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Euclidean 𝑘-means and 𝑘-medians

Given a set of points 𝑋 in ℝ𝑚

Partition 𝑋 into 𝑘 clusters 𝐶1, … , 𝐶𝑘 and find a 
“center” 𝑐𝑖 for each 𝐶𝑖 so as to minimize the cost
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Dimension Reduction

Dimension reduction 𝜑:ℝ𝑚 → ℝ𝑑 is a random map 
that preserves distances within a factor of 1 + 𝜀
with probability at least 1 − 𝛿:

1

1 + 𝜀
𝑢 − 𝑣 ≤ 𝜑 𝑢 − 𝜑 𝑣 ≤ (1 + 𝜀) 𝑢 − 𝑣

[Johnson-Lindenstrauss ‘84] There exists a random 

linear dimension reduction with 𝑑 = 𝑂
log 1/𝛿

𝜀2
.

[Larsen, Nelson ‘17] The dependence of 𝑑 on 𝜀 and 𝛿
is optimal.



Dimension Reduction

JL preserves all distances between points in 𝑋 whp 
when 𝑑 = Ω(log |𝑋|/𝜀2).

Numerous applications in computer science.

Dimension Reduction Constructions:

• [JL ‘84] Project on a random 𝑑-dimensional subspace

• [Indyk, Motwani ‘98] Apply a random Gaussian matrix

• [Achlioptas ‘03] Apply a random matrix with ±1 entries

• [Ailon, Chazelle ‘06] Fast JL-transform



𝑘-means under dimension reduction

[Boutsidis, Zouzias, Drineas ’10]

Apply a dimension reduction 𝜑 to our dataset 𝑋

Cluster 𝜑(𝑋) in dimension 𝑑.

dimension reduction 



𝑘-means under dimension reduction

want

Optimal clusterings of 𝑋 and 𝜑(𝑋) have 
approximately the same cost.

even better

The cost of every clustering is approximately 
preserved.

For what dimension 𝑑 can we get this?



𝑘-means under dimension reduction

𝒅 distortion

Folklore ~ log𝑛 /𝜀2 1 + 𝜀

Boutsidis, Zouzias, 

Drineas ‘10
~𝑘/𝜀2 2 + 𝜀

Cohen, Elder, 

Musco, Musco,

Persu ’15

~𝑘/𝜀2 1 + 𝜀

~ log 𝑘 /𝜀2 9 + 𝜀

MMR ’18 ~ log(𝑘/𝜀) /𝜀2 1 + 𝜀

Lower bound ~ log 𝑘 /𝜀2 1 + 𝜀



𝑘-medians under dimension reduction

𝒅 distortion

Prior work — —

Kirszsbraun Thm ⇒ ~ log 𝑛 /𝜀2 1 + 𝜀

MMR ’18 ~ log(𝑘/𝜀) /𝜀2 1 + 𝜀

Lower bound ~ log 𝑘 /𝜀2 1 + 𝜀



Plan

𝑘-means

•Challenges

•Warm up: 𝑑~log 𝑛 /𝜀2

•Special case: “distortions” are everywhere sparse

•Remove outliers: the general case → the special case

•Outliers

𝑘-medians

•Overview of our approach



Out result for 𝑘-means

Let 𝑋 ⊂ ℝ𝑚

𝜑:ℝ𝑚 → ℝ𝑑 be a random dimension reduction.

𝑑 ≥ 𝑐 log
𝑘

𝜀𝛿
/𝜀2

With probability at least 1 − 𝛿:

1 − 𝜀 cost 𝒞 ≤ cost 𝜑 𝒞 ≤ 1 + 𝜀 cost 𝒞

for every clustering 𝒞 = 𝐶1, … , 𝐶𝑘 of 𝑋



Challenges

Let 𝒞∗ be the optimal 𝑘-means clustering.

Easy:
cost 𝒞∗ ≈ cost 𝜑(𝒞∗)

with probability 1 − 𝛿

Hard: Prove that there is no other clustering 𝒞′ s.t.

cost 𝜑 𝒞′ < 1 − 𝜀 cost 𝒞∗

since there are exponentially many clusterings 𝒞′

(can’t use the union bound)



Warm-up

Consider a clustering 𝒞 = (𝐶1, … , 𝐶𝑘).

