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Landmarks and shape spaces



Procrustes distance and shape space

For an object i : L landmarks (o`,i )L`=1

with each o`,i 2 IRd .

The procrustes distance between two points is

dp(oi , oj) = min
T2T

1

L

L
X

`=1

(o`,i � To`,j)
2,

T are rotations, translations, and scalings.

Kendall’s shape space: Md ,` are d ⇥ ` matrices

F `
d := Md ,` \ {0}, S`

d := {x 2 F `
d : kxk = 1}

⌃`
d := S`

d/SO(d) :=
n

[x ] : x 2 S`
d such that [x ] = {gx : g 2 SO(d)}

o

.



3D image repositories
5/27/2016 MorphoSource

http://morphosource.org/ 1/2
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BROWSE DASHBOARD

enter search terms

Find & Download Datasets

    or

Useful Info

Information for Users

Information for Contributors

Terms

User Guide

Getting Started

Recently Published

 

Welcome

MorphoSource is a project-based data archive that allows

researchers to store and organize, share, and distribute their own 3d

data. Furthermore any registered user can immediately search for

and download 3d morphological data sets that have been made

accessible through the consent of data authors. 

The goal of MorphoSource is to provide rapid access to as many

researchers as possible, large numbers of raw microCt data and

surface meshes representing vouchered specimens. 

File formats include tiff, dicom, stanford ply, and stl. The website is

designed to be self explanatory and to assist you through the process

of uploading media and associating it with meta data. If you are

interested in using the site for your own data but have questions

about security or anything else contact the site administrator.

Otherwise please download whatever data you need and check back

frequently to see what's new.

 

ABOUT

LOGIN/REGISTER

foot of Daubentonia madagscariensis scanned at 38micron
resolution at Duke Evolutionary Anthropology department's
new high resolution microCt facility. Click here if you are
interested in details on the facility

BROWSE

LOGIN OR REGISTER

PREVIOUS NEXT

Four bones of a new species of Homo from South Africa.

w See all the bones of the newly described Homo naledi

w Read the published article

http://morphosource.org/Detail/MediaDetail/Show/media_id/10212


Diffeomorphism based approach

Similarity between teeth: Algorithms to automatically quantify the
geometric similarity of anatomical surfaces, Boyer et. al. PNAS
2011.



Homeomorphism between shapes



Fly wings are not homeomorphic
Persistent homology Bar codes Brain trees Fly wings Stratified persistence Metric perversity Future biology Stratified statistics Next steps

Fruit fly wings
Normal fly wings [photos from David Houle’s lab]:

Topologically abnormal veins:

8



Our objective

Model shapes without requiring landmarks or di↵eomorphisms.

Transform the data/object into a representation that can be
modeled using standard methods.

Desired properties

(1) The transformation is injective, ideally the summary statistic
is su�cient.

(2) The transformed space is nice (may be a matrix). Can
compute distances or place probability models in the
transformed space.

(3) Pull back from the transformed space to positions on shapes.
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Two topological summaries

(1) Euler characteristics.

(2) Persistent homology.
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Simplices

0-dim 1-dim 2-dim 3-dim

30,



Simplicial Complexes

Collection of simplices glued
together in a special way

All faces of a simplex are
in the complex
Simplices intersect along
common faces

31,



Simplicial Complexes

32,



Mathematically what is a shape: less abstract

Definition
A finite geometric simplicial complex K is a finite set of geometric
simplices such that

(1) Every face of a simplex in K is also in K ;

(2) If two simplices �1,�2 are in K then their intersection is either
empty or a face of both �1 and �2.
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Mathematically what is a shape: more abstract

Definition
An o-minimal structure O = {O

d

} specifies for each d � 0, a
collection of subsets O

d

of IRd closed under intersection and
complement. These collections are related to each other by the
following rules:

1. If A 2 O
d

, then A⇥ IR and IR⇥ A are both in O
d+1; and

2. If A 2 O
d+1, then ⇡(A) 2 O

d

where ⇡ : IRd+1 ! IRd is
axis-aligned projection.

