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Vanilla NN prediction:

Reduces to regression: let fk(x) = avg (Yi) of k-NN(x)

... then: hk(x) ≡ 1{fk(x) ≥ 1/2}.

Prediction Time: at least order k,

Irrespective of fast search method.

Unfortunately, optimal accuracy requires large k = Ω(root of(n)) ...
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Statistical performance of k-NN:

Consider regression: Y = f(X) + noise, dim(X) = d

Suppose f(x)
.
= E[Y |x] is Lipschitz:

E (fk(X)− f(X))2 ≈ 1

k
+

(
k

n

)2/d

minimized at k ∝ n2/(2+d)

Same story for classification ...

So for optimal accuracy, prediction time = Ω(n2/(2+d))
(Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time = O(log n)
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Fast prediction with no tradeoff:

How to achieve this:

Data quantization or Sub-sampling + (simple Variance correction)

We’ll consider common NN approaches:

ε-NN: use all samples ε-close to x

k-NN: use the k closest samples to x
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Outline:

• NN and Data Quantization

• NN and Subsampling

• Overview and Open Questions
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Quantization: reduce the data

{Xi}ni=1

Two options: Pick k closest q’s to x or Pick all q’s in B(x, ε).

Main issues:

Size of Q ... How to choose Q ... How to use Q
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ε-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Data: {(Xi, Yi)}ni=1, Y ∈ {0, 1}.

Learn: Yq ≡ avg (Yi) of {Xi → q}

We’ll make a few changes for the guarantees we want ..
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ε-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]
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ε-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Pick Q as (1) (α · ε)-packing, and (2) an (α · ε)-cover of {Xi}.

Data: {(Xi, Yi)}ni=1, Y ∈ {0, 1}.
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Intuition: Suppose (X , ρ) has doubling dimension d

Relate fQ to ε-NN fε (on n samples) ...

Pick Q as (1) (α · ε)-packing, and (2) an (α · ε)-cover of {Xi}.

fQ(x) =
1∑
nq

∑
q∈B(x,ε)

nqYq

- Has variance O(1/
∑
nq) rather than O(1/minnq)

Argue that
∑
nq > |{Xi} ∩B(x, (1− α)ε))| (≈ Var of f(1−α)ε)
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Guarantees: [Kpo., Verma, 17]

Assume a fast-range search procedure for Q ∩B(x, ε) ...

Theorem. For appropriate choice of ε:

- fQ (or hQ) can be computed in time O(log(n) + α−d).

- The excess risk of fQ (or hQ) is of optimal order n−1/(2+d).
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Table: ε-NN Error
Quantization Error vs ε-NN Time

Quantization Time

Datasets SARCOS (42k) CT Slices (51k) MiniBooNE (128k)

α = 1/6 0.99 - 2.03 0.93 - 1.29 0.99 - 1.17

α = 2/6 0.99 - 4.10 0.92 - 2.04 0.99 - 1.65

α = 3/6 0.98 - 6.31 0.91 - 3.17 0.99 - 4.05
α = 4/6 0.96 - 7.70 0.91 - 5.40 0.98 - 6.42
α = 5/6 0.89 - 9.26 0.85 - 11.94 0.94 - 8.83
α = 6/6 0.77 - 10.14 0.43 - 15.33 0.88 - 10.22

As α↗, Error of fQ ↗, but Prediction Time ↘
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Main downside of Quantization:

Computing Q can be O(n2).

Also, it’s unclear how to choose Q for k-NN rather than ε-NN ...
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Subsampling: reduce data and parallelize

Data: {(Xi, Yi)}ni=1, Y ∈ {0, 1}.

Learn: N subsamples {St} of size m� n

Yt(x)← Y -value of 1-NN(x) in St

hN,m(x) = majority (Yt) over {St}

Desired N,m [Biau et al. 2010] [Samworth 2010]:

- Large N =⇒ reduce variance.

- Tradeoff on m: small m =⇒ richer {St}, but more variance.

Optimal choice: m = Ω(nd/(2+d)) =⇒ ratio m/n
n→∞−−−→ 0.
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Optimal choice: m = Ω(nd/(2+d)) =⇒ ratio m/n
n→∞−−−→ 0.
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Rule of Thumb: Pick (m/n) ≈ 10% (often most accurate).

2 to 8 times speedup over k-NN prediction time
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But can we get accuracy ≈ that of k-NN?

[Biau et al. 2010] [Samworth 2010]: Yes, as N →∞

We want high accuracy for small N :

Correct the variance in each subsample ...

Variant (subNN): replace all Yi by hk(Xi)
[Xue, Kpo., 17]
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Error is now close to that of k-NN while maintaining 2-8 times speedup.
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Guarantees for subNN:

Suppose PX is doubling (i.e., PX(B(x, r)) & rd), and E[Y |x] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN

- The Excess Error is at most OPTk(n) +m−1/d

OPT m = root(n) and we can let m/n→ 0.

Intuition: let N = 1, and S(x)
.
= NN(x) in subsample S,

hsub(x)← hk(S(x)) now

hk(S(x)) ≈ h∗(S(x))≈h∗(x) + distance(x, S(x))
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Outline:

• NN and Data Quantization

• NN and Subsampling

• Overview and Open Questions
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So it’s possible to get accuracy ≈ OPT-NN, in the time of 1-NN

Various open questions:

- Integrating all the data structures

- Taking Y into account in Quantization or Subsampling distribution

- Maintaining accuracy of related methods (e.g. SVMs)

...

Thanks
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