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Why…
… am I telling you this?

(for a start, it’s pretty great.)
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In space, no one can hear you stream

▶ Harsh communication constraints
▶ various types of noise
▶ energy and battery bottlenecks
▶ limited window of communication
▶ transmitter size

▶ Cost of deployment

Protocols for the task
Minimize cost, risk of failure, etc. accounting for constraints. How many
sensors? How many different spacecrafts? How to send the information?
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How to make machine learning “work” with limited resources?
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Setting: “Simultaneous Communication Protocol” (SMP)

▶ an inference task P over k-ary distributions
▶ an unknown k-ary distribution p
▶ one centralized “referee” R who needs to solve P on p
▶ n locally-constrained players, each with a channel W ∈ W
▶ each player independently gets one sample x from p and sends a

message y = W(x) to R

Question

As a function of k, W, and all relevant parameters of P, what is the
number of players n required?
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▶ W encodes the local constraints: if Id ∈ W, trivial
▶ Inference tasks: density estimation, parameter estimation, functional

estimation, hypothesis testing/property testing…
▶ Different available resources s.t. randomness: public- or private-coin
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Enough with the fancy “P”... what are we talking about
anyway?

Focused on two specific fundamental* inference tasks:

Distribution Learning
Must output: p̂ such that ℓ1(p, p̂) ≤ ε

(and be correct on any p with probability at least 2/3)

Uniformity Testing
Must decide: p = uk (uniform), or ℓ1(p, uk) ≥ ε?
(and be correct on any p with probability at least 2/3)

∗“If we can make it here, we can make it anywhere.” [DK16, Gol16]
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Distribution learning and uniformity testing

What is known without local constraints:

Task P n

Distribution learning k
ε2

Uniformity testing
√

k
ε2

What happens with them? And does public randomness help then?
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Related work

▶ Learning under communication constraints: [HÖW18] (same model,
allows (some) adaptivity), [DGL+17] (different model and focus)

▶ Testing under communication constraints: [FMO18] (related model,
different focus), [AMS18] (different (two-party) model and focus)

▶ Locally private learning: [DJW13, YB17, ASZ18]
▶ Locally private testing: [She18]
▶ Decentralized detection: [Tsi93] (same model, similar-ish focus)

(+ many in adjacent areas/models)



Plan for the talk

1. Communication-Starved Setting
2. Local Differential Privacy
3. General Lower Bound Framework



Part I: Communication–Starved Setting
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McBoatfaces are expensive
What is the most ship-efficient protocol to reliably test whether the
distribution of temperatures matches the one on record?



Setting: what is W?

n communication-limited players, each can send ℓ bits to R:

W = {W : [k] → {0, 1}ℓ}
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One Approach To Solve It All

Key Observation
If the referee can simulate independent samples from p using the
messages from the players, then it can do anything as in the centralized
setting.

Begging the question
Can the referee simulate independent samples from p using the messages
from the players?
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One Approach To Solve It All?

Theorem (No.)
For every k ≥ 1 and ℓ < log k, there exists no SMP with ℓ bits of
communication per player for distributed simulation over [k] with any
finite number of players. (Even allowing public-coin and interactive
protocols.)

Proof.
By contradiction, […] pigeonhole principle […].
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One Approach To Solve It All?

Theorem (Yes!)
For every k, ℓ ≥ 1, there exists a private-coin protocol with ℓ bits of
communication per player for distributed simulation over [k], with
expected number of players O(k/2ℓ ∨ 1).

Proof.
Case ℓ = 1. Player 2i − 1 and 2i both send 1 if their sample “hits” i; the
referee outputs i if (i) player 2i − 1 is the only odd player sending 1, and
player 2i sends 0. Then, conditioned on R not outputting ⊥, i is
outputted with probability pi. And the probability to output ⊥ is

1−
k∏

i=1
(1− pi) ≤ 1− blah(∥p∥2)

(and some complications to bound this away from 1).
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One Approach To Solve It All!

Corollary (Informal)
For any inference task P over k-ary distributions with sample complexity
s in the centralized model, there is a private-coin protocol for P, with ℓ
bits of communication per player, and n = O(s · k/2ℓ) players.

Illustration ©Dami Lee



One Approach To Solve It All!

Corollary (Distribution Learning)
For every k, ℓ ≤ log2 k, there is a private-coin protocol for learning k-ary
distributions with ℓ bits per player, and n = O( k2

2ℓε2 ) players.

Corollary (Uniformity Testing)
For every k, ℓ ≤ log2 k, there is a private-coin protocol for testing
uniformity over [k] with ℓ bits per player, and n = O( k3/2

2ℓε2 ) players.



One Approach To Really, Really Solve It All?

