and (2) an $(\alpha \cdot \epsilon)$-cover of $\left\{X_{i}\right\}$.

- $\mathrm{Q} \cap B(x, \epsilon)$ is small (of size $O\left(\alpha^{-d}\right)$)
- Relevant X_{i} 's are 2ϵ-close to $x\left(\approx\right.$ bias of $\left.f_{\epsilon}\right)$

$$
f_{\mathbf{Q}}(x)=\frac{1}{\sum n_{q}} \sum_{q \in B(x, \epsilon)} n_{q} Y_{q}
$$

Intuition: Suppose (\mathcal{X}, ρ) has doubling dimension d

Relate $f_{\mathbf{Q}}$ to ϵ-NN f_{ϵ} (on n samples) ...
Pick Q as (1) $(\alpha \cdot \epsilon)$-packing, and (2) an $(\alpha \cdot \epsilon)$-cover of $\left\{X_{i}\right\}$.

- $\mathrm{Q} \cap B(x, \epsilon)$ is small (of size $O\left(\alpha^{-d}\right)$)
- Relevant X_{i} 's are 2ϵ-close to $x\left(\approx\right.$ bias of $\left.f_{\epsilon}\right)$

$$
f_{\mathbf{Q}}(x)=\frac{1}{\sum n_{q}} \sum_{q \in B(x, \epsilon)} n_{q} Y_{q}
$$

- Has variance $O\left(1 / \sum n_{q}\right)$ rather than $O\left(1 / \min n_{q}\right)$

Intuition: Suppose (\mathcal{X}, ρ) has doubling dimension d

Relate $f_{\mathbf{Q}}$ to ϵ-NN f_{ϵ} (on n samples) ...
Pick Q as (1) $(\alpha \cdot \epsilon)$-packing, and (2) an $(\alpha \cdot \epsilon)$-cover of $\left\{X_{i}\right\}$.

- $\mathrm{Q} \cap B(x, \epsilon)$ is small (of size $O\left(\alpha^{-d}\right)$)
- Relevant X_{i} 's are 2ϵ-close to $x\left(\approx\right.$ bias of $\left.f_{\epsilon}\right)$

$$
f_{\mathbf{Q}}(x)=\frac{1}{\sum n_{q}} \sum_{q \in B(x, \epsilon)} n_{q} Y_{q}
$$

- Has variance $O\left(1 / \sum n_{q}\right)$ rather than $O\left(1 / \min n_{q}\right)$

Argue that $\left.\sum n_{q}>\mid\left\{X_{i}\right\} \cap B(x,(1-\alpha) \epsilon)\right) \mid\left(\approx \operatorname{Var}\right.$ of $\left.f_{(1-\alpha) \epsilon}\right)$

Guarantees: [Kpo., Verma, 17]

Assume a fast-range search procedure for $\mathrm{Q} \cap B(x, \epsilon) \ldots$

Theorem.

- $f_{Q}\left(\right.$ or $\left.h_{Q}\right)$ can be computed in time $O\left(\log (n)+a^{-d}\right)$.

Guarantees: [Kpo., Verma, 17]

Assume a fast-range search procedure for $\mathrm{Q} \cap B(x, \epsilon) \ldots$

Theorem. For appropriate choice of ϵ :

Guarantees: [Kpo., Verma, 17]

Assume a fast-range search procedure for $\mathrm{Q} \cap B(x, \epsilon) \ldots$

Theorem. For appropriate choice of ϵ :

- $f_{Q}\left(\right.$ or $\left.h_{Q}\right)$ can be computed in time $O\left(\log (n)+\alpha^{-d}\right)$.

Guarantees: [Kpo., Verma, 17]

Assume a fast-range search procedure for $\mathrm{Q} \cap B(x, \epsilon) \ldots$

Theorem. For appropriate choice of ϵ :

- $f_{Q}\left(\right.$ or $\left.h_{Q}\right)$ can be computed in time $O\left(\log (n)+\alpha^{-d}\right)$.
- The excess risk of $f_{Q}\left(\right.$ or $\left.h_{Q}\right)$ is of optimal order $n^{-1 /(2+d)}$.

