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Modeling variation in shapes

SHARR.
BEAKED

GROUND
CaCTys FINCH
FINCH COC0s
\ / ISLAKD
LARGE Y - FcH
CACTUS N /
FINCH \ /

WARBLER
FINCH

Ny
MECIUM V/IOOCFECKER
GRouND FINCH 5857
FINCH

SMALL \
GROUND . k) SMALL
EINCH 5\ TREE

/ ‘\ FINGH

VEGETARIAN MEDIUM

FINCH LARGE l:rfaga

TREE
FINCH

S. J. Gould



Variation in calcanei

D. Boyer.



From distances to trees

Constructing a Simple Phylogenetic Tree
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Adapted from Cambell "Blology” 4th Edition



Evolution as broccol




Models of surfaces

(1) Shape spaces: Kendall, D. G. (1984) Shape manifolds,
procrustean metrics, and complex projective spaces. Bull.
Lond. Math. Soc., 16, 81121.
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(1) Shape spaces: Kendall, D. G. (1984) Shape manifolds,
procrustean metrics, and complex projective spaces. Bull.
Lond. Math. Soc., 16, 81121.

(2) Lie group: Dupuis, P. & Grenander, U. (1998) Variational
problems on flows of diffeomorphisms for image matching. Q.
Appl. Math., LVI, 587600.

(3) Integral geometry: Worsley, K. J. (1995) Estimating the
number of peaks in a random field using the Hadwiger
characteristic of excursion sets, with applications to medical
images. Ann.Stat., 23, 640669.






Procrustes distance and shape space

For an object i: L landmarks (op,;)L_, with each oy; € RY.

he procrustes distance between two points is

L
1
dp(0j,0j) = min - E (or,i — Torj)?,
/=1

[ are rotations, translations, and scalings.

Kendall's shape space: My, are d x £ matrices

Fa:=Mae\{0}, Sz:={x€Fg:|x|=1}

¥4 :=55/50(d) := {[X] - x € S5 such that [x] = {gx : g € SO(d)}}.



3D Image repositories

5/27/2016 MorphoSource
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Recently Published Welcome

Four bones of a new species of Homo from South Africa. MorphoSource is a project-based data archive that allows
= See all the bones of the newly described Homo naledi researchers to store and organize, share, and distribute their own 3d
= Read the published article ' data. Furthermore any registered user can immediately search for

and download 3d morphological data sets that have been made
accessible through the consent of data authors.

The goal of MorphoSource is to provide rapid access to as many
researchers as possible, large numbers of raw microCt data and
surface meshes representing vouchered specimens.

File formats include tiff, dicom, stanford ply, and stl. The website is
designed to be self explanatory and to assist you through the process
of uploading media and associating it with meta data. If you are
interested in using the site for your own data but have questions
about security or anything else contact the site administrator.
Otherwise please download whatever data you need and check back
frequently to see what's new.

CONTACT | TERMS AND CONDITIONS | USER GUIDE Commercial use of MorphoSource media is strictly prohibited.

http://morphosource.org/ 12


http://morphosource.org/Detail/MediaDetail/Show/media_id/10212

Diffeomorphism based approach

Similarity between teeth: Algorithms to automatically quantify the
geometric similarity of anatomical surfaces, Boyer et. al. PNAS
2011.

|. Observer-Placed Landmarks
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P-determined correspondence map between two structures




Homeomorphism between shapes




Fly wings are not homeomorphic

Normal fly wings [photos from David Houle’s lab]:
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Model shapes without requiring landmarks or diffeomorphisms.
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Our objective

Model shapes without requiring landmarks or diffeomorphisms.

Transform the data/object into a representation that can be
modeled using standard methods.

Desired properties

(1) The transformation is injective, ideally the summary statistic
is sufficient.

(2) The transformed space is nice (may be a matrix). Can
compute distances or place probability models in the
transformed space.

(3) Pull back from the transformed space to positions on shapes.



Two topological summaries
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Two topological summaries

(1) Euler characteristics.

(2) Persistent homology.



Simplices

0-dim 1-dim 2-dim 3-dim



Simplicial Complexes

Collection of simplices glued
together in a special way

» All faces of a simplex are
in the complex

» Simplices intersect along
common faces




Simplicial Complexes

K = A




Mathematically what is a shape: less abstract

Definition
A finite geometric simplicial complex K is a finite set of geometric
simplices such that

(1) Every face of a simplex in K is also in K;



Mathematically what is a shape: less abstract

Definition

A finite geometric simplicial complex K is a finite set of geometric
simplices such that

(1) Every face of a simplex in K is also in K;

(2) If two simplices 01,02 are in K then their intersection is either
empty or a face of both o1 and o>.



