Sublinear time local
access random generators

Amartya Shankha Biswas (MIT)
Ronitt Rubinfeld (MIT and TAU)
Anak Yodpinyanee (MIT)

. 4 \ ¥, g) | ' . (13
(..) ...0':-. . ' ' .
A\ . " ..\.\.‘r.-.
v 0 .0..»...,.".“
AN 1A
WS ! .
a .\o. . .
. 0.5

jects
on the fly?

Locally

O
O ¢
-
O ¢
el
C |
(O
—
ol
o0
> |
L

AT

Generating large random graph

1 2 3 4 5 6 7 8 9 10
1 0 1 0 0
2 O 1 0 0O 1 1
310 O O 0 O 0O 0 1
411 1 O 0 0O 1
5 o 0o 0 o 1 1
6 0 1 0
710 0o O 0 1
8 1 0 1 0
9 i 0
10 1 0

Generate “on
the fly”?

What if required to
be symmetric? d-
regular? support
“next-neighbor”

gueries?

A challenge:
How to handle dependencies?

Sources of dependencies:

Model, supported queries,...

Some prior work

Implementation of Huge Random Objects

* Huge pseudorandom functions/permutations/balls-in-bins [Goldreich-
Goldwasser-Micali’86][Luby-Rackoff ‘88][Naor-Reingold '97][Mansour-Rubinstein-
Vardi-Xie '12]

* Model introduced and formalized in [Goldreich-Goldwasser-Nussboim 2003]
* Generators for random functions, codes, graphs,...
* Give important primitives

e e.g. Sampling from binomial distribution, interval-sum queries for functions (see
also [Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss 2002])

* Generators provide (limited) queries to random graphs with specified property
* e.g. Planted Hamiltonian cycle

* Focus on indistinguishable (under small number of queries and poly time) and
truthful implementations (more on this by [Naor Nussboim Tromer 05] [Alon
Nussboim 07])

Implementations of random G(n,p) graphs
[Goldreich Goldwasser Nussboim 03]

* Graphs generated:

e Have a specific property e.g.,
colorability, cligue, connectedness,
bipartiteness

* Queries:
* Adjacency
* Up to polylog queries

Implementation | of sparse G(n,p) graph
[GGN]

* Graphs generated:
* Degree at most polylog
* Indistiguishable from uniform ok, A
distribution for few queries e e

.....

* Queries:
* Adjacency, all-neighbor
* Up to polylog queries

Implementation Il of sparse G(n,p) graph
[INaor-Nussboim 2007]

* Graphs generated:
* Degree at most polylog

* Queries:
* Adjacency, all-neighbor

* Bound on number stated in paper, but
not necessary in some settings

,,,,,

Implementations of Barabasi-Albert Preferential
Attachment Graphs [Even-Levi-Medina-Rosen 2017]

* Graphs generated:

. el gy
» essentially a rooted tree/forest structure * e .."’_. o 8% =i
: . it N2
* Highly sequential random process s : g W e
* Sparse, but degree not bounded o :.8 = .o', P
e Queries: SO BRI

* Adjacency

* Introduce next-neighbor query (impleme
polylog(n) resources)

Give local implementation
* No bound on number without reconstructing full

history!!

Models

Two models for random generation of graphs

Huge random graphs/objects Big random graphs/objects
[Goldreich Goldwasser [Even Levi Medina Rosen]
Nussboim] * Big = poly size
* Huge = exponential size * Might eventually write down
e User will not query more the whole graph, but don’t
than poly locations want to pay cost up-front
* In some versions, sufficient to * End result should be random
generate graph that “looks” according to the claimed
random to poly time process
algorithm

“On-the-fly” Sampler

(Adapted from [Even-Levi-Medina-Rosen 2017])

< Random bits > — , __Query
(Zeineri’alon ==) Random Object Standard
orithm R i
<Mode| Parameters — 5 paradigm

(in memory)

response

< Random bits >) ~ | query _ ~ “on-the-
Generation * Queries reveal partial)y~

Algorithm - - :
<Mode| Parameters |) ® response information sampler

11

Random Object
(in memory)

Eventually, entire object sampled,
stored in memory

Desiderata:

e Efficiency:

* Answer queries in polylogarithmic time
* Succinct Representation

Error from
implementation
issues

e Consistency over future queries:
e Can store past decisions
* eventually give complete valid sample

* Distribution equivalence:
e Output distribution is e-close (in £;-distance) to goal distribution

* Not considered today:
e pseudo-random distributions (indistinguishable from goal distribution, or preserving properties)
* bounds on number of queries
* Very succinct representation

Possible queries:

* Vertex-pair (adjacency): Is edge (u,v) present? considered by

* All-Neighbors: What are all neighbors of u? [GGN] [NN]
* Degree: What is degree(u)?
 ith neighbor: What is ith neighbor of u? considered by

* Next-neighbor: What is next neighbor of u? _ [Even Levi Medina
Rosen 2017]

 Random-neighbor: Output random neighbor of u?