Natural Question
Is this “simulate-and-infer” approach optimal?

Answer
Not if one allows public coins!
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Distributed Uniformity Testing with Public Coins

Theorem (Upper Bound)
For every k, ℓ ≤ log2 k, there is a public-coin protocol for testing
uniformity over [k] with ℓ bits per player, and n = O

(
k

2ℓ/2ε2

)
players.



MCH (Minimally Contracting Hashing)

Theorem (χ2 contraction)
Choose u.a.r. a balanced partition Π of [k] in L parts, and let pΠ be the
distribution induced by p on Π. Then

Pr
Π
[ℓ1(pΠ, uL) ≥ Ω(

√
L/k)ℓ1(p, uk)] ≥ Ω(1) .

Proof.
Not hard (but technical). Dealing with dependencies when computing
second and fourth moments + Paley–Zygmund.

(This is tight).



MCH (Minimally Contracting Hashing)

Theorem (χ2 contraction)
Choose u.a.r. a balanced partition Π of [k] in L parts, and let pΠ be the
distribution induced by p on Π. Then

Pr
Π
[ℓ1(pΠ, uL) ≥ Ω(

√
L/k)ℓ1(p, uk)] ≥ Ω(1) .

Proof.
Not hard (but technical). Dealing with dependencies when computing
second and fourth moments + Paley–Zygmund.

(This is tight).



MCH (Minimally Contracting Hashing)

Theorem (χ2 contraction)
Choose u.a.r. a balanced partition Π of [k] in L parts, and let pΠ be the
distribution induced by p on Π. Then

Pr
Π
[ℓ1(pΠ, uL) ≥ Ω(

√
L/k)ℓ1(p, uk)] ≥ Ω(1) .

Proof.
Not hard (but technical). Dealing with dependencies when computing
second and fourth moments + Paley–Zygmund.

(This is tight).



MCH (Minimally Contracting Hashing)

Apply with L := 2ℓ, choosing a common random Π using public coins.
Test pΠ with ε′ :=

√
L/kε:

√
L

ε′2
=

k
2ℓ/2ε2 .

Repeat in parallel to amplify probability. □
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MCH (Minimally Contracting Hashing)

Interpretation
Use public randomness to randomly map the domain to a smaller one,
which provides the best tradeoff domain reduction/distance shrinkage to
test, w.r.t. χ2 distance, given the communication constraints.



MCH (Minimally Contracting Hashing)

▶ Simple.
▶ χ2 contraction theorem: very general.
▶ Randomness: O(kℓ) bits (Improve using 4-wise independence)
▶ We’ll see it again: with Batman.



Distribution learning and uniformity testing

With local communication constraints (upper bounds):

Task P n (private-coin) n (public-coin)

Distribution learning k
ε2 · k

2ℓ
k
ε2 · k

2ℓ

Uniformity testing
√

k
ε2 · k

2ℓ

√
k

ε2 ·
√

k
2ℓ



Part II: Local Differential Privacy



Local Differential Privacy (LDP)

“No one can know.”



Setting: what is W?

n privacy-conscious players, each can send a ϱ-private message to the R:

W = {W : [k] → {0, 1}∗ : W ϱ-LDP}

i.e., for all x, x′ ∈ [k], y ∈ {0, 1}∗,

W(y | x)
W(y | x′) ≤ eϱ



Uniformity testing

Private-coin upper bounds
Two protocols: Rappor-based, Hadamard-Response-based.

Public-coin upper bound
Raptor: uses the χ2-contraction theorem, for ℓ = 1.
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Distribution learning and uniformity testing

With local privacy constraints (upper bounds):

Task P n (private-coin) n (public-coin)

Distribution learning k
ε2 · k

ϱ2
k
ε2 · k

ϱ2

Uniformity testing
√

k
ε2 · k

ϱ2

√
k

ε2 ·
√

k
ϱ2



Part III: Lower Bounds via χ2 contraction



The Lower Bounds

Theorem (Upper Bounds are Lower Bounds)
Every upper bound mentioned in this talk is optimal.

Corollary
Sharing (randomness) helps a lot for testing, not at all for learning.
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The Lower Bound (I)

By Le Cam’s two-point method, consider a distribution Z over “hard
instances”:

∀1 ≤ i ≤ k/2, p(2i − 1), p(2i) =
(
1± ε

k ,
1∓ ε

k

)
uniformly and independently at random. (Paninski’s
construction [Pan08]).

…then look at them through the channels: Wn ◦ pn.

