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Efficient methods for large-scale learning

Large-scale inference problems face several challenges

• Hard to fit a single data set on one machine.

• Data acquired online, or sequentially.

• Data may come with constraints (privacy, duh).
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Optimization over a data set

Consider the problem of solving a minimization problem over a data
set {z1, z2, . . . , zn} of n data points in Rd:

argmin
w∈Rd

1

n

n∑
i=1

`(w, zi),

Minimizing this directly using, e.g. gradient descent, involves
computing n gradients for each data point.

As an example for this talk, zi = (xi, yi), where x ∈ Rd is data for
individual i and yi ∈ {−1, 1} is a label:

w∗ = argmin
w∈Rd

λ

2
‖w‖2 + 1

n

n∑
i=1

log(1 + e−ytw
>xt)

this is regularized logistic regression.
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Computational issues

Regularized logistic regression:

w∗ = argmin
w∈Rd

λ

2
‖w‖2 + 1

n

n∑
i=1

log(1 + e−ytw
>xt)

We can interpret sign(w∗>x) as a decision rule of predicting a label
for a new data point x.
Often solve this problem using gradient descent. When n is large we
have to compute n gradients for each data point.
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Stochastic gradients

A popular method for optimization in this setting is stochastic gradient
descent (SGD). At each time step t = 1, 2, . . ., sample a point (xt, yt)
uniformly from the data set:

wt+1 = wt − ηt(λwt +∇`(wt,xt, yt))

where ηt is the learning rate or step size – often 1/t or 1/
√
t.

• The expected gradient is the true gradient: “stochastic
approximation.”

• In practice, just sample without replacement.

• Taking a few passes through the data typically works well.
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Privacy?

wt+1 = wt − ηt(λwt +∇`(wt,xt, yt))

What happens when the data is private? E.g. x are lab measurements,
y is a disease state.

• Data is still a limited resource.

• Now we want to balance privacy, utility, and efficiency.

• Maybe easy? Iterations are already random.

UCSD + TTI-C Sarwate



Simons 2013 6 / 16

Privacy?

wt+1 = wt − ηt(λwt +∇`(wt,xt, yt))

What happens when the data is private? E.g. x are lab measurements,
y is a disease state.

• Data is still a limited resource.

• Now we want to balance privacy, utility, and efficiency.

• Maybe easy? Iterations are already random.

UCSD + TTI-C Sarwate



Simons 2013 6 / 16

Privacy?

wt+1 = wt − ηt(λwt +∇`(wt,xt, yt))

What happens when the data is private? E.g. x are lab measurements,
y is a disease state.

• Data is still a limited resource.

• Now we want to balance privacy, utility, and efficiency.

• Maybe easy? Iterations are already random.

UCSD + TTI-C Sarwate



Simons 2013 6 / 16

Privacy?

wt+1 = wt − ηt(λwt +∇`(wt,xt, yt))

What happens when the data is private? E.g. x are lab measurements,
y is a disease state.

• Data is still a limited resource.

• Now we want to balance privacy, utility, and efficiency.

• Maybe easy? Iterations are already random.

UCSD + TTI-C Sarwate



Simons 2013 7 / 16

Privacy!

It is easy to guarantee differential privacy in this setting:

wt+1 = wt − ηt (λwt +∇`(wt,xt, yt) + Zt) ,

where each Zt is a random noise vector in Rd drawn independently
from the density:

ρ(z) ∝ e−(ε/2)‖z‖

This guarantees differentially privacy in the continuous observation
setting (Dwork, Naor, Pitassi, and Rothblum ’10) or the local privacy
model (c.f. Duchi, Jordan, and Wainwright ’12).
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... but not off the shelf
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Lots of knobs to tweak

wt+1 = wt − ηt (λwt +∇`(wt,xt, yt) + Zt) ,

There are lots of things to play with here:

• Step size: choosing it is sort of an art

• Noise level vs. multiple passes

• Polyak averaging

• Minibatching: processing multiple points at once

UCSD + TTI-C Sarwate
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Minibatching

Process a batch of b points chosen uniformly at random. At each t
select a set Bt:

wt+1 = wt − ηt

λwt +
1

b

∑
(xi,yi)∈Bt

∇`(wt,xi, yi)


With privacy:

wt+1 = wt − ηt

λwt +
1

b

∑
(xi,yi)∈Bt

∇`(wt,xi, yi) +
1

b
Zt

 .

Note: we’ve given up on local privacy here.
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The minibatching tradeoff

wt+1 = wt − ηt

λwt +
1

b

∑
(xi,yi)∈Bt

∇`(wt,xi, yi) +
1

b
Zt

 .

If we make 1 pass through the data, we now have a new tradeoff:

• Many gradient steps that are very noisy.

• Fewer gradient steps that are less noisy.
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Empirical performance of minibatching
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Minibatching helps a lot!
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What’s the best batch size?

Syntheticbatch size
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Bigger batches are good!
(that seems suspicious...)
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The role of step size

Synthetic, step size O(1/t)batch size
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Optimal batch sizes for more conservative step sizes.
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Many (many!) interesting questions

• How should we set all of these knobs in the presence of privacy
noise?

• What gains are there without continuous observation?

• How should we incorporate multiple sources of data with different
privacy constraints?

• Connections to online learning (Jain, Kothari, and Thakurta ’11)?

• Other optimization algorithms like mirror descent (Smith and
Thakurta ’13)?

• Stochastic optimization versions of other algorithms (Hardt and
Roth ’13, Hardt ’13)?
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Thank you!

(now you can go drink)
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