
Sublinear time local 
access random generators

Amartya Shankha Biswas (MIT)

Ronitt Rubinfeld (MIT and TAU)

Anak Yodpinyanee (MIT)



Huge random objects:

How to generate?

Up front?

Locally…on the fly?



Generating large random graph

321

1

7654

2

3

4

5

6

7

0

0 1

1

0

0

0

1

00 100

0

0

0

0

0

0

1

8

9

98

1

1

00 000 0 10

10

10

1

01

1

0

1 0

0

0

1

1

0

1

0

1 0

Generate “on 
the fly”? 

What if required to 
be symmetric? d-
regular? support 
“next-neighbor” 

queries?



A challenge:
How to handle dependencies?

Sources of dependencies:

Model, supported queries,…



Some prior work



Implementation of Huge Random Objects

• Huge pseudorandom functions/permutations/balls-in-bins  [Goldreich-
Goldwasser-Micali’86][Luby-Rackoff ‘88][Naor-Reingold ’97][Mansour-Rubinstein-
Vardi-Xie ’12]

• Model introduced and formalized in [Goldreich-Goldwasser-Nussboim 2003]
• Generators for random functions, codes, graphs,…
• Give important primitives

• e.g. Sampling from binomial distribution, interval-sum queries for functions (see 
also [Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss 2002])

• Generators provide (limited) queries to random graphs with specified property
• e.g. Planted Hamiltonian cycle
• Focus on indistinguishable (under small number of queries and poly time) and 

truthful implementations  (more on this by [Naor Nussboim Tromer 05] [Alon
Nussboim 07])



Implementations of random G(n,p) graphs 
[Goldreich Goldwasser Nussboim 03]

• Graphs generated:
• Have a specific property e.g., 

colorability, clique, connectedness, 
bipartiteness

• Queries:
• Adjacency

• Up to polylog queries



Implementation I of sparse G(n,p) graph 
[GGN]

• Graphs generated:
• Degree at most polylog

• Indistiguishable from uniform 
distribution for few queries

• Queries:
• Adjacency, all-neighbor

• Up to polylog queries



Implementation II of sparse G(n,p) graph 
[Naor-Nussboim 2007]

• Graphs generated:
• Degree at most polylog

• Queries:
• Adjacency, all-neighbor

• Bound on number stated in paper, but 
not necessary in some settings



Implementations of Barabasi-Albert Preferential 
Attachment Graphs [Even-Levi-Medina-Rosen 2017]

• Graphs generated:
• essentially a rooted tree/forest structure

• Highly sequential random process

• Sparse, but degree not bounded

• Queries:
• Adjacency

• Introduce next-neighbor query (implement with 
polylog(n) resources)

• No bound on number 
Give local implementation 
without reconstructing full 
history!!



Models



Two models for random generation of graphs 

Huge random graphs/objects 
[Goldreich Goldwasser 
Nussboim]

• Huge = exponential size

• User will not query more 
than poly locations

• In some versions, sufficient to 
generate graph that “looks” 
random to poly time 
algorithm

Big random graphs/objects 
[Even Levi Medina Rosen]

• Big = poly size

• Might eventually write down 
the whole graph, but don’t 
want to pay cost up-front

• End result should be random 
according to the claimed 
process



“On-the-fly” Sampler 
(Adapted from [Even-Levi-Medina-Rosen 2017])

Random Object 
(in memory)

Generation 
Algorithm

Random bits

Model Parameters

User

query

response

Random Object 
(in memory)

Generation 
Algorithm

Random bits

Model Parameters

User

query

response

Queries reveal partial 
information

Eventually, entire object sampled, 
stored in memory

Standard 
paradigm

“on-the-
fly” 
sampler



Desiderata:

• Efficiency:
• Answer queries in polylogarithmic time 

• Succinct Representation

• Consistency over future queries:
• Can store past decisions 
• eventually give complete valid sample

• Distribution equivalence:
• Output distribution is 𝜖-close (in ℓ1-distance)  to goal distribution

• Not considered today:  
• pseudo-random distributions (indistinguishable from goal distribution, or preserving properties)
• bounds on number of queries
• Very succinct representation

Error from 
implementation 

issues



Possible queries:

• Vertex-pair (adjacency):  Is edge (u,v) present?

• All-Neighbors:  What are all neighbors of u?

• Degree:   What is degree(u)?