Table: $\frac{\epsilon \text {-NN Error }}{\text { Quantization Error }}$ vS $\frac{\epsilon \text {-NN Time }}{\text { Quantization Time }}$

Datasets	SARCOS (42k)	CT Slices (51k)	MiniBooNE (128k)
$\alpha=1 / 6$	$0.99-2.03$	$0.93-1.29$	$0.99-1.17$
$\alpha=2 / 6$	$\mathbf{0 . 9 9 - 4 . 1 0}$	$0.92-2.04$	$0.99-1.65$
$\alpha=3 / 6$	$\mathbf{0 . 9 8} \mathbf{- 6 . 3 1}$	$\mathbf{0 . 9 1}-\mathbf{3 . 1 7}$	$\mathbf{0 . 9 9 - 4 . 0 5}$
$\alpha=4 / 6$	$\mathbf{0 . 9 6} \mathbf{- 7 . 7 0}$	$\mathbf{0 . 9 1}-\mathbf{5 . 4 0}$	$\mathbf{0 . 9 8} \mathbf{- 6 . 4 2}$
$\alpha=5 / 6$	$0.89-9.26$	$0.85-11.94$	$\mathbf{0 . 9 4} \mathbf{- 8 . 8 3}$
$\alpha=6 / 6$	$0.77-10.14$	$0.43-15.33$	$0.88-10.22$

As $\alpha \nearrow$, Error of $f_{\mathbf{Q}} \nearrow$, but Prediction Time \searrow

Main downside of Quantization:
Computing Q can be $O\left(n^{2}\right)$.

Also, it's unclear how to choose Q for k-NN rather than ϵ-NN

Main downside of Quantization:

Computing Q can be $O\left(n^{2}\right)$.

Also, it's unclear how to choose Q for k-NN rather than ϵ-NN ...

Outline:

- NN and Data Quantization
- NN and Subsampling
- Overview and Open Questions

Subsampling: reduce data and parallelize

Subsampling: reduce data and parallelize

Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: N subsamples $\left\{S_{t}\right\}$ of size $m \ll n$

Subsampling: reduce data and parallelize

Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: N subsamples $\left\{S_{t}\right\}$ of size $m \ll n$

Subsampling: reduce data and parallelize

Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: N subsamples $\left\{S_{t}\right\}$ of size $m \ll n$
$Y_{t}(x) \leftarrow Y$-value of 1-NN (x) in S_{t}
$h_{N, m}(x)=$ majority $\left(Y_{t}\right)$ over $\left\{S_{t}\right\}$

Subsampling: reduce data and parallelize

Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: N subsamples $\left\{S_{t}\right\}$ of size $m \ll n$
$Y_{t}(x) \leftarrow Y$-value of 1-NN (x) in S_{t}
$h_{N, m}(x)=$ majority $\left(Y_{t}\right)$ over $\left\{S_{t}\right\}$

Desired N, m [Biau et al. 2010] [Samworth 2010]:

Subsampling: reduce data and parallelize

Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: N subsamples $\left\{S_{t}\right\}$ of size $m \ll n$
$Y_{t}(x) \leftarrow Y$-value of 1-NN (x) in S_{t}
$h_{N, m}(x)=$ majority $\left(Y_{t}\right)$ over $\left\{S_{t}\right\}$

Desired N, m [Biau et al. 2010] [Samworth 2010]:

- Large $N \Longrightarrow$ reduce variance.

Subsampling: reduce data and parallelize

Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: N subsamples $\left\{S_{t}\right\}$ of size $m \ll n$
$Y_{t}(x) \leftarrow Y$-value of 1-NN (x) in S_{t}
$h_{N, m}(x)=$ majority $\left(Y_{t}\right)$ over $\left\{S_{t}\right\}$

Desired N, m [Biau et al. 2010] [Samworth 2010]:

- Large $N \Longrightarrow$ reduce variance.
- Tradeoff on m :

Subsampling: reduce data and parallelize

Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: N subsamples $\left\{S_{t}\right\}$ of size $m \ll n$
$Y_{t}(x) \leftarrow Y$-value of 1-NN (x) in S_{t}
$h_{N, m}(x)=$ majority $\left(Y_{t}\right)$ over $\left\{S_{t}\right\}$

Desired N, m [Biau et al. 2010] [Samworth 2010]:

- Large $N \Longrightarrow$ reduce variance.
- Tradeoff on m : small $m \Longrightarrow$ richer $\left\{S_{t}\right\}$, but more variance.

