Erasures vs. Errors in Property Testing and Local List Decoding

Sofya Raskhodnikova Boston University

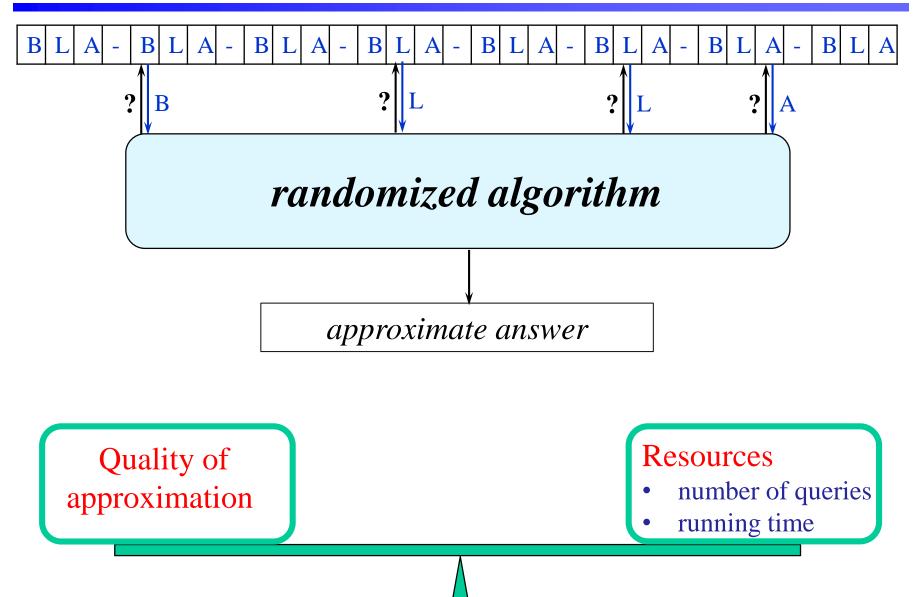
Joint work with

Noga Ron-Zewi (*Haifa University*) Nithin Varma (*Boston University*)

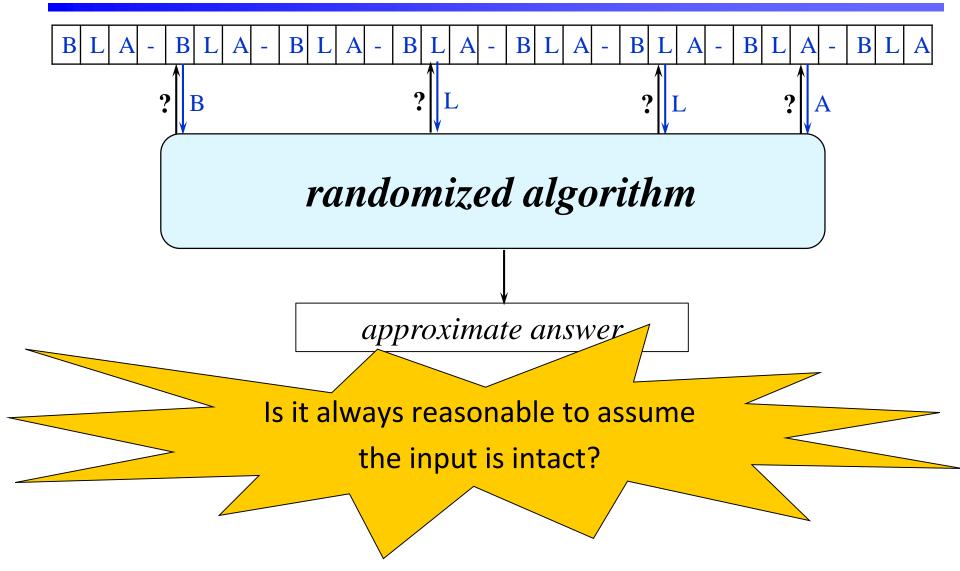
Goal: study of sublinear algorithms resilient to adversarial corruptions in the input

