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Efficient methods for large-scale learning

Large-scale inference problems face several challenges
e Hard to fit a single data set on one machine.
e Data acquired online, or sequentially.

e Data may come with constraints (privacy, duh).
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Optimization over a data set

Consider the problem of solving a minimization problem over a data
set {z1,22,...,2,} of n data points in R%:

1 n
argmin — Z Uw,z;),
=1

weRe T —

Minimizing this directly using, e.g. gradient descent, involves
computing n gradients for each data point.
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Optimization over a data set

Consider the problem of solving a minimization problem over a data
set {z1,22,...,2,} of n data points in R%:

Minimizing this directly using, e.g. gradient descent, involves
computing n gradients for each data point.

As an example for this talk, z; = (x;,y;), where x € R? is data for
individual ¢ and y; € {—1,1} is a label:

n
w* = argmin —||WH2 Z log(1 + e*ythxt)
weRd 7;:1
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Computational issues

Regularized logistic regression:

A 1 —
w* = argmin = ||w|® + = E log(1 + e_thTxt)
werd 2 i
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Computational issues

Regularized logistic regression:

D WP s
w* = argmin —||w||* + — log(1 + e %% ' Xt)
weRd 2 n;
We can interpret sign(w* '

for a new data point x.

x) as a decision rule of predicting a label
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Computational issues

Regularized logistic regression:

n
w* = argmin inHz + 1 Zlog(l + e_thTxt)
weRd 2 n izl
We can interpret sign(w* "
for a new data point x.
Often solve this problem using gradient descent. When n is large we
have to compute n gradients for each data point.

x) as a decision rule of predicting a label

UCSD + TTI-C Sarwate




Simons 2013 5/ 16

Stochastic gradients

A popular method for optimization in this setting is stochastic gradient
descent (SGD). At each time step t = 1,2,..., sample a point (x¢, y;)
uniformly from the data set:

Wip1 = W — e (Awy + VWi, X¢, y1))
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Stochastic gradients

A popular method for optimization in this setting is stochastic gradient
descent (SGD). At each time step t = 1,2,..., sample a point (x¢, y;)
uniformly from the data set:

Wip1 = W — e (Awy + VWi, X¢, y1))

where 1 is the learning rate or step size — often 1/t or 1/+/t.
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Stochastic gradients

A popular method for optimization in this setting is stochastic gradient
descent (SGD). At each time step t = 1,2,..., sample a point (x¢, y;)
uniformly from the data set:

Wip1 = W — e (Awy + VWi, X¢, y1))

where 1 is the learning rate or step size — often 1/t or 1/+/t.

e The expected gradient is the true gradient: “stochastic
approximation.”
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Stochastic gradients

A popular method for optimization in this setting is stochastic gradient
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Stochastic gradients

A popular method for optimization in this setting is stochastic gradient
descent (SGD). At each time step t = 1,2,..., sample a point (x¢, y;)
uniformly from the data set:

Wip1 = W — e (Awy + VWi, X¢, y1))

where 1 is the learning rate or step size — often 1/t or 1/+/t.

e The expected gradient is the true gradient: “stochastic
approximation.”

e In practice, just sample without replacement.

e Taking a few passes through the data typically works well.
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Simons 2013
Privacy?

Wit = wp — Ne(Awy + VWi, X¢, yt))

What happens when the data is private? E.g. x are lab measurements,

1y is a disease state.
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Simons 2013
Privacy?

Wil = wy — N (AW + VI Wy, X4, 1))
What happens when the data is private? E.g. x are lab measurements,

1y is a disease state.
e Data is still a limited resource.

e Now we want to balance privacy, utility, and efficiency.
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Wit = wp — Ne(Awy + VWi, X¢, yt))

What happens when the data is private? E.g. x are lab measurements,
1y is a disease state.

Data is still a limited resource.

e Now we want to balance privacy, utility, and efficiency.

Maybe easy? lterations are already random.
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Privacy!