Subsampling: reduce data and parallelize

Data: $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}, Y \in\{0,1\}$.
Learn: N subsamples $\left\{S_{t}\right\}$ of size $m \ll n$
$Y_{t}(x) \leftarrow Y$-value of 1-NN (x) in S_{t}
$h_{N, m}(x)=$ majority $\left(Y_{t}\right)$ over $\left\{S_{t}\right\}$

Desired N, m [Biau et al. 2010] [Samworth 2010]:

- Large $N \Longrightarrow$ reduce variance.
- Tradeoff on m : small $m \Longrightarrow$ richer $\left\{S_{t}\right\}$, but more variance.

Optimal choice: $m=\Omega\left(n^{d /(2+d)}\right) \Longrightarrow$ ratio $m / n \xrightarrow{n \rightarrow \infty} 0$.

Rule of Thumb: Pick $(m / n) \approx 10 \%$ (often most accurate).

Rule of Thumb: Pick $(m / n) \approx 10 \%$ (often most accurate).
2 to 8 times speedup over k-NN prediction time

But can we get accuracy \approx that of k-NN?

We want high accuracy for small N : Correct the variance in each subsample

But can we get accuracy \approx that of k-NN?
[Biau et al. 2010] [Samworth 2010]: Yes, as $N \rightarrow \infty$

We want high accuracy for small N :
Correct the variance in each subsample Variant (subNN): replace all Y_{i} by $h_{k}\left(X_{i}\right)$

But can we get accuracy \approx that of k-NN?
[Biau et al. 2010] [Samworth 2010]: Yes, as $N \rightarrow \infty$

We want high accuracy for small N :
Correct the variance in each subsample ...

But can we get accuracy \approx that of k-NN?
[Biau et al. 2010] [Samworth 2010]: Yes, as $N \rightarrow \infty$

We want high accuracy for small N :
Correct the variance in each subsample ...

Variant (subNN): replace all Y_{i} by $h_{k}\left(X_{i}\right)$
[Xue, Kpo., 17]

Error is now close to that of k-NN while maintaining 2-8 times speedup.

Guarantees for subNN:

Suppose P_{X} is doubling (i.e., $P_{X}(B(x, r)) \gtrsim r^{d}$), and $E[Y \mid x]$ is Lipschitz

Guarantees for subNN:

Suppose P_{X} is doubling (i.e., $\left.P_{X}(B(x, r)) \gtrsim r^{d}\right)$, and $E[Y \mid x]$ is Lipschitz
Theorem. For a good choice of $k=k(n)$,

- Parallel computation time is no more than that of (fast) $1-\mathrm{NN}$

Guarantees for subNN:

Suppose P_{X} is doubling (i.e., $\left.P_{X}(B(x, r)) \gtrsim r^{d}\right)$, and $E[Y \mid x]$ is Lipschitz
Theorem. For a good choice of $k=k(n)$,

- Parallel computation time is no more than that of (fast) 1-NN
- The Excess Error is at most $\mathrm{OPT}_{k}(n)+m^{-1 / d}$

Guarantees for subNN:

Suppose P_{X} is doubling (i.e., $\left.P_{X}(B(x, r)) \gtrsim r^{d}\right)$, and $E[Y \mid x]$ is Lipschitz
Theorem. For a good choice of $k=k(n)$,

- Parallel computation time is no more than that of (fast) $1-\mathrm{NN}$
- The Excess Error is at most $\mathrm{OPT}_{k}(n)+m^{-1 / d}$

$$
\text { OPT } m=\operatorname{root}(n) \text { and we can let } m / n \rightarrow 0 \text {. }
$$

