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Goal: study of sublinear algorithms 
resilient to adversarial corruptions 

in the input

Focus: property testing model  
[Rubinfeld Sudan 96, Goldreich Goldwasser Ron 98]



A Sublinear-Time Algorithm
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B L A - B L A - B L A - B L A - B L A - B L A - B L A - B L A

approximate answer

? L? B ? L ? A

Quality of 

approximation 

Resources
• number of queries

• running time

randomized algorithm



A Sublinear-Time Algorithm
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B L A - B L A - B L A - B L A - B L A - B L A - B L A - B L A

? L? B ? L ? A

approximate answer

Is it always reasonable to assume

the input is intact?

randomized algorithm



Algorithms Resilient to Erasures (or Errors)
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⊥ ⊥ A - B L ⊥ ⊥ B L A - B L A - ⊥ L A - B L A - B L ⊥ - B L A

? L? B ? L ?

• ≤ 𝜶 fraction of the input is erased (or modified) 
adversarially before algorithm runs

• Algorithm does not know in advance what’s erased 
(or modified)

• Can we still perform computational tasks?

randomized algorithm



Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

randomized 

algorithm
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Property Testing

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀



Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

randomized 

algorithm

7

Property Testing with Erasures

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀

Erasure-Resilient Property Tester [Dixit 
Raskhodnikova Thakurta Varma 16]

• ≤ 𝛼 fraction of the input is erased 

adversarially

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

Can be 

completed 

to YES
NO

Any completion 

is far from

YES
𝜀



Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

randomized 

algorithm
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Property Testing with Errors

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀

Tolerant Property Tester
[Parnas Ron Rubinfeld 06]

• ≤ 𝛼 fraction of the input is wrong

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀

𝛼



Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

randomized 

algorithm
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Property Testing with Errors

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀

Tolerant Property Tester
[Parnas Ron Rubinfeld 06]

• ≤ 𝛼 fraction of the input is wrong

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀

𝛼



Relationships Between Models

Containments are strict:
• [Fischer Fortnow 05]: standard vs. tolerant

• [Dixit Raskhodnikova Thakurta Varma 16]: standard vs. erasure-resilient 

• new: erasure-resilient vs. tolerant
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ε-testable

𝛂-erasure-resiliently ε-testable

(𝛂, ε)-tolerantly testable



Our Separation
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There is a property of 𝒏-bit strings that 
• can be 𝜶-resiliently 𝜺-tested with constant query complexity,
• but requires 𝒏𝛀 𝟏 queries for tolerant testing.

Separation Theorem

Most of the talk:  constant vs. 𝛀 𝐥𝐨𝐠 𝒏 separation.



Main Tool: Locally List Erasure-Decodeable Codes

• Locally list decodable codes have been extensively studied 
[Goldreich Levin 89, Sudan Trevisan Vadhan 01, Gutfreund Rothblum 08, Gopalan
Klivans Zuckerman 08, Ben-Aroya Efremenko Ta-Shma 10, Kopparty Saraf 13, 
Kopparty 15, Hemenway Ron-Zewi Wootters 17, Goi Kopparty Oliveira Ron-Zewi
Saraf 17, Kopparty Ron-Zewi Saraf Wootters 18]

• Only errors, not erasures were previously considered

– Not the case without the locality restriction                       
[Guruswami 03, Guruswami Indyk 05]

Can locally list decodable codes perform better with 
erasures than with errors?
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A Locally List Erasure-Decodable Code

• An error-correcting code 𝓒𝑛: Σ
𝑛 → Σ𝑁

• Parameters: 𝜶 fraction of erasures, list size ℓ and 𝒒 queries.

– the fraction of erased bits in w is at most 𝜶,
– the decoder makes at most 𝒒 queries to 𝑤,
– w.p. ≥ 2/3, for every 𝑥 ∈ Σ𝑛 with encoding 𝓒𝑛(𝑥)

that agrees with 𝑤 on all non-erased bits,                                                   
one of the algorithms 𝐴𝑗, given oracle access to 𝑤,
implicitly computes 𝑥 (that is, 𝐴𝑗 𝑖 = 𝑥𝑖);

– each algorithm 𝐴𝑗 makes at most 𝒒 queries to 𝑤.
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⊥ ⊥ 0 0 0 1 ⊥ ⊥ 0 1 0 0 0 1 1 1 ⊥ 1 1 1 0 1 1 1 0 1 ⊥ 1 0 1 1

(𝛂, ℓ, 𝒒)-local list 

erasure-decoder 𝐴1 𝐴2 𝐴ℓ......Output

𝑤:



Hadamard Code

• Hadamard: 0,1 𝑘 → 0,1 2𝑘;  Hadamard 𝑥 = 𝑥, 𝑦 𝑦∈ 0,1 𝑘

• Impossible to decode when fraction of errors 𝜶 ≥ 𝟏/𝟐.

14An improvement in dependence on 𝛼 was suggested by Venkat Guruswami

Type of 

corruptions

Corruption 

tolerance 𝜶
List size,        

ℓ
Number of 

queries, 𝑞
Upper 

bound

Lower bound

Errors 𝛼 ∈ 0,
𝟏

𝟐

Θ
1

1
2
− 𝛼

2 Θ
1

1
2
− 𝛼

2

[Goldreich

Levin 89]

[Blinovsky 86, 

Guruswami

Vadhan 10, 

Grinberg Shaltiel

Viola 18]

Erasures 𝛼 ∈ (0,1) O
1

1 − 𝛼
Θ

1

1 − 𝛼

new Implicit in 
[Grinberg Shaltiel

Viola 18]



How does separating 
erasures from errors 
in local list decoding 

help with 
separating them in property testing?