We further require that O contains all algebraic sets and that O1

contain no more and no less than all finite unions of points and
open intervals in IR.
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Constructible sets and functions

Constructible sets CS(IRd) are the collection of compact definable
subsets of IRd , elements of O.

A constructible function is an integer-valued function on a tame
set X with the property that every level set is tame.
We denote CF(X ) as the set of constructible functions with
domain X .
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Height function: v1



Height function: v2



Sublevel set of mouse embryo head



Euler characteristic

For a mesh M in 3 dimensions the Euler characteristic is

�(M) = #vertices �#edges +#faces.



Euler characteristic curves



Critical points



Euler characteristic curves



Betti numbers
Homology

0-Homology 1-Homology 2-Homology

�0 = 1, �1 = 0, �2 = 1�0 = 1, �1 = 1, �2 = 0�0 = 2, �1 = 0, �2 = 0

Hole Void
Connected Components

John Steenbergen & Sayan Mukherjee & Caroline Klivans (Duke University)Near-Homology and its Applications November 3, 2012 2 / 20



Persistent homology: Morse theory

Evolution of homology as birth-death pair.

0 2⇡

Dgm0(f)

birth

de
at

h
f�1((�1, a])
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Persistent homology: Morse theory

Evolution of homology as birth-death pair.
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Filtration, X0



Filtration, X1



Filtration, X2



Filtration, X3



Filtration, X4



Filtration, X5



Filtration, X6



Persistent homology

Construct a filtration

⇢ ⇢ ⇢ ⇢ ⇢ ⇢
X0 X1 X2 X3 X4 X5 X6

Hp(X0)! Hp(X1)! Hp(X2)! Hp(X3)! Hp(X4)! Hp(X5)! Hp(X6)

Images of linear maps �i,j
p : Hp(Xi)! Hp(Xj) induced by inclusion.

Determine when a homology class is born and when it dies.



Persistence diagram

Definition
A generalized persistence diagram is a countable multiset of points
in IR

2 along with the diagonal � = {(x , y) 2 IR

2 | x = y}, where
each point on the diagonal has infinite multiplicity.

50,



Metrics on diagrams

L2-Wasserstein distance

dL2(X ,Y)2 = inf
�:X!Y

X

x2X
kx � �(x)k2,

� is the set of bijections between the points in X plus copies of the
diagonal and points in Y with copies of he diagonals.



Stability

Theorem
(Turner,Milyeko,M,Harer;Cohen-Steiner,Edelsbrunner,Harer)

If f , g are tame Lipschitz functions f , g : X ! IR

d(Diag(f ),Diag(g))  2
k+2
2

h
Ckf � gk2�k

1

i1/2
,

k 2 [1, 2).

43,



Euler characteristic transform (ECT)

For a fixed M 2 CS(IRd) the ECT is a map from the sphere to the
space of Euler curves

ECT(M) : Sd�1 ! CF(IR)

v 7! �(M, v).

where
ECT(M)(v)(t) := �(M \ {x | x · v  t}).



Smooth Euler characteristic transform (SECT)

The smooth Euler curve for each direction is

f (y) = �(M, v), F (x) =

Z
x

0
(f (y)� �(M, v))dy .

Definition
The Euler characteristic transform of M 2 IRd is the function

SECT(M) : Sd�1 ! L2(IR)

v 7! F (M, v).
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Persistence homology transform (PHT)

For a fixed M 2 CS(IRd) the PHT is a map from the sphere to
persistence diagrams by filtering M in the direction v

PHT(M) : Sd�1 ! Dgmd

v 7! (PH0(M, v),PH1(M, v), . . . ,PH
d�1(M, v)).



Relation between PHT and ECT

Proposition
The persistent homology Transform determines the Euler
characteristic transform, i.e. we have the following commutative
diagram of maps.