• ith neighbor:   What is ith neighbor of u?

• Next-neighbor:  What is next neighbor of u?

• Random-neighbor:  Output random neighbor of u?

considered by 
[GGN] [NN]

considered by 
[Even Levi Medina 
Rosen 2017]

todaycan take random 
walk in large 

degree graph!



New Generators



Today’s Goal:
Graph models supporting typical graph queries

G(n,p)

Community structure: Stochastic Block Model

Small world graphs



G(n,p) graphs



Vertex-pair query:  
Is there an edge from u to v?

321

1

7654

2

3

4

5

6

7

0

0 1

1

0

0

0

1

00 100

0

0

0

0

0

0

1

8

9

98

1

1

00 000 0 10

10

10

1

01

1

0

1 0

0

0

1

1

0

1

0

1 0

Generate “on the 
fly”?

toss coins as 
needed



All-neighbor queries for sparse G(n,p): 
Implementation adapted from [NN07]

• Edges defined via “Ports”:
• For each node, pick “ports”:  "1" (green)
• Ports matched to others on the fly: indicated via edge 

(red)

• Two equivalent processes:
• Pick number of edges for each u and sum to get total 

edges
• Picking total number of edges and dividing among u’s
→ Compute u’s locations using locally computable 
interval-summable functions [GGIKMS 02] 
[GGN03][NN07]

• Given an “all neighbor” query vertex (6), match its ports to 
other unmatched ports
• Match each port to random open position in degree 

sequence



Next-Neighbor Query:  what is u’s next 
neighbor?
Dense case: 𝑝 ≥ 1/𝑝𝑜𝑙𝑦(log 𝑛)

• Algorithm:
• Start at last found neighbor

• Go down row, flipping coins to fill 
empty entries, until find neighbor.  

• Time 𝑂(1/𝑝).  

Sparse case: 𝑝 ≤ 𝑝𝑜𝑙𝑦(log 𝑛)/𝑛
• Algorithm:  Use “all neighbor” query  [Naor

Nussboim 07]

• Time 𝑂(𝐸[𝑑𝑒𝑔𝑟𝑒𝑒]) = 𝑂(𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛)

Intermediate case: (e.g. 𝑝 =
1

√𝑛
)

• Idea:  Sample “length of 0’s run” 
according to hypergeometric 
distribution 𝑝 1 − 𝑝 𝑖

• Challenge:  some entries already filled 
in!Can we do 𝑜(1/𝑝) for 

𝑝 = 𝑜(1)?



Skip-sampling for next-neighbor queries:  
The case of directed graphs

Algorithm idea:  
Pick length of 0-run according to hypergeometric distribution (via binary search on CDF):

σ𝑘=0
𝑏−𝑎−1𝑝 1 − 𝑝 𝑘 = 1 − 1 − 𝑝 𝑏−𝑎

Fill in next entry (i, j+k) with a 1



Skip-sampling for next-neighbor queries:
Undirected graphs

Algorithm idea:  
Pick length of 0-run according to hypergeometric distribution:

σ𝑘=0
𝑏−𝑎−1𝑝 1 − 𝑝 𝑘 = 1 − 1 − 𝑝 𝑏−𝑎

Fill in next entry (i, j+k) with a 1

𝑟𝑜𝑤 𝑖

𝑟𝑜𝑤 𝑖

𝑐𝑜𝑙𝑢𝑚𝑛
𝑗

yields 
correct 

distribution?

need to write 
all 0s?

some are 
determined 

by other 
neighbor?



Implementation of next neighbor queries:
(assume no adjacency queries)

• For each node i maintain:
1. last seen neighbor j (row entries 1..j are determined, and j is a “1”)

2. list of “1”s coming before j (everything else is “0”)

3. remaining“1”s via min-heap 

4. Keep track of “0”s on row implicitly Only keep track of 1’s

𝑟𝑜𝑤 𝑖

𝑐𝑜𝑙𝑢𝑚𝑛
𝑗

{2,6} {15}



Skip-sampling for next-neighbor queries

choose k according to geometric distribution
If j+k > next 1 in i’s heap, output next 1 in i’s heap
else check if (i,j+k) previously decided by j+k

if 0 then re-roll 
else add (i, j+k) to heaps for i and j+k

𝑟𝑜𝑤 𝑖

𝑟𝑜𝑤 𝑖

𝑐𝑜𝑙𝑢𝑚𝑛
𝑗

why correct 
distribution?

some are 
determined 

by other 
neighbor?

if “1”, then 
neighbor has told 

i about it

if before next 
“1” and land 

here, pick new 
length starting 

from here



Local-Access Generators – Difficulties

321

1

7654

2

3

4

5

6

7

0

0 1

1

0

0

0

1

00 100

0

0

0

0

0

0

1

8

9

98

1

1

00 000 0 10

10

10

1

01

1

0

1 0

0

0

1

1

0

1

0

1 0

next-neighbor

• how to sample for next-neighbor?