Mathematically what 1s a shape: more abstract

Definition

An o-minimal structure O = {Oy} specifies for each d > 0, a
collection of subsets @4 of IR? closed under intersection and
complement. These collections are related to each other by the
following rules:

1. If A€ Oy, then A X IR and IR x A are both in Og4.1, and

2. If A€ O4p1, then w(A) € Oy where m : Rt - IRY is
axis-aligned projection.



Mathematically what 1s a shape: more abstract

Definition

An o-minimal structure O = {Oy} specifies for each d > 0, a
collection of subsets @4 of IR? closed under intersection and
complement. These collections are related to each other by the
following rules:

1. If A€ Oy, then A X IR and IR x A are both in Og4.1, and
2. If A€ Ogy1, then m(A) € Oy where m : Rt - IR s
axis-aligned projection.

We further require that O contains all algebraic sets and that O;
contain no more and no less than all finite unions of points and
open intervals in IR.



Constructible sets and functions

Constructible sets CS(IRY) are the collection of compact definable
subsets of IRY elements of O.



Constructible sets and functions

Constructible sets CS(IRY) are the collection of compact definable
subsets of IRY elements of O.

A constructible function is an integer-valued function on a tame

set X with the property that every level set is tame.
We denote CF(X) as the set of constructible functions with

domain X.



Height function: v;




Height function: v»




Sublevel set of mouse embryo




Euler characteristic

For a mesh M in 3 dimensions the Euler characteristic is

x (M) = #vertices — #edges + #faces.




Euler characteristic curves
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Critical points

NN~

Maximum Minimum Inflection
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Corner Discontinuity



Euler characteristic curves
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Bettl numbers

0-Homology 1-Homology 2-Homology

Connected Components Hole Void

/N
0
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Persistent homology: Morse theory

Evolution of homology as birth-death pair.
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Persistent homology: Morse theory

Evolution of homology as birth-death pair.

A Dgm(f)
. \ /\ / ____________ sl .
| — |
0 27 birth
L J




Persistent homology: Morse theory

Evolution of homology as birth-death pair.
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Persistent homology: Morse theory

Evolution of homology as birth-death pair.
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Filtration, X5




Filtration, X3




Filtration, X4




Filtration, X5




Filtration, Xg




Persistent homology

Construct a filtration

OO GG
X3 X4 X5 X6
_J

\

Hp(Xo) — Hp(X4) = Hp(X2) — Hp(X3) — Hp(X4) = Hp(Xs) — Hp(Xe)

Images of linear maps qﬁ;;j ' Hp(X;) — Hp(X;) induced by inclusion.
Determine when a homology class is born and when it dies.



Persistence diagram

Definition

A generalized persistence diagram is a countable multiset of points
in IR along with the diagonal A = {(x,y) € IR* | x = y}, where
each point on the diagonal has infinite multiplicity.



Metrics on diagrams

\J

| 2-Wasserstein distance

di2(X, Y)2 inf Z |x — gb(x)ll

O:X->Y

¢ Is the set of bijections between the points in X plus copies of the
diagonal and points in Y with copies of he diagonals.



Stability

\

If f,g are tame Lipschitz functions f,g : X — IR

1/2
d(Diag(f), Diag(g)) < 2% ||| — gZ*| ",

k €]1,2).



Euler characteristic transform (ECT)

For a fixed M € CS(IR?) the ECT is a map from the sphere to the
space of Euler curves

ECT(M) : S9! — CF(IR)
v — x(M, v).

where
ECT(M)(v)(t) = x(MN{x|x-v<t}).



Smooth Euler characteristic transform (SECT)

The smooth Euler curve for each direction is

f(y) = x(M,v),  F(x) = /O “(Fy) = X(M. v))dy.



Smooth Euler characteristic transform (SECT)

The smooth Euler curve for each direction is

f(y) = x(M,v),  F(x) = /O “(Fy) = X(M. v))dy.

Definition
The Euler characteristic transform of M € IRY is the function
SECT(M) : S9! — [L(IR)
v — F(M,v).



Persistence homology transform (PHT)

For a fixed M € CS(IR?) the PHT is a map from the sphere to
persistence diagrams by filtering M in the direction v
PHT(M) : S~ — Dgm?
V= (PHO(M7 V)7 PHl(M7 V)7 IR PHd—l(M7 V))



Relation between PHT and ECT

Proposition
The persistent homology Transform determines the Euler
characteristic transform, i.e. we have the following commutative

diagram of maps.

CO(sd—1 , ngd)
PHT l
X

~ CF(S9 1 xR)

CS(R?) 557



Distances

The distance between two shapes My, M> € CS(IRY) can be

d(My, My) = /Sdl |F(My,v) — F(Ma, v)||, dv(v).