But...
... needs to upper bound the TV distance between (i) distribution of n
messages sent to the referee when p = uk, and (ii) distribution of n
messages under average hard instance. The latter is not a product
distribution...
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The Lower Bound (I)

Want to bound TV distance between transcripts – “right” proxy is χ2:

ℓ1(EZ∼Z [YZ
n ],Yu

n)
2 ≤ χ2(EZ∼Z [YZ

n ],Yu
n)

(goal)
≪ 1

where Yu
n is the distribution of the n messages under the uniform

distribution, and YZ
n the distribution of the n messages under pZ.
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The Lower Bound (I)

To a channel W, we associate a p.s.d. matrix H(W) ∈ Rk/2×k/2:

H(W)i1,i2 :=
∑

y

(W(y | 2i1 − 1)− W(y | 2i1))(W(y | 2i2 − 1)− W(y | 2i2))∑
i∈[k] W(y | i) .

We characterize the contraction in chi-square distances in terms of the
Frobenius and trace norms of this matrix: ∥H(W)∥F and ∥H(W)∥∗.



The Lower Bound (I)

To a channel W, we associate a p.s.d. matrix H(W) ∈ Rk/2×k/2:

H(W)i1,i2 :=
∑

y

(W(y | 2i1 − 1)− W(y | 2i1))(W(y | 2i2 − 1)− W(y | 2i2))∑
i∈[k] W(y | i) .

We characterize the contraction in chi-square distances in terms of the
Frobenius and trace norms of this matrix: ∥H(W)∥F and ∥H(W)∥∗.



The Lower Bound (I)

Reminiscent
… of the SQ learning bounds via χ2 [FGR+13, SVW16, Fel17], esp. in
view of the relation of SQ learning to local privacy [KLN+11]. However,
different quantities at play here (trace/Frobenius vs. spectral norms),
leading to tighter bounds.

Works
… for public-coin protocols. But for private-coin (higher) lower bound, we
need a more specifically designed perturbation Z to get optimal bound.
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The Lower Bound (II)

Generalization: design a perturbation distribution Z over [−1, 1]k/2:

∀1 ≤ i ≤ k/2, p(2i − 1), p(2i) =
(
1+ εZ

k ,
1− εZ

k

)
such that Z ∼ Z has ∥Z∥1 ≥ 1/100 w.h.p. (Generalizes Paninski’s
construction).

Idea
For private-coin lower bound against a given W, can choose Z to “focus”
on the elements which W does not “look at” too much.
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The Lower Bound (II)

Slightly less informal
For private-coin lower bound against a given W, can choose Z to “focus”
on the subspaces orthogonal to H(W)’s largest (“most informative”)
eigenvalues.

⇝ Leads to maxmin-type bounds instead of minmax.
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The Lower Bound (II)

Upshot
Lower bounds for learning, testing, with public- or private-coins: all
depend on the corresponding χ2-contraction factors:

max
W∈W

∥H(W)∥F and max
W∈W

∥H(W)∥∗

Bounding those gives the lower bounds.

Fact
Bounding those quantities in the communication-starved and the ϱ-LDP
cases takes 5 lines.
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max
W∈W

∥H(W)∥F and max
W∈W

∥H(W)∥∗

Bounding those gives the lower bounds.

Fact
Bounding those quantities in the communication-starved and the ϱ-LDP
cases takes 5 lines.



The Lower Bound (III)

Learning Testing

Public/Private-Coin Public-Coin Private-Coin

General W k
ε2 · k

max
W∈W

∥H(W)∥∗

√
k

ε2 ·
√

k
max

W∈W
∥H(W)∥F

√
k

ε2 · k
max

W∈W
∥H(W)∥∗

Centralized k
ε2

√
k

ε2

ℓ bits k
2ℓε2

√
k

ε2 ·
√

k
2ℓ

√
k

ε2 · k
2ℓ

ϱ-LDP k2

ϱ2ε2

√
k

ε2 ·
√

k
ϱ2

√
k

ε2 · k
ϱ2



Part IV: Recap and Conclusion



Unified View
Why did Boaty meet Batman?

How do things change under information constraints?
Pairwise distances contract: specifically, the “right” measure here is the
χ2 divergence,

χ2(p, q) = Ep

[(
q(X)
p(X) − 1

)2]
We give a quantitative characterization of this contraction (lower
bounds) and protocols achieving it.



Unified View
Gotham needed them.

Locally minimum chi-square contraction principle
Design schemes that minimize the local chi-square contraction.



Conclusion

▶ General framework for inference problems with local constraints over
discrete distributions

▶ Captures the communication-starved and the locally private regimes
▶ First work on distributed testing; optimal protocols for public-coin

and private-coin uniformity testing in all settings considered
▶ Many questions and directions to explore: several samples,

continuous case, general parametric settings (high-dimensional
statistics)…
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Thank you

©Dami Lee
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