Model	Weighted PCA	Theory	Numerical Results	Discussion

Optimally Weighted PCA for High-Dimensional Heteroscedastic Data

Laura Balzano work of PhD student David Hong, joint with Jeff Fessler

Department of EECS, University of Michigan

Simons Workshop for Robust High-Dimensional Statistics 1 November 2018

Optimally Weighted PCA for High-Dimensional Heteroscedastic Data

Mode	
INIOUE	

Theory

Numerical Result

Collaborators

David Hong

Jeff Fessler

Modern data are often high-dimensional, but we assume some low-dimensional underlying structure exists.

thousands of detector elements

thousands of locations

http://www.medicalnewstoday.com/articles/153201.php https://www.nasa.gov/multimedia/imagegallery/iotd.html http://www.livescience.com/27992-portable-pollution-sensors-improve-data-nsf-ria.html

Modern data are often corrupted by heteroscedastic noise.

millions of voxels (hundreds per patch)

thousands of detector elements

thousands of locations

varying radiation levels

varying atmosphere

varying sensor quality

```
http://www.medicalnewstoday.com/articles/153201.php
https://www.nasa.gov/multimedia/imagegallery/iotd.html
http://www.livescience.com/27992-portable-pollution-sensors-improve-data-nsf-ria.html
```

Model	Weighted PCA	Theory	Numerical Results	Discussion

Model samples $y_1, \ldots, y_n \in \mathbb{C}^d$ as

$$\mathbf{Y} = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}$$
$$= \mathbf{U} \mathbf{\Theta} \mathbf{Z}^{\mathsf{H}} + \begin{bmatrix} \eta_1 \varepsilon_1 & \cdots & \eta_n \varepsilon_n \end{bmatrix}$$

Model samples $y_1, \ldots, y_n \in \mathbb{C}^d$ as

$$\mathbf{Y} = [y_1 \cdots y_n]$$

$$= \mathbf{U} \mathbf{\Theta} \mathbf{Z}^{\mathsf{H}} + [\eta_1 \varepsilon_1 \cdots \eta_n \varepsilon_n]$$
components
$$[u_1 \cdots u_k]$$
IID random scores
(mean 0, var. 1)
amplitudes
diag($\theta_1, \dots, \theta_k$)

Samples have <u>heteroscedastic</u> noise.

Model	Weighted PCA	Theory	Numerical Results	Discussion

Model	Weighted PCA	Theory	Numerical Results	Discussion

- 2004(-2009): Johnstone and Lu
- 2007: Paul
- 2008: Nadler
- 2012: Benaych-Georges and Nadakuditi

$$|\langle \hat{u}, u \rangle|^2 \xrightarrow{a.s.} \frac{c - (\sigma/\theta)^4}{c + (\sigma/\theta)^2}$$

Model	Weighted PCA	Theory	Numerical Results	Discussion

Heteroscedastic noise

- 2004(-2009): Johnstone and Lu
- 2007: Paul
- 2008: Nadler
- 2012: Benaych-Georges and Nadakuditi

$$|\langle \hat{u}, u \rangle|^2 \xrightarrow{a.s.} \frac{c - (\sigma/\theta)^4}{c + (\sigma/\theta)^2}$$

- 2004(-2009): Johnstone and Lu
- 2007: Paul
- 2008: Nadler
- 2012: Benaych-Georges and Nadakuditi

$$|\langle \hat{u}, u \rangle|^2 \xrightarrow{a.s.} \frac{c - (\sigma/\theta)^4}{c + (\sigma/\theta)^2}$$

Heteroscedastic noise

50% $\sigma_1^2 = 0.1$, 50% $\sigma_2^2 = 1.9$

2018: Hong, Balzano and Fessler

$$|\langle \hat{u}, u \rangle|^2 \xrightarrow{a.s.} \frac{A(\beta)}{\beta B'(\beta)}$$

where A, B are rational functions and β is the largest real root of B.