C0(Sd�1,Dgmd)

�

✏✏

CS(IRd)

PHT
77

ECT
// CF(Sd�1 ⇥ IR)



Distances

The distance between two shapes M1,M2 2 CS(IRd) can be

d(M1,M2) :=

Z

S

d�1
kF (M1, v)� F (M2, v)k2 d⌫(v).

d(M1,M2) :=
dX

k=0

Z

S

d�1
d(PH

k

(M1, v),PH
k

(M1, v))d⌫(v).
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S

d�1
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dX
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Radon transform



Inversion theorem (Schapira)

Theorem (Schapira 1991)

If S ⇢ X ⇥ Y and S 0 ⇢ Y ⇥ X have fibers S
x

and S 0
x

in Y
satisfying

1. �(S
x

\ S 0
x

) = �1 for all x 2 X , and

2. �(S
x

\ S 0
x

0) = �2 for all x 0 6= x 2 X ,

then for all � 2 CF(X ),

(R
S

0 �R
S

)� = (�1 � �2)�+ �2

✓Z

X

�d�

◆
1
X

.



Injectivity of the ECT and PHT

Theorem (Turner-M-Boyer,Curry-M-Turner, Ghrist-Levanger-Mai)

The Euler characteristic transform CS(IRd) ! CF(Sd�1 ⇥ IR) is
injective.

Theorem (Turner-M-Boyer,Curry-M-Turner, Ghrist-Levanger-Mai)

The persistent homology transform CS(IRd) ! C 0(Sn�1,Dgmd) is
injective.



A sampling theory for shapes

How many directions to sample ?

(1) For 2-D: 162 directions

(2) For 3-D: Over 700 directions.

A sampling theory for shapes — complexity metric for families
shapes in terms of directions required.
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Calculus of snakes

V.I. Arnol’d, The calculus of snakes and the combinatorics of
Bernoulli, Euler and Springer numbers of Coxeter groups.



Moduli spaces of shapes

We now consider M(d , �, k) as the set of all embedded simplicial
complexes K in IRd with the following two properties:

(1) At every vertex x 2 K there is a lower bound on curvature �.

(2) K has at most k critical values in any direction v 2 Sd�1.



Moduli spaces of shapes

We now consider M(d , �, k) as the set of all embedded simplicial
complexes K in IRd with the following two properties:

(1) At every vertex x 2 K there is a lower bound on curvature �.

(2) K has at most k critical values in any direction v 2 Sd�1.



Moduli spaces of shapes

We now consider M(d , �, k) as the set of all embedded simplicial
complexes K in IRd with the following two properties:

(1) At every vertex x 2 K there is a lower bound on curvature �.

(2) K has at most k critical values in any direction v 2 Sd�1.



Bound on the number of directions

Theorem (Curry-M-Turner)
Any shape in M(d , �, k) can be determined using the ECT or the
PHT using no more than

�(d , �, k) =

 
(d � 1)k

✓
2�

sin(�)

◆
d�1

+ 1

!✓
1 +

2

�

◆
d

+ O

✓
dk

�d�1

◆2d

directions.



Bound on the number of directions

For a resolution �, the number of points to get a � cover of Sd�1 is

✓
1 +

2

�

◆
d

.

The number of �-covers required to determine all the vertices of K
using only the Euler curves from the union of the �-nets

 
(d � 1)k

✓
2�

sin(�)

◆
d�1

+ 1

!
.

We need to bound the cardinality of W (X ) as the union of
�|X |

2

�

hyperplanes which is
P

d

j=0

�
n(X )
j

�
.



Mixture model

In progress:

Proposition (Kirveslahti-M-Turner)

One can model shapes in M(d , �, k) based on a mixture model of
Euler curves over W (X ).



Modeling shapes without alignment

Theorem (Curry-M-Turner)

Let K1 and K2 be generic geometric simplicial complexes in IRd .
Let µ be the Lebesgue measure on Sd�1. If

ECT(K1)⇤(µ) = ECT(K2)⇤(µ),

then there is some � 2 O(d) such that K2 = �(K1).



Exponential family and SECT

Denote the Euler characteristic curve for each direction:
f (y) = �(M, v) Define the integral of f (y) as F (x) =

R
x

0 f (y)dy .

This results in K smooth curves {F1, ...,F
K

}.

Exponential family model

p✓(x) = a(✓) h(x) exp

 
�

KX

k=1

h✓,F
k

(x)i
!
.