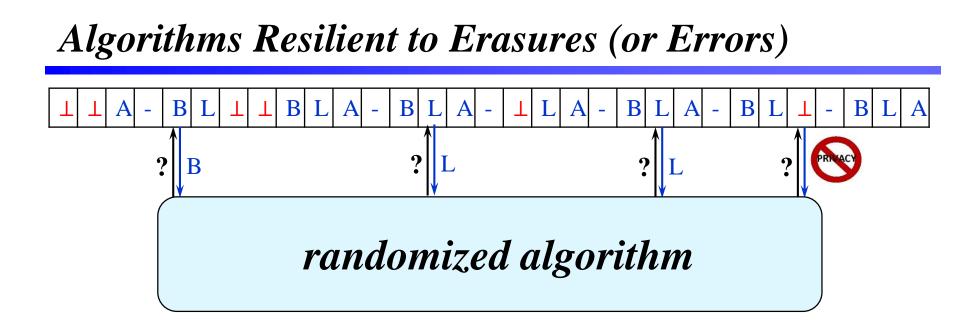
Focus: property testing model [Rubinfeld Sudan 96, Goldreich Goldwasser Ron 98]

A Sublinear-Time Algorithm



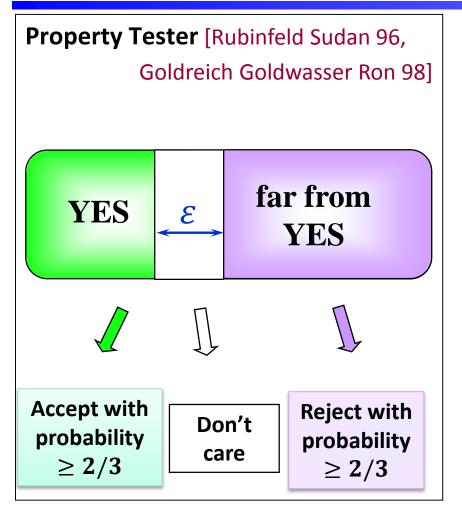
A Sublinear-Time Algorithm



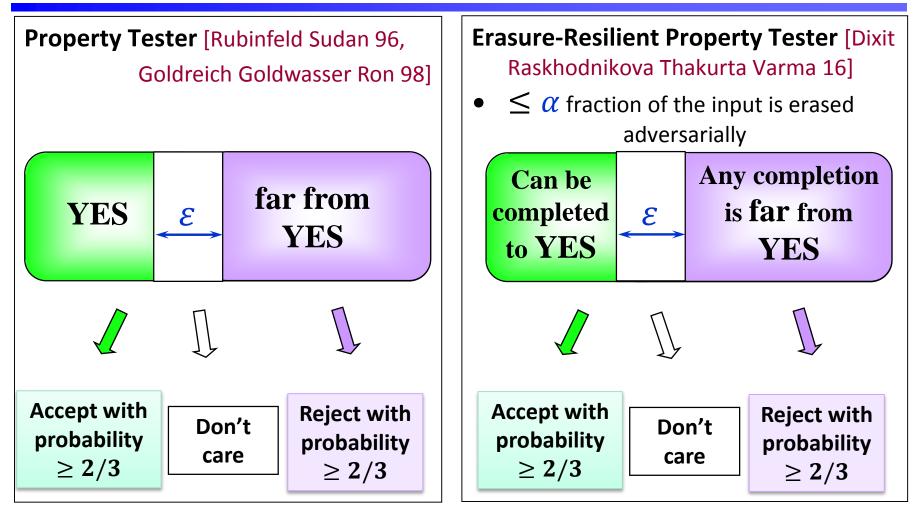


- $\leq \alpha$ fraction of the input is erased (or modified) adversarially before algorithm runs
- Algorithm does not know in advance what's erased (or modified)
- Can we still perform computational tasks?