3CNF Properties: Hard to Test, Easy to Decide

• Formula 𝜙𝑛 : 3CNF formula on 𝑛 variables, 𝜃(𝑛) clauses

• Property 𝑃𝜙𝑛
⊆ 0,1 𝑛: set of satisfying assignments to 𝜙𝑛

• 𝑃𝜙𝑛
decidable by an 𝐎(𝒏)-size circuit.
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For sufficiently small ε, 
ε-testing 𝑃𝜙𝑛

requires 𝛀 𝒏 queries.

Theorem [Ben-Sasson Harsha Raskhodnikova 05]



Testing with Advice: PCPs of Proximity (PCPPs)

[Ergun Kumar Rubinfeld 99, Ben-Sasson Goldreich Harsha Sudan Vadhan 06,  
Dinur Reingold 06]

• If 𝑥 has the property, then ∃𝜋(𝑥) for which verifier accepts.

• If 𝑥 is 𝜀-far, then ∀𝜋(𝑥) verifier rejects with probability ≥ 2/3.
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𝑥 proof 𝜋(𝑥)

Every property decidable with a circuit of size 𝒎
has PCPP with proof length  𝑶(𝒎) and constant query complexity.

Theorem

PCPP Verifier

? ?



Testing 3CNF Properties with/without a Proof
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𝑥 proof 𝜋(𝑥)

PCPP Verifier 

for 𝑅𝜙𝑛

? ?

ε

𝑥

Tester for 𝑅𝜙𝑛

?

ε

Need Ω(𝑛)
queries to test 

without a proof

Constant query 

complexity with          

a proof of length  𝑂(𝑛)



Separating Property

• 𝑥 satisfies the hard 3CNF property

• 𝑟 is the number of repetitions (to balance the lengths of 2 parts)

• 𝜋(𝑥) is the proof on which the PCPP verifier accepts 𝑥

• Enc uses a locally list erasure-decodable error-correcting code

– E.g., Hadamard;

– Codes with a better rate imply a stronger separation.
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𝑥r Enc(𝑥 ∘ 𝜋(𝑥) )



Separating Property: Erasure-Resilient Testing

Idea: If a constant fraction (say, 1/4) of the encoding is preserved,               
we can locally list erasure-decode.

20

𝑥r Hadamard(𝑥 ∘ 𝜋(𝑥) )

Erasure-Resilient Tester
1. Locally list erasure-decode Hadamard to get a list of algorithms.
2. For each algorithm, check if:

• the plain part is 𝑥𝑟 by comparing u.r. bits with the 
corresponding bits of the decoding of 𝑥

• PCPP verifier accepts 𝑥 ∘ 𝜋(𝑥)
3. Accept if, for some algorithm on the list, both checks pass.

Constant query complexity.



Separating Property: Hardness of Tolerant Testing

Idea: Reduce standard testing of 3CNF property to                 
tolerant testing of the separating property. 

• Given a string 𝑥, we can simulate access to

• All-zero string is Hadamard(𝑥 ∘ 𝜋(𝑥)) with 1/2 of the encoding 
bits corrupted! 

• Testing 3CNF property requires Ω 𝑛 queries, where 𝑛 = 𝑥 .

The input length for separating property is 𝑁 ≈ 2𝑐𝑛.
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𝑥r Hadamard(𝑥 ∘ 𝜋(𝑥) )

𝑥r 00000 … 00000

Ω 𝑛 ≈ Ω log 𝑁 queries are needed.



What We Proved

The separating property is

• erasure-resiliently testable with a constant number of queries,

• but requires  Ω(log𝑁) queries to tolerantly test.
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Tolerant testing is harder than 

erasure-resilient testing in general.



Strengthening the Separation: Challenges

If there exists a code that is locally list decodable from an 𝛼 < 1
fraction of erasures with 
• list size ℓ and number of queries 𝑞 that only depend on 𝛼
• inverse polynomial rate
then there is a stronger separation: constant vs. 𝑁𝑐.
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The existence of such a code is an open question.

The corresponding question for the case of errors 

is the holy grail of research on local decoding.



Strengthening the Separation: Main Ideas

• Observation: Queries of the PCPP verifier can be 
made nearly uniform over proof indices 
[Dinur 07] + [Ben-Sasson Goldreich Harsha Sudan Vadhan 06, Guruswami Rudra 05]

– No need to decode every proof bit

• Idea: Encode the proof with approximate LLDCs that 
decode a constant fraction of proof bits correctly.

– Approximate LLDCs of inverse-polynomial rate are known 
[Impagliazzo Jaiswal Kabanets Wigderson 10]

– Approximate LLDCs  ⇒ approximate locally list erasure-
decodable codes of asymptotically the same rate
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Open Questions and Directions

• Even stronger separation -- constant vs. linear?

• Separation between errors and erasures for a 
"natural" property?

• Are locally list erasure-decodable codes provably 
better than LLDCs?

– We showed it for Hadamard in terms of ℓ and 𝑞.

– Same question for the approximate case.

• Constant-query, constant list size, local list erasure-
decodable codes with inverse polynomial rate?
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