• how to inform (non-)neighbors?

• how to find next-neighbor when some 
choices are already decided?

vertex-pair

• how to maintain information without 
obstructing next-neighbor?

careful analysis can mitigate these .. but

random-neighbor

• how to sample without 
knowing/committing to a degree?



Random-Neighbor Query:  output random 
neighbor of i
Dense case: 𝑝 ≥ 1/𝑝𝑜𝑙𝑦(log 𝑛)

• Algorithm:
• repeat until find neighbor:

• pick random j

• do vertex pair query on (𝑖, 𝑗)

• Time 𝑂(1/𝑝).  

Sparse case: 𝑝 ≤ 𝑝𝑜𝑙𝑦(log 𝑛)/𝑛
• Algorithm:  Use “all neighbor” query  

[Naor Nussboim 07]

• Time 𝑂(𝐸[𝑑𝑒𝑔𝑟𝑒𝑒]) = 𝑂(𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛)

Intermediate case: (e.g. 𝑝 =
1

𝑛
)

???

we don’t even know degree?

Can we do 𝑜(1/𝑝)
for 𝑝 = 𝑜(1)?



Implementation of Random-Neighbor 
queries via Bucketing

Plan:  Equipartition each row into contiguous buckets such that:
Expected # of neighbors in a bucket is a constant
⇒ w.h.p. 1/3 of buckets are non-empty
⇒ w.h.p. no bucket has more than log n neighbors

(drumroll…)
⇒ can write down all log 𝑛 neighbors for each bucket! (assuming you can 
figure them out)

How many buckets?  
𝑝𝑛, each of size 1/𝑝

Note that both size and 
number of buckets can 

be big



Random Neighbors with rejection sampling

Keep list of 1’s, 
then can pick nbr

quickly



How to fill a bucket?
• Bucket may be indirectly filled in certain locations

• "1" entries reported when created

• "0" entries not reported but can query from complementary bucket

• First, skip-sample in the bucket ignoring the existing entries 

• Re-insert all indirectly filled (red) "1" entries:  {2,8}
• For each new (green) "1" entry:  remove if coincides with indirectly 

filled "0" entries

• Why fast? # of "1" entries is bounded by log n



Nice fact:
Bucketing improves next-neighbor queries too!



Stochastic Block Model



Stochastic Block Model

• R communities each labelled via “color”
• 𝑃𝑖𝑗 specifies probability of edges between community i and j

• how to assign colors to nodes?
• contiguous blocks?

• Algorithms for SBM are usually concerned with community 
detection

• randomly?  

• assume given counts of members of each color



Skip-sampling probabilities

• New requirement
• count # of members of each color within a specified interval [a,b]

• E.g., Allows computing CDF of skip-sampling distributions

• Equivalently: sample from the multivariate hypergeometric distribution



Count generator: Sample colors in an interval
(see also GGIKMS, GGN, NN)

Tree contructed “lazily”:  only as required



Another use:  
Partially Sampling a Random Walk

Query Height(t) returns position of random walk at time t



Small world graphs



Small-World Model [Kleinberg]

Edges:

• Uniform grid

• Directed long range edge 
(𝑢, 𝑣) with probability 𝑐/𝑑 𝑢, 𝑣 2

Will answer “All-neighbor queries”
(implies implementation for other 
queries)



Small-World Model:
All neighbor queries

• Model:

• Uniform grid

• (𝑢, 𝑣) with probability 𝑐/𝑑 𝑢, 𝑣 2

For increasing d:
(1) Sample next d which has nbrs of 
distance d
(2) skip sample among all O(d) nbrs
at distance d



Future directions

Other random objects?

Support degree, ith neighbor queries?

Local generation without history?



Thank you!