Distances

The distance between two shapes My, M> € CS(IRY) can be

d(My, My) = /Sdl |F(My,v) — F(Ma, v)||, dv(v).

d
d(My, My) Z/ d(PH (M, v), PH (M, v))du(v).
—0 gd—1



Radon transform




Inversion theorem (Schapira)

Theorem (Schapira 1991)

IfSC X xY and S C Y x X have fibers Sy and S, in' Y
satisfying

1. x(5xN'S,) = x1 for all x € X, and
2. x(5xN'S.,) = x2 for all X' # x € X,
then for all ¢ € CF(X),

(Rsr oRs)o = (x1 — x2)9 + X2 </x ¢dx> 1x.



Injectivity of the ECT and PHT

Theorem (Turner-M-Boyer,Curry-M-Turner, Ghrist-Levanger-Mai)

The Euler characteristic transform CS(IRY) — CF(S9™! x IR) is
Injective.

Theorem (Turner—I\/I—Boyer,Curry—I\/I—Turner, Ghrist-Levanger-Mai)

The persistent homology transform CS(IRY) — C°(S"~1, Dgm?) is
Injective.
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How many directions to sample ?
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A sampling theory for shapes

How many directions to sample ?
(1) For 2-D: 162 directions
(2) For 3-D: Over 700 directions.

A sampling theory for shapes — complexity metric for families
shapes in terms of directions required.



Calculus of snakes

V.l. Arnol'd, The calculus of snakes and the combinatorics of
Bernoulli, Euler and Springer numbers of Coxeter groups.
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Moduli spaces of shapes

We now consider M(d, d, k) as the set of all embedded simplicial
complexes K in IR? with the following two properties:

(1) At every vertex x € K there is a lower bound on curvature 9.

(2) K has at most k critical values in any direction v € S91.



Bound on the number of directions

Theorem (Curry-M-Turner)

Any shape in M(d, d, k) can be determined using the ECT or the
PHT using no more than

A(d, 8, k) = ((d — 1)k (Siié))dl + 1) (1 + %)d + 0 (531_(1>2d

directions.




Bound on the number of directions

For a resolution &, the number of points to get a § cover of S9! is
2\ @
1+ - .

The number of 0-covers required to determine all the vertices of K
using only the Euler curves from the union of the d-nets

(@ 0e(525)" 1)

We need to bound the cardinality of W(X) as the union of (|X|)

2
hyperplanes which is ch'l:o (”(JX)).




Mixture model

n progress:

Proposition (Kirveslahti-M-Turner)

One can model shapes in M(d, d, k) based on a mixture model of
Euler curves over W(X).



Modeling shapes without alignment

Theorem (Curry-M-Turner)

Let K; and K> be generic geometric simplicial complexes in IRY.
Let 11 be the Lebesgue measure on S9=1. If

ECT(K1)«() = ECT(K2)x (1),

then there is some ¢ € O(d) such that Ky = ¢(K1).



Exponential family and SECT

Denote the Euler characteristic curve for each direction:
f(y) = x(M, v) Define the integral of f(y) as F(x) = [, f(y)dy.

This results in K smooth curves {Fq, ..., Fx}.



Exponential family and SECT

Denote the Euler characteristic curve for each direction:
f(y) = x(M, v) Define the integral of f(y) as F(x) = [, f(y)dy.

This results in K smooth curves {Fq, ..., Fx}.

Exponential family model

NE

po(x) = a(f) h(x) exp ( (0, Fk(x)>) .

i

1



The matrix variate normal

Define F = [F1Fy--- Fk] as a K X T matrix and

exp (—3tr[V7Y(F — A)TUTL(F — A))])
(27T)KT/2‘V|L/2‘U‘K/2 ’

p(F|A /U V)=

A models mean
U models covariance between curves
V models covariance between points in a curve.




The matrix variate normal

Define F = [F1Fy--- Fk] as a K X T matrix and

exp (—3tr[V7Y(F — A)TUTL(F — A))])
(27T)KT/2‘V|L/2‘U‘K/2 ’

p(F|A,U,V) =

A models mean
U models covariance between curves
V models covariance between points in a curve.

The given n meshes (M, ..., M,) we can define a likelihood model

Lik(My, ..., M, | A,U, V) = Hp )| AU, V).



Exponential family model for shapes

A shape is transformed into collection of the curves {x(M, v;)}_;.

A natural exponential family model for the collection of these

curves is a multivariate Gaussian process

X =

i X(Mv Vl) |

I X(M, VL)

~ gPL(:ua k)

106,



Picture of heel bone
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Figure: Images of a calcaneus from two different angles.
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Primate calcanel
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Phylogenetic groups of primate calcanei with 67 genera. Asterisks
indicate groups of extinct taxa. Abbreviations: Str, Strepsirrhines;
Plat, platyrrhines; Cerc, Cercopithecoids; Om, Omomyiforms; Adp,
Adapiforms; Pp, parapithecids; Hmn, Hominoids.