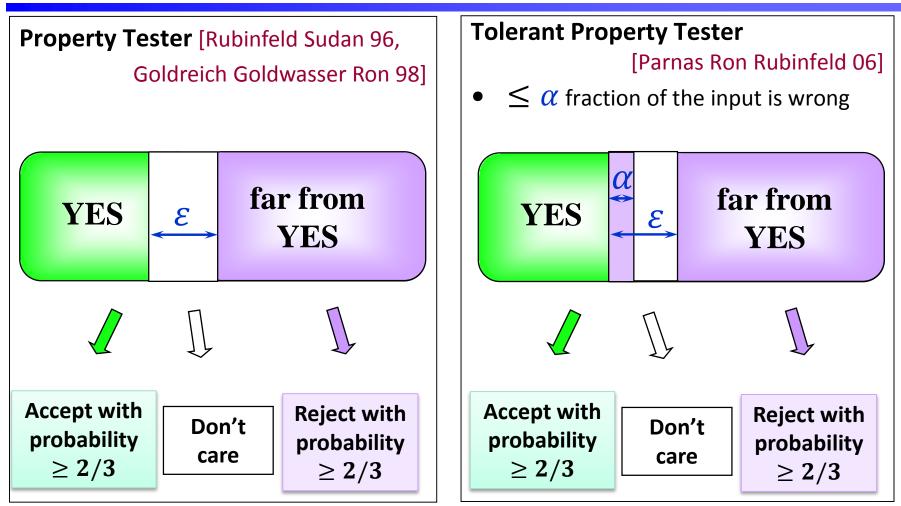
Property Testing



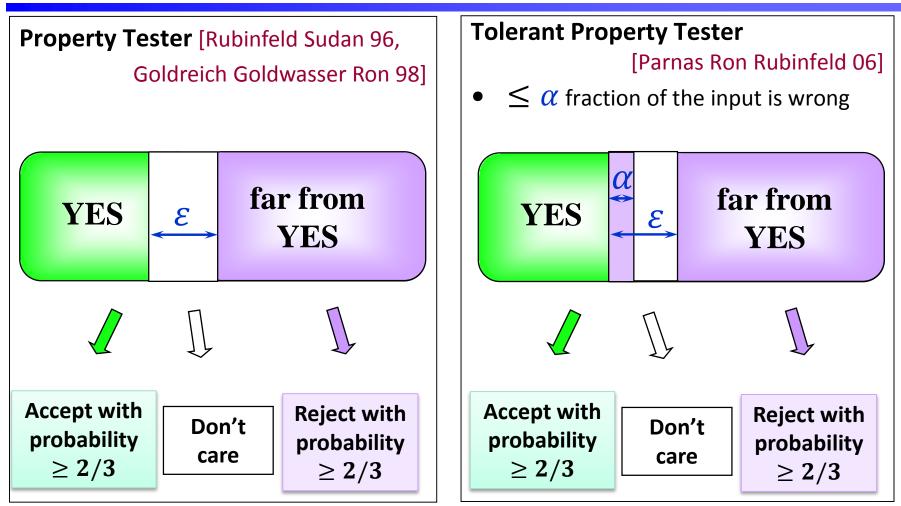
Property Testing with Erasures



Property Testing with Errors



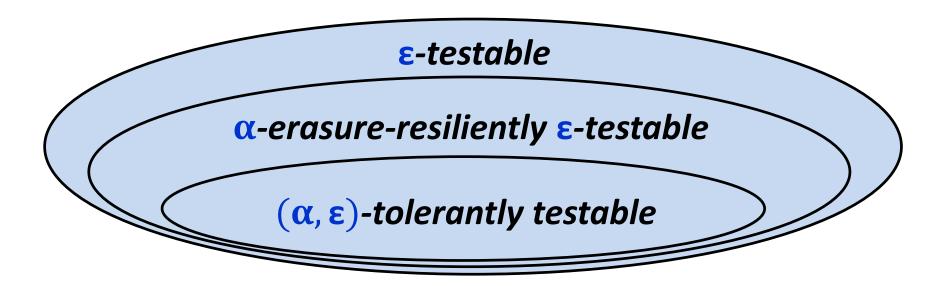
Property Testing with Errors



Relationships Between Models

Containments are strict:

- [Fischer Fortnow 05]: standard vs. tolerant
- [Dixit Raskhodnikova Thakurta Varma 16]: standard vs. erasure-resilient
- new: erasure-resilient vs. tolerant



Separation Theorem

There is a property of *n*-bit strings that

- can be α -resiliently ε -tested with constant query complexity,
- but requires $n^{\Omega(1)}$ queries for tolerant testing.

Most of the talk: constant vs. $\Omega(\log n)$ separation.