Model	Weighted PCA	Theory	Numerical Results	Discussion
\\/ · · · ·		·	1	

Weighted PCA: Dimensionality Reduction

Weighted PCA finds components $\hat{u}_1, \ldots, \hat{u}_k$ that minimize:

$$\begin{aligned} \hat{\mathbf{U}} &:= [\hat{u}_1 \cdots \hat{u}_k] \\ &= \mathop{\mathrm{argmin}}_{\tilde{\mathbf{U}} \in \mathbb{C}^{d \times k}} \min_{\tilde{z}_j \in \mathbb{C}^k} \sum_{j=1}^n \gamma_j^2 \|y_j - \tilde{\mathbf{U}} \tilde{z}_j\|_2^2 \\ &\tilde{\mathbf{U}}^{\mathsf{H}} \tilde{\mathbf{U}} = \mathbf{I} \end{aligned}$$

Model	Weighted PCA	Theory	Numerical Results	Discussion

Weighted PCA: Dimensionality Reduction

Weighted PCA finds components $\hat{u}_1, \ldots, \hat{u}_k$ that minimize:

$$\begin{aligned} \hat{\mathbf{U}} &:= [\hat{u}_1 \cdots \hat{u}_k] \\ &= \operatorname*{argmin}_{\substack{\tilde{\mathbf{U}} \in \mathbb{C}^{d \times k} \\ \tilde{\mathbf{U}}^{\mathsf{H}} \tilde{\mathbf{U}} = \mathbf{I}}} \min_{\substack{\tilde{z}_j \in \mathbb{C}^k \\ \tilde{\mathbf{U}}^{\mathsf{H}} \tilde{\mathbf{U}} = \mathbf{I}}} \sum_{j=1}^n \gamma_j^2 \|y_j - \tilde{\mathbf{U}} \tilde{z}_j\|_2^2 \end{aligned}$$

The solution is the first k eigenvectors of the weighted sample covariance

$$\frac{1}{n}\sum_{j=1}^{n}\gamma_j^2 y_j y_j^{\mathsf{H}} = \frac{1}{n}\sum_{j=1}^{n}(\gamma_j y_j)(\gamma_j y_j)^{\mathsf{H}}$$

Model	Weighted PCA	Theory	Numerical Results	Discussion

Weighted PCA: Dimensionality Reduction

Weighted PCA finds components $\hat{u}_1, \ldots, \hat{u}_k$ that minimize:

$$\begin{aligned} \mathbf{\hat{U}} &:= [\hat{u}_1 \cdots \hat{u}_k] \\ &= \operatorname*{argmin}_{\substack{\tilde{\mathbf{U}} \in \mathbb{C}^{d \times k} \\ \tilde{\mathbf{U}}^{\mathsf{H}} \tilde{\mathbf{U}} = \mathbf{I}}} \min_{\substack{\tilde{z}_j \in \mathbb{C}^k \\ \tilde{\mathbf{U}}^{\mathsf{H}} \tilde{\mathbf{U}} = \mathbf{I}}} \sum_{j=1}^n \gamma_j^2 \|y_j - \tilde{\mathbf{U}} \tilde{z}_j\|_2^2 \end{aligned}$$

The solution is the first k eigenvectors of the weighted sample covariance

$$\frac{1}{n}\sum_{j=1}^{n}\gamma_{j}^{2}y_{j}y_{j}^{\mathsf{H}}=\frac{1}{n}\sum_{j=1}^{n}(\gamma_{j}y_{j})(\gamma_{j}y_{j})^{\mathsf{H}}$$

Weight by group: $\gamma_j^2 \in \{w_1^2 \cdots, w_L^2\}.$

Optimally Weighted PCA for High-Dimensional Heteroscedastic Data

Model	Weighted PCA	Theory	Numerical Results	Discussion
Maii	n Question: How sh	nould we v	veight?	
(iven data properties			

- samples per dimension n/d noise variances $\sigma_1^2, \ldots, \sigma_L^2$
- subspace amplitudes $\theta_1, \ldots, \theta_k$ proportions $n_1/n, \ldots, n_L/n$.

what choice of weights w_1, \ldots, w_L is best?

Model	Weighted PCA	Theory	Numerical Results	Discussion
Main	Question: How sl	hould we v	veight?	
-				

Given data properties...

- samples per dimension n/d noise variances $\sigma_1^2, \ldots, \sigma_L^2$
- subspace amplitudes $\theta_1, \ldots, \theta_k$ proportions $n_1/n, \ldots, n_L/n$.

what choice of weights w_1, \ldots, w_L is best?

