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Stochastic gradient methods

The problem in this talk:

minimize
x

F (x) := E[f(x;S)] =

∫
f(x; s)dP (s)

subject to x ∈ X

Stochastic gradient method:

xk+1 = xk − αkgk, gk ∈ ∂f(xk;Sk)

Why we use this?

I Easy to analyze?

I Default in software packages and simple to implement?

I It works?
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Optimization methods

How do we solve optimization problems?

1. Build a “good” but simple local model of f

2. Minimize the model (perhaps regularizing)
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Optimization methods

How do we solve optimization problems?

1. Build a “good” but simple local model of f

2. Minimize the model (perhaps regularizing)

Newton’s method: Taylor (second-order) model

f(y) ≈ fx(y) := f(x) +∇f(x)T (y − x) + (1/2)(y − x)T∇2f(x)(y − x)



Generic(ish) optimization methods

Iterate

xk+1 = argmin
x∈X

{
fxk(x) +

1

2αk
‖x− xk‖2

}

I Proximal point method (fx = f) [Rockafellar 76]

I Gradient descent (fx(y) = f(x) + 〈∇f(x), y − x〉)
I Newton (fx(y) = f(x) + 〈∇f(x), y− x〉+ 1

2(x− y)T∇2f(x)(x− y))

I Prox-linear (fx(y) = h(c(x) +∇c(x)T (y − x)))
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The aProx family for stochastic optimization

Iterate:

I Sample Sk
iid∼ P

I Update by minimizing model

xk+1 = argmin
x∈X

{
fxk(x;Sk) +

1

2αk
‖x− xk‖2

}

Examples:

I Stochastic gradient method

I Stochastic proximal-point (implicit gradient) method, fxk(x) = f(x)
[Rockafellar 76; Kulis & Bartlett 10; Karampatziakis & Langford 11;

Bertsekas 11; Toulis & Airoldi 17; Ryu & Boyd 16]

I Stochastic prox-linear methods [D. & Ruan 18; Asi & D. 18]
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Models in stochastic optimization

Stochastic gradient method

fx(y; s) = f(x; s) + 〈f ′(x; s), y − x〉 for some f ′(x; s) ∈ ∂f(x; s)

Conditions on our models (convex case)

i. Convex model:
y 7→ fx(y; s) is convex

ii. Lower bound:
fx(y; s) ≤ f(y; s)

iii. Local correctness:

fx(x; s) = f(x; s) and ∂fx(x; s) ⊂ ∂f(x; s)

[D. & Ruan 17; Davis & Drusvyatskiy 18]
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Models in stochastic optimization

          
           

Linear

Truncated

x0

x1

i. (Sub)gradient: fx(y) = f(x) + 〈f ′(x), y − x〉
ii. Truncated: fx(y) = (f(x) + 〈f ′(x), y − x〉) ∨ infx f(x)

iii. Bundle/multi-line: fx(y) = max{f(xi) + 〈f ′(xi), x− xi〉}



The aProx family

Iterate:

I Sample Sk
iid∼ P

I Update by minimizing model
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x∈X
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Non-divergence

Example

Let
bi = aTi x

?

for i = 1, 2, . . . ,m.

I Iterate stochastic gradient method on 1
2m

∑m
i=1(aTi x− bi)2

I for all iterations

(xk+1 − x?) = (I − αkaiaTi )(xk − x?)

I If α1, α2, . . . too large, may diverge exponentially at first: if
Σ = m−1

∑m
i=1 aia

T
i ,
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Stability guarantees

Use full stochastic-proximal method,

xk+1 = argmin
x∈X

{
f(x;Sk) +

1

2αk
‖x− xk‖2

}
.

Theorem (Asi & D. 18)

Assume X ? = argminx∈X F (x) is non-empty and E[‖f ′(x?;S)‖2] ≤ σ2.
Then

E[dist(xk,X ?)2] ≤ dist(x0,X ?)2 + σ2
k∑
i=1

α2
i

Theorem (Asi & D. 18)

Under the same assumptions,

sup
k

dist(xk,X ?) <∞ and dist(xk,X ?) a.s.→ 0.
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Stability guarantees under growth

Assume that local strong convexity

f(y; s) ≥ f(x; s) + 〈f ′(x; s), y − x〉+
1

2
(x− y)TΣ(s)(x− y)

holds with E[Σ(S)] = Σ � 0

Theorem (Asi & D. 18)

The stochastic proximal-point method satisfies

E[‖xk+1 − x?‖22 | xk] ≤ (1− cαk) ‖xk − x?‖22 + σ2α2
k.

and
E[‖xk − x?‖22] . σ2kα2

k.