It is easy to guarantee differential privacy in this setting:

Wil = Wi — 1 (Awy + VW, X¢, yt) + Zy)
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It is easy to guarantee differential privacy in this setting:
Wiyl = Wy — 0y (AW + VW, X4, y1) + Zyt)
where each Z; is a random noise vector in R? drawn independently

from the density:
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It is easy to guarantee differential privacy in this setting:
Wiyl = Wy — 0y (AW + VW, X4, y1) + Zyt)

where each Z; is a random noise vector in R? drawn independently

from the density:

This guarantees differentially privacy in the continuous observation
setting (Dwork, Naor, Pitassi, and Rothblum '10) or the local privacy
model (c.f. Duchi, Jordan, and Wainwright '12).
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... but not off the shelf

synthetic, batch size = 1

. 3 non-private
2 — private
%2

31 ITTITITT

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of iterations

KOYO0%,

ZRUCSD + TTI-C Sarwate
Qcresco &
2

QIcAL>

HO3,
(1332

PO



Simons 2013 8 /16

... but not off the shelf

KDDCup99, batch size =1
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... but not off the shelf

MNIST, batch size = 1

3l non-private
private

Value of objective

Number of iterations
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Lots of knobs to tweak

Wit = Wi — 1 (AW + VW, X, yt) + Zy)
There are lots of things to play with here:

e Step size: choosing it is sort of an art

Noise level vs. multiple passes

Polyak averaging

Minibatching: processing multiple points at once
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Process a batch of b points chosen uniformly at random. At each ¢
select a set By:

1
Wipl = W — 1 | Awy + 3 E VWi, X, Yi)
(x:,y:)EBt

With privacy:

1 1
Wip1 = Wy — 7 | Awg + 5 Z Vil(wy, xi,yi) + gzt
(x4,y:) € Bt

Note: we've given up on local privacy here.
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The minibatching tradeoff

1 1
Wil =Wy =1 | AW + o > V(WX y) + 52
(x4,y:)€Bt

If we make 1 pass through the data, we now have a new tradeoff:
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The minibatching tradeoff

1 1
Wil =Wy =1 | AW + o > V(WX y) + 52
(x4,y:)€Bt

If we make 1 pass through the data, we now have a new tradeoff:

e Many gradient steps that are very noisy.
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The minibatching tradeoff

1 1
Wil =Wy =1 | AW + o > V(WX y) + 52
(x4,y:)€Bt

If we make 1 pass through the data, we now have a new tradeoff:
e Many gradient steps that are very noisy.

e Fewer gradient steps that are less noisy.
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Empirical performance of minibatching

synthetic, batch size =5

non-private
— private

Value of objective
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Empirical performance of minibatching

KDDcup99, batch size =5
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Empirical performance of minibatching

MNIST, batch size =10
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Empirical performance of minibatching

MNIST, batch size =10
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Minibatching helps a lot!
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What's the best batch size?

Synthetic
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What's the best batch size?

Value of objective

KDDcup
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What's the best batch size?
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What's the best batch size?
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Bigger batches are good!
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What's the best batch size?

MNIST
4+
o
2
§ 3
2
)
B 21
o
=]
S
e
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0 5 10 15 20 25 30 35 40 45 50
batch size

Bigger batches are good!
(that seems suspicious...)
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The role of step size

Value of objective

Synthetic, step size O(1/t)
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The role of step size

Value of objective

Synthetic, step size O(1/+/%)
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The role of step size

KDDcup, step size O(1/t)

Value of objective
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The role of step size

KDDcup, step size O(1/+/t)
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Bigger batches are good for aggressive step sizes.
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The role of step size

MNIST, step size O(1/t)
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Bigger batches are good for aggressive step sizes.
Optimal batch sizes for more conservative step sizes.
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The role of step size

Value of objective

MNIST, step size O(1//1)

MNIST
4t —— non-private 1/sqrt(t)
— private 1/sqrt(t)
3 e LBFGS

15 20 25 30 35 40 45 50
batch size

Bigger batches are good for aggressive step sizes.
Optimal batch sizes for more conservative step sizes.

KOYO0%,

HOy
{1332

N

QIeAL>

: UCSD + TTI-C Sarwate
O &



Simons 2013 15 / 16

Many (many!) interesting questions

e How should we set all of these knobs in the presence of privacy
noise?
e What gains are there without continuous observation?

e How should we incorporate multiple sources of data with different
privacy constraints?

¢ Connections to online learning (Jain, Kothari, and Thakurta '11)?

e Other optimization algorithms like mirror descent (Smith and
Thakurta '13)?

e Stochastic optimization versions of other algorithms (Hardt and
Roth '13, Hardt '13)?
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Thank youl!

(now you can go drink)
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