Exponential family and SECT

Denote the Euler characteristic curve for each direction:
f (y) = �(M, v) Define the integral of f (y) as F (x) =

R
x

0 f (y)dy .

This results in K smooth curves {F1, ...,F
K

}.

Exponential family model

p✓(x) = a(✓) h(x) exp

 
�

KX

k=1

h✓,F
k

(x)i
!
.



The matrix variate normal

Define F = [F1F2 · · ·F
K

] as a K ⇥ T matrix and

p(F | A,U,V) =
exp

��1
2 tr[V

�1(F� A)TU�1(F� A)]
�

(2⇡)KT/2|V|L/2|U|K/2
,

A models mean
U models covariance between curves
V models covariance between points in a curve.

The given n meshes (M1, ...,Mn

) we can define a likelihood model

Lik(M1, ...,Mn

| A,U,V) =
nY

i=1

p(F(M
i

) | A,U,V).
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Exponential family model for shapes

A shape is transformed into collection of the curves {�(M, v`)}L`=1.

A natural exponential family model for the collection of these
curves is a multivariate Gaussian process

X =

2

64
�(M, v1)

...
�(M, vL)

3

75 ⇠ GPL(µ, k).

A natural exponential family model for the collection of these
curves takes the form

f (x | ✓) = g(x) exp(⌘(✓) · T (x) � A(✓)).

106,



Picture of heel bone

Figure: Images of a calcaneus from two different angles.



106 primates
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Primate calcanei

Phylogenetic groups of primate calcanei with 67 genera. Asterisks
indicate groups of extinct taxa. Abbreviations: Str, Strepsirrhines;
Plat, platyrrhines; Cerc, Cercopithecoids; Om, Omomyiforms; Adp,
Adapiforms; Pp, parapithecids; Hmn, Hominoids.



Comment from Doug

”In at least one way the method matched shapes with family
groups better than any of the other previous methods... it linked a
Hylobates specimen with the the other ape specimens (pan,
gorilla, pongo, and oreopithecus). Previous both hylobatids (which
ARE apes) always ended up closest to some Alouatta specimens.”



Comparing methods



Glioblastoma and radiogenomics



The data

92 patients with matched gene expression and MRI data from the
TCGA.

Gene expression: pg = 9215
Morphometric features: pm = 212
Volumetric features: pv = 5
Topological features: ps = 7200

Response:
Disease Free Survival (DFS): The period after a successful
treatment during which there are no signs or symptoms of the
cancer that was treated.
Overall Survival (OS): The entire period after the start of treatment
during which the cancer patient is still alive.
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The question I

Which of the following best explains variation in the clinical trait:
Gene expression: p

g

= 9215
Morphometric features: p

m

= 212
Volumetric features: p

v

= 5
Topological features: p

s

= 7200

Using shapes in regression models.
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The model

Consider the following kernel model

f (F) =
nX

i=1

↵
i

k (F,F
i

) .

Can use standard functional data analysis. The same as used in
genomic selection.



Results



Subimage selection: question II

What parts of the shape are most associated to variation in trait ?

This is a variable selection problem in the regression framework.
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50 molars from 5 primate genera



5 primate genera

 Squirrel Monkey Howler Monkey Spider monkey

 Black handed spider monkey  Titi monkey



Subimage selection

(1) 3D Shape Data 

Data from Species #1

Data From Species #2

(2) Topological 
Quantification 

(3) Association 
Mapping
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Ray tracing



Open questions and problems

(1) Localized transforms: The PHT and ECT can be generalized
as Euler integration

Z

X

h d�, h is a (localized) basis function.

(2) Dictionary learning: representing a family of shapes as a
sparse linear combination of prototype shapes.

(3) Reconstructing shapes from summaries.

(4) Phylogenies of surfaces and traits: we have a likelihood
model, how do we get a substitution model.

(5) Extending the di↵eomorphism based approach to address
cases where only subsets of the objects are di↵eomorphic,
learning transformations from data.