(Always converging toward optimum)
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Example behaviors

On least-squares objective F (x) = 1
2m

∑m
i=1(aTi x− bi)2
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A few additional stability guarantees

I Do not need full proximal method, just accurate enough
approximations

I Do not need convexity; some forms of weak convexity sufficient for
stability



Classical asymptotic analysis

Theorem (Polyak & Juditsky 92)

Let F be convex and strongly convex in a neighborhood of x?, and assume
that f(x;S) are globally smooth. For xk generated by stochastic gradient
method,

1√
k

k∑
i=1

(xi − x?) d
 N

(
0,∇2F (x?)−1 Cov(∇f(x?;S))∇2F (x?)−1

)
.



New asymptotic analysis

Theorem (Asi & D. 18)

Let F be convex and strongly convex in a neighborhood of x?, and assume
that f(x;S) are smooth near x?. Then if xk remain bounded and the
models fxk(·;Sk) satisfy our conditions,

1√
k

k∑
i=1

(xi − x?) d
 N

(
0,∇2F (x?)−1 Cov(∇f(x?;S))∇2F (x?)−1

)
.

I Optimal by local minimax
theorem [Hájek 72; Le Cam 73;

D. & Ruan 18]

I Key insight: subgradients of
fxk(·;Sk) close to ∇f(xk;Sk)
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What is an easy problem?

I Interpolation problems [Belkin, Hsu, Mitra 18; Ma, Bassily, Belkin 18]

I Overparameterized linear systems (Kaczmarz algorithms) [Strohmer &

Vershynin 09; Needell, Srebro, Ward 14; Needell & Tropp 14]

I Random projections for linear constraints [Leventhal & Lewis 10]

(a) MNIST (b) CIFAR-10 (c) SVHN (2 · 104 subsamples)

(d) TIMIT (5 · 104 subsamples) (e) HINT-S (2 · 104 subsamples) (f) 20 Newsgroups

Figure 1: Comparison of approximate classifiers trained by EigenPro-SGD [MB17] and interpo-
lated classifiers obtained from direct method for kernel least squares regression.
† All methods achieve 0.0% classification error on training set. ‡ We use subsampled dataset to reduce the
computational complexity and to avoid numerically unstable direct solution.

For comparison, we also show the performance of interpolating solutions given by Eq. 2 and
solved using direct methods. As expected, direct solutions always provide a highly accurate inter-
polation for the training data with the error in most cases close to numerical precision. Remark-
ably, we see that in all cases performance of the interpolated solution on test is either optimal or
close to optimal both in terms of both regression and classification error.

Performance of overfitted/interpolated kernel classifiers closely parallels behaviors of deep
networks noted in [ZBH+16] which fit the data exactly (only the classification error is reported
there, other references also report MSE [CCSL16, HLWvdM16, SEG+17, BFT17]). We note that
observations of unexpectedly strong performance of overfitted classifiers have been made before.
For example, in kernel methods it has been observed on multiple occasions that very small values
of regularization parameters frequently lead to optimal performance [SSSSC11, TBRS13]. Similar
observations were also made for Adaboost and Random Forests [SFBL98] (see [WOBM17] for

7



What is an easy problem?

minimize
x

F (x) := E[f(x;S)] =

∫
f(x; s)dP (s)

Definition: Problem is easy if there exists x? such that
f(x?;S) = infx f(x;S) with probability 1. [Schmidt & Le Roux 13; Ma,

Bassily, Belkin 18; Belkin, Rakhlin, Tsybakov 18]

One additional condition

iv. The models fx satisfy

fx(y; s) ≥ inf
x?∈X

f(x?; s)
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Easy strongly convex problems

Theorem (Asi & D. 18)

Let the function F satisfy the growth condition

F (x) ≥ F (x?) +
λ

2
dist(x,X?)2

where X? = argminx F (x), and be easy. Then

E[dist(xk, X
?)2] ≤ max

{
exp

(
−c

k∑
i=1

αi

)
, exp (−ck)

}
dist(x1, X

?)2.