Write the cost in terms of pair-wise distances:

cost 𝒞 =෍

𝑖=1

𝑘
1

2|𝐶𝑖|
෍

𝑢,𝑣∈𝐶𝑖

𝑢 − 𝑣 2

all distances 𝑢 − 𝑣 are preserved within 1 + 𝜀

⇓
cost 𝒞 is preserved within 1 + 𝜀

Sufficient to have 𝑑~ log 𝑛 /𝜀2



Problem & Notation

Assume that 𝒞 = (𝐶1, … , 𝐶𝑘) is a random clustering 
that depends on 𝜑.

Want to prove: cost 𝒞 ≈ cost 𝜑 𝒞 whp.

The distance between 𝑢 and 𝑣 is (1 + 𝜀)-preserved 
or distorted depending on whether 

𝜑(𝑢) − 𝜑(𝑣) ≈1+𝜀 𝑢 − 𝑣

Think 𝛿 = poly(1/𝑘, 𝜀) is sufficiently small.



Distortion graph

Connect 𝑢 and 𝑣 with an edge if the distance 
between them is distorted.

+ Every edge is present with probability at most 𝛿.

− Edges are not independent.

− 𝒞 depends on the set of edges.

− May have high-degree vertices.

− All distances in a cluster may be distorted.



Cost of a cluster

The cost of 𝐶𝑖 is 
1

2|𝐶𝑖|
෍
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𝑢 − 𝑣 2

+ Terms for non-edges (𝑢, 𝑣) are (1 + 𝜀) preserved.

𝑢 − 𝑣 ≈ 𝜑 𝑢 − 𝜑(𝑣)

− Need to prove that 
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𝜑 𝑢 − 𝜑(𝑣) 2 ± 𝜀′cost 𝒞



Everywhere-sparse edges

Assume every 𝑢 ∈ 𝐶𝑖 is connected to at most 
a 𝜃 fraction of all 𝑣 in 𝐶𝑖 (where 𝜃 ≪ 𝜀).



Everywhere-sparse edges

+ Terms for non-edges (𝑢, 𝑣) are (1 + 𝜀) preserved. 

+ The contribution of terms for edges is small:

for an edge 𝑢, 𝑣 and any 𝑤 ∈ 𝐶𝑖

𝑢 − 𝑣 ≤ 𝑢 − 𝑤 + 𝑤 − 𝑣

𝑢 − 𝑣 2 ≤ 2 𝑢 − 𝑤 2 + 𝑤 − 𝑣 2



Everywhere-sparse edges

𝑢 − 𝑣 2 ≤ 2 𝑢 − 𝑤 2 + 𝑤 − 𝑣 2

•Replace the term for every edge with two terms 
𝑢 − 𝑤 2, 𝑤 − 𝑣 2 for random 𝑤 ∈ 𝐶𝑖 .

• Each term is used at most 2𝜃 times, in expectation.
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Everywhere-sparse edges
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Everywhere-sparse edges

෍

𝑢,𝑣∈𝐶𝑖

𝑢 − 𝑣 2 ≈ ෍

𝑢,𝑣 ∉𝐸

𝑢 − 𝑣 2

≈

෍

(𝑢,𝑣)∉𝐸

𝜑(𝑢) − 𝜑(𝑣) 2 ≈ ෍

𝑢,𝑣∈𝐶𝑖

𝜑(𝑢) − 𝜑(𝑣) 2

Edges are not necessarily everywhere sparse! 



Outliers

Want: remove “outliers” so that in the remaining set 𝑋′
edges are everywhere sparse in every cluster.



(1 − 𝜃) non-distorted core

Want: remove “outliers” so that in the remaining set 𝑋′
edges are everywhere sparse in every cluster.



(1 − 𝜃) non-distorted core

Want: remove “outliers” so that in the remaining set 𝑋′
edges are everywhere sparse in every cluster.

Find a subset 𝑋′ ⊂ 𝑋 (which depends on 𝒞) s.t.

• Edges are sparse in the obtained clusters: 

Every 𝑢 ∈ 𝐶𝑖 ∩ 𝑋′ is connected to at most 
a 𝜃 fraction of all 𝑣 in 𝐶𝑖 ∩ 𝑋′.