~

can take random
walk in large
degree graph!

today

New Generators

Today’s Goal:
Graph models supporting typical graph queries

G(n,p)
Community structure: Stochastic Block Model

Small world graphs

G(n,p) graphs

Vertex-pair query:
Is there an edge from u to v?

1 2 3 4 5 6 7 8 9 10
1 0 1 0 0
2 O 1 0 0O 1 1
310 O o o0 O O 0 1
411 1 O 0 0O 1
5 o 0o 0 o 1 1
6 0 1 0
710 0 0 0 1
8 1 0 1 0
9 1 0
10 1 0

Generate “on the
fly”?
toss coins as
needed

All-neighbor queries for sparse G(n,p):
Implementation adapted from [NNO7]

* Edges defined via “Ports”:
* For each node, pick “ports”: "1" (green)
* Ports matched to others on the fly: indicated via edge
(red)
* Two equivalent processes:

* Pick number of edges for each u and sum to get total
edges

* Picking total number of edges and dividing among u’s

- Compute u’s locations using locally computable
interval-summable functions [GGIKMS 02]

o 00 N o U B2 W N = O

[GGNO3][NNO7]
(0)
e Given an “all neighbor” query vertex (6), match its ports to
* 68— other unmatched ports
0 * Match each port to random open position in degree

sequence

Next-Neighbor Query:

neighbor?

Dense case: p = 1/poly(logn)

e Algorithm:
 Start at last found neighbor

* Go down row, flipping coins to fill
empty entries, until find neighbor.

* Time O(1/p).

Can we do o(1/p) for
p=o0(1)?

what is u’s next

Sparse case: p < poly(logn)/n
* Algorithm: Use “all neighbor” query [Naor
Nussboim 07]

 Time O(E|degree]) = O(polylog n)

: 1
Intermediate case: (e.g. p = %

* |dea: Sample “length of O’s run”
according to hypergeometric
distribution p(1 — p)*

* Challenge: some entries already filled
in!

Skip-sampling for next-neighbor queries:
The case of directed graphs

Algorithm idea:
Pick length of O0-run according to hypergeometric distribution (via binary search on CDF):

is 'p(1-pF =1-(1-p)
Fill in next entry (/ j+k) with a 1

some are
determined
by other
neighbor?

Skip-sampling for next-n les:

Undirected graphs

column
J

mwi010001???0?\//|/0?1

Tow i 0 1 0 0 0 1 0 0

yields
correct
distribution?

Algorithm idea:
Pick length of O-run according to hypergeometric distribution:

is 'p(1-pk =1-(1-p)
Fill in next entry (1 _[+k) with a 1

need to write
all Os?

Implementation of next neighbor queries:
(assume no adjacency queries)

* For each node i maintain:
1. last seen neighborj (row entries 1..j are determined, and jis a “1”)
2. list of “1”s coming before j (everything else is “0”)
3. remaining“1”s via min-heap
4. Keep track of “0”s on row implicitly

Only keep track of 1's

column

rowi tol1lololol1l2|2]2]lo0l2?212l0]|?2]|1

Tow 1

TOoOW 1

some are
determined
by other
neighbor?

if “1”, then
neighbor has told
i about it

Skip-sampling for next-

column
J

ol1]l0]lO0|JO|1]|?|?2|?2|l0]|?]|?]0 ifbeforw
“1” and land

here, pick new
v v v /'// length starting

ol1lo0lolol1lolololol1!| 210 | fromhere

choose k according to geometric distribution
If j+k > next 1 in i’s heap, output next 1 ini’s heap
else check if (i,j+k) previously decided by j+k

if O then re-roll

else add (i, j+k) to heaps for i and j+k

why correct
distribution?