(6) Generalization to graphs and networks.
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Figure 1: Schematic representation of the overall study design. Study population. We will focus on 50 dominant 
breeders and 50 age- and sex-matched helpers (~50% of each sex), plus 15-20 animals followed across the helper-
breeder transition, at Clutton-Brock’s field site in the Kalahari Desert (see map). To collect longitudinal samples, we 
will oversample helpers at the beginning of the study, and then resample the subset that transitions to dominant 
breeders during first two years of the study. Data collection and analysis: In Aim 1, we will compare breeder and 
helper gene expression (RNA-seq), chromatin accessibility (ATAC-seq), and DNA methylation data (RRBS). Tracks 
show an example of complementary RNA-seq read pile-ups (at gene exons), DNA methylation levels, and accessible 
chromatin peaks near a key immune gene, NFKB1 (as in [47]). We will also test whether steroid hormone 
administration to PBMCs from helpers recapitulates breeder-like gene regulatory states. In Aim 2, we will develop 
computational geometric/topological approaches for reconstructing 3D skeletal shape from 2D X-ray images (2A) and 
use experimental immunogenomic methods to quantitatively assess the response to multiple types of pathogens (2B). 
The resulting data will allow us to test how growth and immune defense differ between helpers and breeders. In Aim 3, 
the full team will integrate data on growth, immune response and reproductive effort to test the hypothesis that 
energetic trade-offs between these tasks create “competition” at the transcriptional level, which is resolved differently 
by helpers and breeders. Each axis represents investment in one of the three dimensions; size of the triangle 
represents resource intake, which we will also measure for each individual (see Figure 2A). 

 
 
 

 
 

 
 

 
 
 
 
 
 
 

 
 
 
Figure 2: Weight measurement and blood collection from meerkats. Study subjects at Clutton-Brock’s field site 
are individually recognized and highly habituated. (A) All study subjects are trained to climb onto electronic balances, 
making it possible to repeatedly measure their weight to calculate daily resource intake (based on weight change 
between the start of the day, mid-day, and departure of the observers). (B) A member of the study population under 
brief and reversible anesthesia with isoflurane, which enables (C) blood sample collection and X-ray imaging (see 
Figure 3). It is possible to schedule specific study subjects for sample/image collection on a given day. 
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Figure 3: X-ray images of a male meerkat. (A) Ventrodorsal, (B) lateral, and (C) dorsoventral X-ray images obtained 
from an anesthesized member of the study population, using a mobile X-ray machine. The images clearly distinguish 
bone from non-bone, which will allow us to produce multiple high-resolution silhouettes for registering each image 
against a sex-specific reference mesh (obtained through CT scan). We will then perform individual-specific, 3D mesh 
reconstruction of the full skeleton. By collecting sets of X-ray images repeatedly for each study subject (every 3 
months), we will track growth at local and whole skeleton scales for helpers and breeders. 

 
 
 

 
 

 

Figure 4. Example of data generated from 
immunogenomic experiments. Principal component 
analysis plot of gene expression data collected using 
the TruCulture system we propose to use for immune 
challenges. Data are from 45 rhesus macaques, 
where each individual is represented by a control 
blood sample and a lipopolysaccharide (LPS)-
stimulated blood sample. Gene expression changes 
following LPS stimulation result in strong separation 
on PC1 (x-axis), while social factors (here, high and 
low dominance rank: higher rank=darker colors) 
explain variation on PC2 (y-axis). In this example, low-
ranking individuals tend to have more exaggerated 
responses to LPS. In Aim 2, we will tests whether the 
alternative social roles that characterize cooperative 
societies also influence the immune response, 
suggesting energetic trade-offs to be further tested in 
Aim 3). 



Collaborators

In this talk:
Integral geometry: K Turner (ANU), J. Curry (Albany), D. Boyer (Duke)
Regression: L. Crawford (Brown) , A. Monod, R. Rabadán, A. Chen
(Columbia)

Variable selection: H. Kirveslahti (Duke), L. Crawford, T. Sudijono, B.

Wang (Brown)
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Modeling variation in shapes

D’Arcy Thompson, On Growth and Form 

https://www.youtube.com/watch?v=mR8J1ylYIIA

