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More formally

Definition (DMNS)

Let M be a randomized mechanism from databases to range R,
and let D,D ′ be databases differing in one record. M is
(ε, δ)-differentially private if for every r ∈ R,

Pr[M(D) = r ] ≤ eε · Pr[M(D ′) = r ] + δ.

Useful properties

• Very strong, worst-case privacy guarantee

• Well-behaved under composition, post-processing



The problem

Query release

• Space of possible records X = {0, 1}d (d binary attributes)

• Database D ∈ N|X | of n records (histogram)

• Analysts want accurate answers to a large (exponential in n)
set Q of counting queries

“What fraction of
records satisfy P?”

• Goal: privately construct distribution D̂ approximating D
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High-dimensional data

Approaches from learning theory

• Dwork, Rothblum, Vadhan: query release via boosting

• Hardt and Rothblum: MW algorithm for query release

• Experimentally evaluated by Hardt, Ligett, McSherry

• Performs well for . 80 binary attributes

What is the bottleneck?

• Operate on distribution over all possible records

• For d ≥ 100, more than 2100 ∼ 1030 records
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Is it possible to do better?

In general, no.

• Impossibility results (see [DNRRV], [Ullman-Vadhan], or
[Ullman])

• Exponentially large collection of queries can’t be answered
efficiently and accurately

Our approach

• Reconfigure existing algorithms to isolate hard step

• Theoretically hard, but often tractable in practice
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Today

1 Query release as a zero sum game

2 Finding equilibrium of this game

3 Dual query release algorithm

4 Performance



The query release game

The players

• Data player: actions are records in X
• Query player: actions are queries in Q

The payoffs/losses

• If data plays r ∈ X and query plays q ∈ Q, payoff

q(r)− q(D) “Error” (D is
true database)

• Data player minimizes, query player maximizes (zero sum)
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Approximate equilibrium

Definition

• Distributions D̂ over records, Q̂ over queries

• Players gain at most α by playing another distribution

For query release

• If data player plays D (true database), expects zero payoff
versus any query

• At α-approximate equilibrium, D̂ has expected
error at most α on any query in Q

Synthetic data
for query release
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Computing the equilibrium

Primal approach

• Manipulate candidate database (distribution over records X )

• Optimize: find query in Q with high error

• Well-studied idea [HR, HLM, ...]

Dual approach

• Manipulate distribution over queries Q
• Optimize: find record in X with low error

• Very similar to Dwork, Rothblum, Vadhan
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The dual optimization problem

The task

• Sample queries q1, . . . , qs from query distribution (for privacy)

• Pick record minimizing average error over q1, . . . , qs :

minimizer {(q1(r)− q1(D)) + · · ·+ (qs(r)− qs(D))}

• But D is fixed, so equivalent to:

minimizer q1(r) + · · ·+ qs(r)

• Pure optimization problem
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Privacy, accuracy, and efficiency

Theorem
Dual query is (ε, δ)-differentially private.

Theorem
With high probability, all queries are handled with error α, where

α = O

(
log |Q| log(1/δ)

n1/3ε1/3

)
.

Efficiency

• Optimization problem depends on specific type of queries

• Often this step is hard...
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How do we gain?

Manage smaller distribution

• Distribution over queries rather than records

• Manageable if Q not too big

Optimization

• Intractable, but doesn’t involve privacy

• Can use any off-the-shelf solver

Further heuristics

• Guarantee privacy, but relax accuracy

• If optimization problem too hard, stop solver early

• Run for fewer rounds
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Does it perform well?

Queries and data

• Database with binary attributes

• Randomly generated data, as well as real data

• Three-way marginal queries

Optimization problem

• Related to MAX3SAT

• Encode as integer program and solve with CPLEX

• Take best solution found in 60s

Hardware

• Medium performance desktop computer
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Does it perform well?
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Details

• Real networking data, ∼ 100 independent binary attributes

• ∼ 500k records, ∼ 500k queries

• Most of time spent evaluating queries, rather than optimizing
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Details

• Randomly biased data, 2000 independent binary attributes

• 100k records, 100k queries



Wrapping up

More practical query release

• Handle higher dimensional data

• Use standard solvers on the hard step

• Performs well in practice

Ongoing/future work

• More experiments, solvers. Scaling?

• Other classes of queries?

• When is the optimization problem easy?

• Other heuristics for privacy?



Wrapping up

More practical query release

• Handle higher dimensional data

• Use standard solvers on the hard step

• Performs well in practice

Ongoing/future work

• More experiments, solvers. Scaling?

• Other classes of queries?

• When is the optimization problem easy?

• Other heuristics for privacy?



Dual Query Release

MW CPLEX Query 
Release

Marco Gaboardi, Emilio Gallego Jésus Arias,
Justin Hsu, Aaron Roth, Steven Wu

University of Pennsylvania

December 11th, 2013