I Adaptive no matter the stepsizes

I Most other results (e.g. for SGM [Schmidt & Le Roux 13; Ma, Bassily,

Belkin 18]) require careful stepsize choices
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Sharp convex problems

Definition: An objective F is sharp if

F (x) ≥ F (x?) + λdist(x,X?)

for X? = argminF (x). [Ferris 88; Burke & Ferris 95]

I Piecewise linear objectives
I Hinge loss F (x) = 1

m

∑m
i=1

[
1− aTi x

]
+
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I Projection onto intersections: F (x) = 1
m
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Theorem (Asi & D. 18)

Let F have sharp growth and be easy. Then

E[dist(xk+1, X
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Methods

Iterate

xk+1 = argmin
x

{
fxk(x;Sk) +

1

2αk
‖x− xk‖22

}

I Stochastic gradient

fxk(x;Sk) = f(xk;Sk) + 〈f ′(xk;Sk), x− xk〉

I Truncated gradient (f ≥ 0):

fxk(x;Sk) =
[
f(xk;Sk) + 〈f ′(xk;Sk), x− xk〉

]
+

I (Stochastic) proximal point

fxk(x;Sk) = f(x;Sk)



Methods

Iterate

xk+1 = argmin
x

{
fxk(x;Sk) +

1

2αk
‖x− xk‖22

}
I Stochastic gradient

fxk(x;Sk) = f(xk;Sk) + 〈f ′(xk;Sk), x− xk〉

I Truncated gradient (f ≥ 0):

fxk(x;Sk) =
[
f(xk;Sk) + 〈f ′(xk;Sk), x− xk〉

]
+

I (Stochastic) proximal point

fxk(x;Sk) = f(x;Sk)



Linear regression with low noise

F (x) =
1

2m

m∑
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Linear regression with no noise
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Linear regression with “poor” conditioning
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Absolute loss regression with no noise
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Absolute loss regression with noise
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Multiclass hinge loss: no noise

f(x; (a, l)) = max
i 6=l

[1 + 〈a, xi − xl〉]+
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Multiclass hinge loss: small label flipping

f(x; (a, l)) = max
i 6=l

[1 + 〈a, xi − xl〉]+
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Multiclass hinge loss: substantial label flipping

f(x; (a, l)) = max
i 6=l

[1 + 〈a, xi − xl〉]+
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(Robust) Phase retrieval

[Candès, Li, Soltanolkotabi 15]

Observations (usually)
bi = 〈ai, x?〉2

yield objective

f(x) =
1

m

m∑
i=1

|〈ai, x〉2 − bi|
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Phase retrieval without noise

F (x) =
1

m

m∑
i=1

|〈ai, x〉2 − bi|
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Matrix completion without noise

F (x, y) =
∑
i,j∈Ω

|〈xi, yj〉 −Mij |
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Obligatory CIFAR Experiment
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Robust phase retrieval problems

Data model: true signal x? ∈ Rn, noise ξi = 0 most of the time

bi = 〈ai, x?〉2 + ξi

Goal: solve

minimize
x

f(x) =
1

m

m∑
i=1

|〈ai, x〉2 − bi|

Composite problem: f(x) = 1
m ‖φ(Ax)− b‖1 = h(c(x)) where φ(·) is

elementwise square,

h(z) =
1

m
‖z‖1 , c(x) = φ(Ax)− b
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Data model: true signal x? ∈ Rn, noise ξi = 0 most of the time
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Composite problem: f(x) = 1
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Composite optimization problems (other model-able
structures)

The problem:
minimize

x
f(x) := h(c(x))

where
h : Rm → R is convex and c : Rn → Rm is smooth

[Fletcher & Watson 80; Fletcher 82; Burke 85; Wright 87; Lewis & Wright 15;

Drusvyatskiy & Lewis 16]



Modeling composite problems

Now we make a convex model

f(x) = h(c(x))
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Now we make a convex model

f(y) ≈ h(c(x) +∇c(x)T (y − x)︸ ︷︷ ︸
=c(y)+O(‖x−y‖2)
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Example: f(x) = |x2 − 1|, h(z) = |z| and c(x) = x2 − 1
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Recent analysis: weakly convex case