Guarantees for subNN:

Suppose P_{X} is doubling (i.e., $P_{X}(B(x, r)) \gtrsim r^{d}$), and $E[Y \mid x]$ is Lipschitz
Theorem. For a good choice of $k=k(n)$,

- Parallel computation time is no more than that of (fast) $1-\mathrm{NN}$
- The Excess Error is at most $\mathrm{OPT}_{k}(n)+m^{-1 / d}$

$$
\text { OPT } m=\operatorname{root}(n) \text { and we can let } m / n \rightarrow 0 \text {. }
$$

Intuition: let $N=1$, and $S(x) \doteq \mathrm{NN}(x)$ in subsample S,

$$
h_{\text {sub }}(x) \leftarrow h_{k}(S(x))
$$

Guarantees for subNN:

Suppose P_{X} is doubling (i.e., $P_{X}(B(x, r)) \gtrsim r^{d}$), and $E[Y \mid x]$ is Lipschitz
Theorem. For a good choice of $k=k(n)$,

- Parallel computation time is no more than that of (fast) $1-\mathrm{NN}$
- The Excess Error is at most $\mathrm{OPT}_{k}(n)+m^{-1 / d}$

$$
\text { OPT } m=\operatorname{root}(n) \text { and we can let } m / n \rightarrow 0 \text {. }
$$

Intuition: let $N=1$, and $S(x) \doteq \mathrm{NN}(x)$ in subsample S,

$$
\begin{aligned}
& h_{\text {sub }}(x) \leftarrow h_{k}(S(x)) \text { now } \\
h_{k}(S(x)) \approx & h^{*}(S(x))
\end{aligned}
$$

Guarantees for subNN:

Suppose P_{X} is doubling (i.e., $P_{X}(B(x, r)) \gtrsim r^{d}$), and $E[Y \mid x]$ is Lipschitz
Theorem. For a good choice of $k=k(n)$,

- Parallel computation time is no more than that of (fast) $1-\mathrm{NN}$
- The Excess Error is at most $\mathrm{OPT}_{k}(n)+m^{-1 / d}$

$$
\text { OPT } m=\operatorname{root}(n) \text { and we can let } m / n \rightarrow 0 \text {. }
$$

Intuition: let $N=1$, and $S(x) \doteq \mathrm{NN}(x)$ in subsample S,

$$
\begin{gathered}
h_{\text {sub }}(x) \leftarrow h_{k}(S(x)) \text { now } \\
h_{k}(S(x)) \approx h^{*}(S(x)) \approx h^{*}(x)+\operatorname{distance}(x, S(x))
\end{gathered}
$$

Outline:

- NN and Data Quantization
- NN and Subsampling
- Overview and Open Questions

So it's possible to get accuracy \approx OPT-NN, in the time of 1-NN

Various open questions:

Integrating all the data structures

So it's possible to get accuracy \approx OPT-NN, in the time of 1-NN

Various open questions:

Integrating all the data structures
Taking Y into account in Quantization or Subsampling distribution

So it's possible to get accuracy \approx OPT-NN, in the time of 1-NN

Various open questions:

- Integrating all the data structures

Taking Y into account in Quantization or Subsampling distribution Maintaining accuracy of related methods (e.g. SVMs)

So it's possible to get accuracy \approx OPT-NN, in the time of 1-NN

Various open questions:

- Integrating all the data structures
- Taking Y into account in Quantization or Subsampling distribution - Maintaining accuracy of related methods (e.g. SVMs)

So it's possible to get accuracy \approx OPT-NN, in the time of 1-NN

Various open questions:

- Integrating all the data structures
- Taking Y into account in Quantization or Subsampling distribution
- Maintaining accuracy of related methods (e.g. SVMs)

So it's possible to get accuracy \approx OPT-NN, in the time of $1-\mathrm{NN}$

Various open questions:

- Integrating all the data structures
- Taking Y into account in Quantization or Subsampling distribution
- Maintaining accuracy of related methods (e.g. SVMs)

Thanks