Comment from Doug

"In at least one way the method matched shapes with family
groups better than any of the other previous methods... it linked a
Hylobates specimen with the the other ape specimens (pan,
gorilla, pongo, and oreopithecus). Previous both hylobatids (which
ARE apes) always ended up closest to some Alouatta specimens.”
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Glioblastoma and radiogenomics

7, - »y




The data

92 patients with matched gene expression and MRI data from the
TCGA.

Gene expression: py = 9215
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Volumetric features: p, = 5
Topological features: ps = 7200
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The data

92 patients with matched gene expression and MRI data from the
TCGA.

Gene expression: py = 9215
Morphometric features: p,, = 212
Volumetric features: p, = 5
Topological features: ps = 7200

Response:

Disease Free Survival (DFS): The period after a successful
treatment during which there are no signs or symptoms of the
cancer that was treated.

Overall Survival (OS): The entire period after the start of treatment
during which the cancer patient is still alive.



The question |

Which of the following best explains variation in the clinical trait:
Gene expression: py = 9215

Morphometric features: p,, = 212

Volumetric features: p, = 5

Topological features: ps = 7200



The question |

Which of the following best explains variation in the clinical trait:
Gene expression: py = 9215

Morphometric features: p,, = 212
Volumetric features: p, = 5
Topological features: ps = 7200

Using shapes in regression models.



The model

Consider the following kernel model

f(F) — ia,‘k(F,F,‘).
=1

Can use standard functional data analysis. The same as used in
genomic selection.



Results

Disease Free Survival (DFS)

Overall Survival (OS)

Covariance Function(s) Data Type R? Optimal% 8 R? Optimal% @

Gene Expression | 0.090 (0.010)  16.2%  — | 0.065 (0.03)  135%  —

, Morphometrics | 0.135 (0.010)  26.7%  — | 0.133 (0.05) 34.5%  —
Linear Kernel

Geometrics 0.126 (0.01)  20.9%  — | 0.111 (0.04)  28.3%  —

SECT 0.199 (0.01) 36.2%  — | 0.101 (0.04)  23.7%  —

Gene Expression | 0.121 (0.05)  22.2% 4.3 | 0.076 (0.03)  21.9%  10.0

) Morphometrics 0.084 (0.03) 12.8% 0.1 | 0.038 (0.03) 8.0% 4.0
Gaussian Kernel

Geometrics 0.154 (0.06)  25.2% 5.2 | 0.085(0.04)  22.1% 5.0

SECT 0.235 (0.08) 39.8% 0.6 | 0.171 (0.06) 48.0% 4.2

Gene Expression | 0.069 (0.03) 22.7% 6.4 | 0.048 (0.02) 16.8% 10.0

Morphometrics 0.036 (0.02) 10.0% 1.2 | 0.071 (0.03) 25.6% 4.5
Cauchy Kernel

Geometrics 0.062 (0.03) 14.6% 0.2 | 0.050 (0.02) 15.9% 3.5

SECT 0.212 (0.07) 52.7% 0.6 | 0.113 (0.04) 41.7% 5.5




Subimage selection: question |l

What parts of the shape are most associated to variation in trait 7



Subimage selection: question |l

What parts of the shape are most associated to variation in trait 7

This is a variable selection problem in the regression framework.



50 molars from 5 primate genera
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5 primate genera

Howler Monkey Squirrel Monkey
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Subimage selection

2) Topological (4) Sub-Image
1) 3D Shape Dat (
(1) Shape Data Quantification Analysis
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Ray tracing
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Open questions and problems

(1) Localized transforms: The PHT and ECT can be generalized
as Euler integration

/ hdyx, his a (localized) basis function.
X

(2) Dictionary learning: representing a family of shapes as a
sparse linear combination of prototype shapes.

(3) Reconstructing shapes from summaries.

(4) Phylogenies of surfaces and traits: we have a likelihood
model, how do we get a substitution model.

(5) Extending the diffeomorphism based approach to address
cases where only subsets of the objects are diffeomorphic,
learning transformations from data.

(6) Generalization to graphs and networks.
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Collaborators

n this talk:

ntegral geometry: K Turner (ANU), J. Curry (Albany), D. Boyer (Duke)
Regression: L. Crawford (Brown) , A. Monod, R. Rabadan, A. Chen
(Columbia)

Variable selection: H. Kirveslahti (Duke), L. Crawford, T. Sudijono, B.
Wang (Brown)
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https://www.youtube.com/watch?v=mR8J1ylYIIA