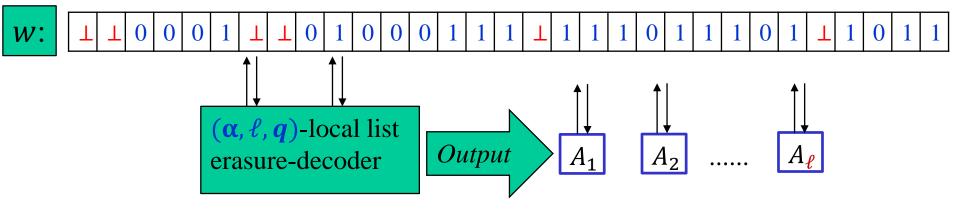
Main Tool: Locally List Erasure-Decodeable Codes

- Locally list decodable codes have been extensively studied [Goldreich Levin 89, Sudan Trevisan Vadhan 01, Gutfreund Rothblum 08, Gopalan Klivans Zuckerman 08, Ben-Aroya Efremenko Ta-Shma 10, Kopparty Saraf 13, Kopparty 15, Hemenway Ron-Zewi Wootters 17, Goi Kopparty Oliveira Ron-Zewi Saraf 17, Kopparty Ron-Zewi Saraf Wootters 18]
- Only errors, not erasures were previously considered
 - Not the case without the locality restriction [Guruswami 03, Guruswami Indyk 05]

Can locally list decodable codes perform better with erasures than with errors?

A Locally List Erasure-Decodable Code

- An error-correcting code $\mathcal{C}_n: \Sigma^n \to \Sigma^N$
- Parameters: α fraction of erasures, list size ℓ and q queries.



- the fraction of erased bits in w is at most α ,
- the decoder makes at most q queries to w,
- w.p. $\geq 2/3$, for every $x \in \Sigma^n$ with encoding $C_n(x)$ that agrees with w on all non-erased bits, one of the algorithms A_j , given oracle access to w, implicitly computes x (that is, $A_j(i) = x_i$);
- each algorithm A_j makes at most q queries to w.

Hadamard Code

- Hadamard: $\{0,1\}^k \rightarrow \{0,1\}^{2^k}$; Hadamard $(x) = (\langle x, y \rangle)_{y \in \{0,1\}^k}$
- Impossible to decode when fraction of errors $\alpha \ge 1/2$.

Type of corruptions	Corruption tolerance α	List size, ℓ	Number of queries, <i>q</i>	Upper bound	Lower bound
Errors	$\alpha \in \left(0, \frac{1}{2}\right)$	$\Theta\left(\frac{1}{\left(\frac{1}{2}-\alpha\right)^2}\right)$	$\Theta\left(\frac{1}{\left(\frac{1}{2}-\alpha\right)^2}\right)$	[Goldreich Levin 89]	[Blinovsky 86, Guruswami Vadhan 10, Grinberg Shaltiel Viola 18]
Erasures	$\alpha \in (0,1)$	$0\left(\frac{1}{1-\alpha}\right)$	$\Theta\left(\frac{1}{1-\alpha}\right)$	new	Implicit in [Grinberg Shaltiel Viola 18]

An improvement in dependence on α was suggested by Venkat Guruswami

How does separating erasures from errors in local list decoding help with separating them in property testing?

3CNF Properties: Hard to Test, Easy to Decide

- Formula ϕ_n : 3CNF formula on n variables, $\theta(n)$ clauses
- Property $P_{\phi_n} \subseteq \{0,1\}^n$: set of satisfying assignments to ϕ_n

Theorem [Ben-Sasson Harsha Raskhodnikova 05] For sufficiently small ε , ε -testing P_{ϕ_n} requires $\Omega(n)$ queries.

• P_{ϕ_n} decidable by an O(n)-size circuit.

Testing with Advice: PCPs of Proximity (PCPPs)

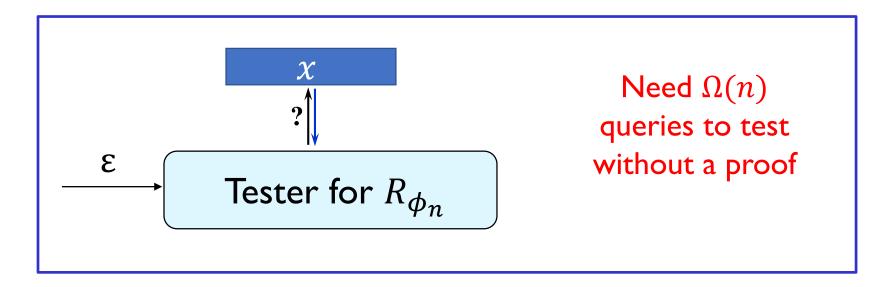
[Ergun Kumar Rubinfeld 99, Ben-Sasson Goldreich Harsha Sudan Vadhan 06, Dinur Reingold 06]