•Outliers are rare: 

For every 𝑢, 
Pr 𝑢 ∉ 𝑋′ ≤ 𝜃



All clusters are large

Assume all clusters are of size ~𝑛/𝑘. Let 𝜃 = 𝛿1/4.

outliers = all vertices of degree at least ~𝜃𝑛/𝑘

Every vertex has degree at most 𝛿𝑛 in expectation. 

By Markov, 

Pr( 𝑢 is an outlier) ≤
𝛿𝑘

𝜃
≤ 𝜃

Remove 𝜃𝑛 ≪ 𝑛/𝑘 vertices in total, so all clusters still 
have size ~𝑛/𝑘.

Crucially use that all clusters are large!



Main Combinatorial Lemma

Idea: assign “weights” to vertices so that all clusters 
have a large weight.

• There is a measure 𝜇 on 𝑋 and random set 𝑅 s.t.

𝜇 𝑥 ≥
1

𝐶𝑖∖𝑅
for 𝑥 ∈ 𝐶𝑖 ∖ 𝑅 (always)

•𝜇 𝑋 ≤ 4𝑘3/𝜃2

•Pr(𝑥 ∈ 𝑅) ≤ 𝜃

All clusters 𝐶𝑖 ∖ 𝑅 are “large” w.r.t. measure 𝜇.

Can apply a variant of the previous argument.



Edges Incident on Outliers

Need to take care of edges incident on outliers.

Say, 𝑢 is an outlier and 𝑣 is not.

Consider a fixed optimal clustering 𝐶1
∗, … , 𝐶𝑘

∗ for 𝑋.

Let 𝑐∗ be the optimal center for 𝑢.

𝑣𝑢

𝑐∗



Edges Incident on Outliers

𝑢 − 𝑣 = 𝑣 − 𝑐∗ ± 𝑐∗ − 𝑢

𝜑(𝑢) − 𝜑(𝑣) = 𝜑(𝑣) − 𝜑(𝑐∗) ± 𝜑(𝑐∗) − 𝜑(𝑢)

May assume that the distances between non-outliers 
and the optimal centers are 1 + 𝜀 -preserved.

𝑣𝑢

𝑐∗

≈



Edges Incident on Outliers

𝑢 − 𝑣 = 𝑣 − 𝑐∗ ± 𝑐∗ − 𝑢

𝜑(𝑢) − 𝜑(𝑣) = 𝜑(𝑣) − 𝜑(𝑐∗) ± 𝜑(𝑐∗) − 𝜑(𝑢)

𝔼[ σ𝑢∉𝑋′ 𝑐𝑢
∗ − 𝑢 2] ≤ 𝜃 σ𝑢∈𝑋 𝑐𝑢

∗ − 𝑢 2 = 𝜃 OPT

𝑣𝑢

𝑐∗

≈



Edges Incident on Outliers

𝑢 − 𝑣 = 𝑣 − 𝑐∗ ± 𝑐∗ − 𝑢

𝜑(𝑢) − 𝜑(𝑣) = 𝜑(𝑣) − 𝜑(𝑐∗) ± 𝜑(𝑐∗) − 𝜑(𝑢)

Taking care of 𝜑(𝑐∗) − 𝜑(𝑢) is a bit more difficult.

𝑣𝑢

𝑐∗

≈

QED



𝑘-medians under dimension 
reduction



𝑘-medians

− No formula for the cost of the clustering in terms 
of pairwise distances.

− Not obvious when 𝑑 ~ log 𝑛 (then all pairwise 
distances are approximately preserved). 

[was asked by Ravi Kannan in a tutorial @ Simons]

+ Kirzsbraun Theorem ⇒ the 𝑑~ log 𝑛 case

+ Prove a Robust Kirzsbraun Theorem

Our methods for 𝑘-means + Robust Kirzsbraun ⇒
𝑑~ log 𝑘 for 𝑘-medians



Summary

•Prove that the cost of every 𝑘-means and 𝑘-medians 
clustering is preserved up to (1 + 𝜀) under 

dimension reduction, when 𝑑 ≥ 𝑐 log
𝑘

𝜀𝛿
/𝜀2.

• The bound on 𝑑 almost matches the lower bound.

•𝑘-means: improves the bound 𝑑 ≥
𝑐𝑘

𝜀2
by Cohen et al.

•𝑘-medians: no results were known.

•Applies to 𝑘-clustering with the ℓ𝑝-objective when

𝑑 ≥ 𝑐 𝑝4 log
𝑘

𝜀𝛿
/𝜀2