Local-Access Generators — Difficulties

rT T
‘ 1 27314 5 6 7 8 9 10 next-neighbor
T 1 .
1|~ 01!1 O 0 * how to sample for next-neighbor?
- - - - === - s e m m — === —— — ~
: E 0,1 0O 0 1 1 E * how to inform (non-)neighbors?
}::_':::::::\:::'::::::::::::::::::::::.}
310 0O i .10 0 0 0 0 1 E * how to find next-neighbor when some
RN | . .
I b R choices are already decided?
411 1,0'!'~ 0 0 1
S o . pamm s X vertex-pair
510 0,0 ;0 ~ 1 1 ! L , _
AP e mmmmmmmmmm e ! * how to maintain information without
61 oo obstructing next-neighbor?
¢ I I 3) .
E 710 0!0 10 1 ! careful analysis can mitigate these .. but
—— e e - .
8 [O 0 random-neighbor
{1 |
9 1 | 0 * how to sample without
| . . .
10 L : 0 ‘ knowing/committing to a degree?
|
I I

Random-Neighbor Query: output random

neighbor of |

Dense case: p = 1/poly(logn)

e Algorithm:
* repeat until find neighbor:

* pick random j
* do vertex pair query on (i, j)

* Time 0@1/;9).

Can we do o(1/p)
forp = o0(1)?

Sparse case: p < poly(logn)/n
e Algorithm: Use “all neighbor” query
[Naor Nussboim 07]

* Time O(E|degree]) = O(polylog n)

. 1
Intermediate case: (e.g.p = \/ﬁ)
27?7
we don’t even know degree?

Implementation of Random-Neighbor
gueries via Bucketing

Plan: Equipartition each row into contiguous buckets such that:
Expected # of neighbors in a bucket is a constant
= w.h.p. 1/3 of buckets are non-empty
= W.h.p. no bucket has more than log n neighbors

(drumroll...)

= can write down all log n neighbors for each bucket! (assuming you can
figure them out)

How many buckets? Note that both size and

pn, each of size 1/p number of buckets can
be big

Random Neighbors with rejection sampling

expected #neighbors in a bucket

Bucketing:
ucketing: ©(1) expected, < O(logn) w.h.p.

ve [Jof | 1 of | jof1 o HEDEEECH

— Step 1 pick a uniform random bucket
“fill” this bucket if needed

A

= #neighbors ~ #bucket

r

Keep list of 1’s,
then can pick nbr

quickly

0011]0[1 00

Step 2 pick a uniform random neighbor

U
L~ return or reject

#neighbors in the bucket

Step 3 return v with probability

O(logn)
otherwise, try again
_ 1 1 Hneighbors in bucket . €(1/logn)
P[retum U] ~ #buckets x #neighbors in bucket X O(logn) ~ #neighbors of v

P[return any neighbor| &~ Q(1/logn) = O(logn) iterations suffice

How to fill a bucket?

* Bucket may be indirectly filled in certain locations
e "1" entries reported when created
* "0" entries not reported but can query from complementary bucket

2171?21 72101?71110] 77

* First, skip-sample in the bucket ignoring the existing entries
O1o0o(1{o0ojJO011T(1T[{O0]J0O011]O0

* Re-insert all indirectly filled (red) "1" entries: {2,8}

* For each new (green) "1" entry: remove if coincides with indirectly
filled "0" entries

of1f1fofo|[X|1]|1]0]|1]0O
 Why fast? # of "1" entries is bounded by log n

Nice fact:
Bucketing improves next-neighbor queries too!

Stochastic Block Model

Stochastic Block Model

* R communities each labelled via “color”
* P;; specifies probability of edges between community i and |

* how to assign colors to nodes?
e contiguous blocks?

e Algorithms for SBM are usually concerned with community
detection

* randomly?
e assume given counts of members of each color

Skip-sampling probabilities

* New requirement
* count # of members of each color within a specified interval [a,b]
* E.g., Allows computing CDF of skip-sampling distributions
* Equivalently: sample from the multivariate hypergeometric distribution

Count generator: Sample colors in an interval
(see also GGIKMS, GGN, NN)

Unpermuted Color
Assignment

/\
[COOOO000] [0OOOOOO0

/\‘ ___________ Split according to
the multivariate
OOOO OOO0 OOOO hyper-geometric

- ~distribution
PN«
OO||O0O| OO
AN AN A

od]eo]ooie0e0
£\ Sampled Color
60060006 othOOOO«me

Split into dyadic intervals

Tree contructed “lazily”: only as required

Another use:
Partially Sampling a Random Walk

Query Height(t) returns position of random walk at time t

Small world graphs

Small-World Model [Kleinberg]

Edges:
* Uniform grid

* Directed long range edge
(u, v) with probability c¢/d(u, v)?

Will answer “All-neighbor queries”
(implies implementation for other
queries)

Small-World Model: s Model-
All neighbor queries + Uniform grid

e (u, v) with probability c¢/d(u, v)*

For increasing d:

(1) Sample next d which has nbrs of
distance d

(2) skip sample among all O(d) nbrs
at distance d

Future directions

Other random objects?

Support degree, ith neighbor queries?

Local generation without history?

Thank you!

