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cuclidean k-means and k-medians

Given a set of points X in R™

Partition X into k clusters Cy, ..., C;, and find a

“center” ¢; for each C; so as to minimize the cost
k

Z Z: d(u,c;) (k-median)

=1 UEC;

Zk: Z d(u, c;)* (k-means)

=1 UEC;




Dimension Reduction

Dimension reduction ¢: R™ — R? is a random map
that preserves distances within a factor of (1 + &)
with probability at least 1 — 0:

T, lu—vll =l -l = A+ &)lfu —vll

[Johnson-Lindenstrauss ‘84] There exists a random
log 1/6)

g2

linear dimension reduction with d = O (

[Larsen, Nelson ‘17] The dependence of d on € and 0
is optimal.




Dimension Reduction

JL preserves all distances between points in X whp

when d = Q(log |X|/£?).
Numerous applications in computer science.

Dimension Reduction Constructions:

*[JL ‘84] Project on a random d-dimensional subspace

* [Indyk, Motwani ‘98] Apply a random Gaussian matrix
* [Achlioptas ‘03] Apply a random matrix with +1 entries
* [Ailon, Chazelle ‘O6] Fast JL-transform




k-means under dimension reduction

[Boutsidis, Zouzias, Drineas ’'10]

Apply a dimension reduction @ to our dataset X

Cluster @ (X) in dimension d.



k-means under dimension reduction

want

Optimal clusterings of X and @ (X) have
approximately the same cost.

even better

The cost of every clustering is approximately
preserved.

For what dimension d can we get this?




k-means under dimension reduction

Folklore ~logn /&2 1+¢
it ooy
Cohen, Elder, ~k/&? 1+¢
Musco, Musco, |

Porsy '15 ~logk /&? 9+ ¢
MMR ’18 ~log(k/¢) /&> 1+¢
Lower bound ~log k /&2 1+¢




k-medians under dimension reduction

Prior work — —
Kirszsbraun Thm = ~logn /&2 1+¢
MMR ’18 ~log(k/¢) /> 1+¢
Lower bound ~log k /&* 1+¢




Plan

k-means
* Challenges
* Warm up: d~logn /&?
* Special case: “distortions” are everywhere sparse
* Remove outliers: the general case — the special case
* Qutliers
k-medians

* Overview of our approach



Out result for k-means

Llet X ¢ R™

@:R™ —» R? be a random dimension reduction.

d = clog /e

With probability at least 1 — 9:

(1 —¢)costC < costp(C) < (1+ ¢&)costC

for every clustering C = (Cq, ..., Cy,) of X




Challenges

Let C* be the optimal k-means clustering.

Easy:
costC" = cost p(C™)

with probability 1 — 6

Hard: Prove that there is no other clustering C’ s.t.

cost p(C') < (1 — &)costC*

[ ] [ ] [ ] ,
since there are exponentially many clusterings C

(can’t use the union bound)



Warm-up

Consider a clustering C = ((C4, ..., Cy).

Write the cost in terms of pair-wise distances:

cost C = z 2] 2 lu — v||?

u,vec;

all distances ||u — v|| are preserved within 1 + ¢

cost C is preserved within 1 + ¢

Sufficient to have d~ logn /&2




Problem & Notation

Assume that C = ((3, ..., Cy) is a random clustering
that depends on @.

Want to prove: cost C = cost @(C) whp.

The distance between u and v is (1 + €)-preserved
or distorted depending on whether

o) — W)l =14 llu —vl|

Think 6 = poly(1/k, €) is sufficiently small.




Distortion graph

Connect u and v with an edge if the distance
between them is distorted.

+ Every edge is present with probability at most 0.
— Edges are not independent.

— C depends on the set of edges.

— May have high-degree vertices.

— All distances in a cluster may be distorted.




Cost of a cluster

1C z
” ”2
Zl il

u,vecl;

The cost of (; is

+ Terms for non-edges (u, V) are (1 + €) preserved.
lu =l = llo@) = )

— Need to prove that

D llu=vlP= " llp@ - p@)? £ e'cost

U, vecC; u,vec;
(u,v)EE (u,v)EE



€verywhere-sparse edges

7
vl

./.

Assume every U € (; is connected to at most
a O fraction of all v in C; (where 0 K &).




€verywhere-sparse edges

+ Terms for non-edges (u, V) are (1 + €) preserved.