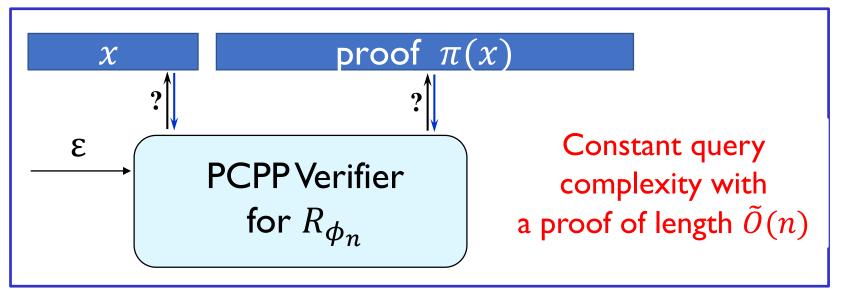
- If x has the property, then $\exists \pi(x)$ for which verifier accepts.
- If x is ε -far, then $\forall \pi(x)$ verifier rejects with probability $\geq 2/3$.

<u>Theorem</u>

Every property decidable with a circuit of size m has PCPP with proof length $\tilde{O}(m)$ and constant query complexity.

Testing 3CNF Properties with/without a Proof





Separating Property

- *x* satisfies the hard 3CNF property
- r is the number of repetitions (to balance the lengths of 2 parts)
- $\pi(x)$ is the proof on which the PCPP verifier accepts x
- Enc uses a locally list erasure-decodable error-correcting code
 - E.g., Hadamard;
 - Codes with a better rate imply a stronger separation.

Separating Property: Erasure-Resilient Testing

Hadamard($x \circ \pi(x)$)

Idea: If a constant fraction (say, 1/4) of the encoding is preserved, we can locally list erasure-decode.

Erasure-Resilient Tester

- 1. Locally list erasure-decode Hadamard to get a list of algorithms.
- 2. For each algorithm, check if:
 - the plain part is x^r by comparing u.r. bits with the corresponding bits of the decoding of x
 - PCPP verifier accepts $x \circ \pi(x)$

 χ^{r}

3. Accept if, for some algorithm on the list, both checks pass.

Constant query complexity.

Separating Property: Hardness of Tolerant Testing

Hadamard($x \circ \pi(x)$)

 $00000 \dots 00000$

Idea: Reduce standard testing of 3CNF property to tolerant testing of the separating property.

• Given a string *x*, we can simulate access to

 χ^{r}

 χ^{r}

 All-zero string is Hadamard(x ∘ π(x)) with 1/2 of the encoding bits corrupted!

• Testing 3CNF property requires $\Omega(n)$ queries, where n = |x|. The input length for separating property is $N \approx 2^{cn}$.

 $\Omega(n) \approx \Omega(\log N)$ queries are needed.

The separating property is

- erasure-resiliently testable with a constant number of queries,
- but requires $\widetilde{\Omega}(\log N)$ queries to tolerantly test.

Tolerant testing is harder than erasure-resilient testing in general.

Strengthening the Separation: Challenges

If there exists a code that is locally list decodable from an $\alpha < 1$ fraction of erasures with

- list size ℓ and number of queries q that only depend on α
- inverse polynomial rate

then there is a stronger separation: constant vs. N^c .

The existence of such a code is an open question.

The corresponding question for the case of errors is the holy grail of research on local decoding.

Strengthening the Separation: Main Ideas

- Observation: Queries of the PCPP verifier can be made nearly uniform over proof indices
 [Dinur 07] + [Ben-Sasson Goldreich Harsha Sudan Vadhan 06, Guruswami Rudra 05]
 No need to decode every proof bit
- Idea: Encode the proof with approximate LLDCs that decode a constant fraction of proof bits correctly.
 - Approximate LLDCs of inverse-polynomial rate are known [Impagliazzo Jaiswal Kabanets Wigderson 10]
 - Approximate LLDCs ⇒ approximate locally list erasuredecodable codes of asymptotically the same rate

Open Questions and Directions

- Even stronger separation -- constant vs. linear?
- Separation between errors and erasures for a "natural" property?
- Are locally list erasure-decodable codes provably better than LLDCs?
 - We showed it for Hadamard in terms of ℓ and q.
 - Same question for the approximate case.
- Constant-query, constant list size, local list erasuredecodable codes with inverse polynomial rate?