Definition: A function F is ρ-weakly convex if for all x0,

F (x) +
ρ

2
‖x− x0‖2 is convex



Recent analysis: weakly convex case

Definition: A function F is ρ-weakly convex if for all x0,

F (x) +
ρ

2
‖x− x0‖2 is convex

Examples:

I F has ∇2F (x) � −λI, then F is λ-weakly convex

I f(x) = h(c(x)) for h convex, M -Lipschitz and c smooth with ∇c
L-Lipschitz is L ·M -weakly convex



Recent analysis: weakly convex case

Definition: A function F is ρ-weakly convex if for all x0,

F (x) +
ρ

2
‖x− x0‖2 is convex

Typical convergence guarantee:
iterates xk close to stationary points

X?
ε := {x | dist(0, ∂f(x)) ≤ ε}

Points near
stationary set



Recent analysis: weakly convex case

Definition: A function F is ρ-weakly convex if for all x0,

F (x) +
ρ

2
‖x− x0‖2 is convex

Theorem (Davis & Drusvyatskiy 18, paraphrased)

Let random functions f be Lipschitz and ρ-weakly convex. Let xk be
generated by model-based method satisfying conditions,

X?
ε = {x | dist(0, ∂F (x)) ≤ ε},

and choose index i? = i with probability αi/
∑k

j=1 αj . Then roughly

E[dist(xi? , X
?
ε )2] .

1 +
∑k

i=1 α
2
i∑k

i=1 αi



Generalized asymptotic analysis: weakly convex case

Theorem (Asi & D., 2018)

Let F be ρ-weakly convex, and assume that

E[‖f ′(x;S)‖2] ≤ C1‖F ′(x)‖2 + C2.

Let X?
ε = {x | dist(0, ∂F (x)) ≤ ε}. Choose index i? = i with probability

αi/
∑k

j=1 αj . If the iterates xk remain bounded, then with probability 1,

E[dist(xi? , X
?
ε )2 | x1, x2, . . .] .

1 +
∑k

i=1 α
2
i∑k

i=1 αi
.

Iterates remain bounded with stochastic proximal-point-like algorithms
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Experiment: corrupted measurements

I Data generation: dimension n = 200,

ai
iid∼ N(0, In) and bi =

{
0 w.p. pfail

〈ai, x?〉2 otherwise

(most confuses our initialization method)

I Compare to Zhang, Chi, Liang’s Median-Truncated Wirtinger Flow
(designed specially for standard Gaussian measurements)

I Look at success probability against m/n (note that m ≥ 2n− 1 is
necessary for injectivity)



Experiment: corrupted measurements

0.0 0.25 0.5 0.75 1.0

0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

1.8
2.0
2.5
3.0
4.0
6.0
8.0

0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

1.8
2.0
2.5
3.0
4.0
6.0
8.0

pfail



Sharp weakly convex problems

Example: Suppose that

bi = 〈ai, x?〉2, i = 1, . . . ,m.

Then

F (x) :=
1

m

m∑
i=1

|〈ai, x〉2 − bi| ≥ F (x?) + λ dist(x, {−x?, x?}).



Sharp weakly convex problems

Definition: An weakly convex objective F is sharp if

F (x) ≥ F (x?) + λdist(x,X?)

for X? = argminF (x) and x near X?. [Ferris 88; Burke & Ferris 95]

Theorem (Asi & D. 18)

Assume that F is weakly convex, has sharp growth, and is easy. If xk
converges to X? = argminx F (x) and models fxk satisfy all conditions,
then

lim sup
k

dist(xk, X
?)

(1− λ)k
<∞.



Conclusions

I Perhaps blind application of stochastic gradient methods is not the
right answer

I Care and better modeling can yield improved performance

I Computational efficiency important in model choice

Questions

I More satisfying adaptation results?

I Parallelism?



Conclusions

I Perhaps blind application of stochastic gradient methods is not the
right answer

I Care and better modeling can yield improved performance

I Computational efficiency important in model choice

Questions

I More satisfying adaptation results?

I Parallelism?


	Motivating experiments
	Models in optimization
	Stochastic optimization
	Stability is better
	Nothing gets worse
	Adaptivity in easy problems

	Revisiting experimental results
	Phase retrieval and composite optimization (if time)