+ The contribution of terms for edges is small:

for an edge (U, v) and any w € (;
lu—v| <|lu—wl| + ||lw-1v|

lu —v]|12 < 2(llu — wll? + [lw — v]|?)




€verywhere-sparse edges
lu —vlI> < 2(llu — wll* + [lw — v||?)

* Replace the term for every edge with two terms
lu — w||?, [lw — v]||? for random w € C;.

*Each term is used at most 20 times, in expectation.

z lu—v||* < 46 z lu — v

(u,v)EE U, VEC;
u,vec;



€verywhere-sparse edges

D llu—vlx Y fu=vl?

U, VEC; (u,v)€E

~y
~y

> o —omIP = ) llp) - o)1

(u,v)EE U,VEC;



€verywhere-sparse edges

D llu—vlx Y fu=vl?

U, VEC; (u,v)€E

~y
~y

> o —omIP = ) llp) - o)1

(u,v)EE U,VEC;

Edges are not necessarily everywhere sparse!



Outliers

(] (] [ ] [ ] ,
Want: remove “outliers” so that in the remaining set X
edges are everywhere sparse in every cluster.

\/
P |02

TaNp




(1 — 8) non-distorted core

(] (] [ ] [ ] ,
Want: remove “outliers” so that in the remaining set X
edges are everywhere sparse in every cluster.




(1 — 8) non-distorted core

[ ] [ ] [ ] [ ] ’
Want: remove “outliers” so that in the remaining set X
edges are everywhere sparse in every cluster.

Find a subset X' € X (which depends on C) s.t.

*Edges are sparse in the obtained clusters:

Every u € C; N X' is connected to at most
a 0 fraction of all vin C; N X'.

e Qutliers are rare:

For every u,

Prlug X') <6




All clusters are large

Assume all clusters are of size ~n/k. Let 8 = §/4.

outliers = all vertices of degree at least ~On/k

Every vertex has degree at most On in expectation.
By Markoy,

Pr(u is an outlier) < r3 <0
Remove On K n/k vertices in total, so all clusters still
have size ~n/k.

Crucially use that all clusters are large!




Main Combinatorial lemma

ldea: assign “weights” to vertices so that all clusters
have a large weight.

*There is a measure (L on X and random set R s.t.

1
ulx) = AR for x € C; \ R (always)
u(X) < 4k3/0%

*Pr(x eR) <6

All clusters C; \ R are “large” w.r.t. measure L.

Can apply a variant of the previous argument.




€dges Incident on Outliers

Need to take care of edges incident on outliers.

Say, U is an outlier and v is not.

Consider a fixed optimal clustering C7, ..., C, for X.

Let ¢” be the optimal center for u.



€dges Incident on Outliers

lu—v|| =|lv—=—c*l| £ llc* —ull
Q

o) — W)l = lle) — ()l £ [lo(c) — @)l

May assume that the distances between non-outliers
and the optimal centers are (1 + £)-preserved.



€dges Incident on Outliers

lu—vl|| =lv—=c*l| £ llc* —ull
Q

o) — W)l = lle) — ()l £ [lo(c) — @)l

E[ Xyexllcn —ull’] < 0 Zyexlley — ull* = 6 OPT




€dges Incident on Outliers

lu—v|| =|lv—=—c*l| £ llc* —ull
Q

le(w) — W)l = lle) — ()l £ [lp(c) — @)l

Taking care of ||@(c*) — @(u)|| is a bit more difficult.

QED



k-medians under dimension
reduction



k-medians

— No formula for the cost of the clustering in terms
of pairwise distances.

— Not obvious when d ~ logn (then all pairwise
distances are approximately preserved).

[was asked by Ravi Kannan in a tutorial @ Simons]

+ Kirzsbraun Theorem = the d~logn case

+ Prove a Robust Kirzsbraun Theorem

Our methods for k-means + Robust Kirzsbraun =

d~ log k for k-medians




Summary

* Prove that the cost of every k-means and k-medians
clustering is preserved up to (1 + €) under

dimension reduction, when d = ¢ log%/gz.
* The bound on d almost matches the lower bound.
* k-means: improves the bound d > Z—IZ( by Cohen et al.
* k-medians: no results were known.

* Applies to k-clustering with ’rhe {,-objective when

d > cp* log /8