Common choices:

- binary 0/1, $w_\ell=0$ or 1
- inverse noise var., $w_\ell^2 \propto 1/\sigma_\ell^2$

"throw away the noisier data" "whitening"

Model	Weighted PCA	Theory	Numerical Results	Discussion
Main	Question: How sl	hould we v	veight?	

Given data properties...

- samples per dimension n/d noise variances $\sigma_1^2, \ldots, \sigma_L^2$
- subspace amplitudes $\theta_1, \ldots, \theta_k$ proportions $n_1/n, \ldots, n_L/n$.

what choice of weights w_1, \ldots, w_L is best?

Common choices:

- binary 0/1, $w_\ell = 0$ or 1
- inverse noise var., $w_\ell^2 \propto 1/\sigma_\ell^2$
- is there an optimal choice?

"throw away the noisier data" "whitening"

Model	Weighted PCA	Theory	Numerical Results	Discussion
An illus	strative example	with a sne	eak peek	
	= 1 sample per dim	n 1 –	- 20% noise var $\sigma_{\rm c}^2$ –	1

•
$$\theta_1^2 = 25, \theta_2^2 = 16$$
 amplitudes • $p_1 = 20\%$ noise var. $\sigma_1^2 = 4$

Behavior in simulation seems to concentrate in high dimensions... We will predict that (asymptotic) high dimensional behavior.

Theory: Asymptotic Weighted PCA performance

Theorem (Recovery of components [Hong et al., 2018])

If the sample-to-dimension ratio $n/d \rightarrow c > 0$ and the proportions of different quality data $n_{\ell}/n \rightarrow p_{\ell}$ for $\ell = 1, ..., L$ as $n, d \rightarrow \infty$, then the *i*th WPCA component \hat{u}_i converges as

$$\sum_{j:\theta_j=\theta_i} |\langle \hat{u}_i, u_j \rangle|^2 \xrightarrow{a.s.} r_i^{(u)} = \frac{A(\beta_i)}{\beta_i B_i'(\beta_i)}, \quad \sum_{j:\theta_j\neq\theta_i} |\langle \hat{u}_i, u_j \rangle|^2 \xrightarrow{a.s.} 0$$

when $A(\beta_i) > 0$, where β_i is the largest real root of $B_i(x)$ and

$$A(x) := 1 - c \sum_{\ell=1}^{L} \frac{p_{\ell} w_{\ell}^4 \sigma_{\ell}^4}{(x - w_{\ell}^2 \sigma_{\ell}^2)^2}, \quad B_i(x) := 1 - c \theta_i^2 \sum_{\ell=1}^{L} \frac{p_{\ell} w_{\ell}^2}{x - w_{\ell}^2 \sigma_{\ell}^2}.$$

Model	Weighted PCA	Theory	Numerical Results	Discussion

Theory: inverse noise variance

Recall

$$A(x) := 1 - c \sum_{\ell=1}^{L} p_{\ell} \frac{w_{\ell}^4 \sigma_{\ell}^4}{(x - w_{\ell}^2 \sigma_{\ell}^2)^2}, \quad B_i(x) := 1 - c \theta_i^2 \sum_{\ell=1}^{L} \frac{p_{\ell} w_{\ell}^2}{x - w_{\ell}^2 \sigma_{\ell}^2}.$$

Consider
$$w_{\ell}^2 = \bar{\sigma}^2 / \sigma_{\ell}^2$$
. Then
 $A(x) = 1 - \frac{c\bar{\sigma}^4}{(x - \bar{\sigma}^2)^2} \implies \alpha = \bar{\sigma}^2 (1 + \sqrt{c})$, and
 $B_i(x) = 1 - \frac{c\theta_i^2}{x - \bar{\sigma}^2} \implies \beta_i = \bar{\sigma}^2 + c\theta_i^2$.

$$\sum_{j:\theta_j=\theta_i} |\langle \hat{u}_i, u_j \rangle|^2 \xrightarrow{a.s.} r_i^{(u)} = \frac{A(\beta_i)}{\beta_i B_i'(\beta_i)} = \frac{c - \bar{\sigma}^4/\theta_i^4}{c + \bar{\sigma}^2/\theta_i^2} .$$

amplitudes

Optimally Weighted PCA for High-Dimensional Heteroscedastic Data

Model	Weighted PCA	Theory	Numerical Results	Discussion
Theory s	o far			

- We can predict the asymptotic recovery of unweighted PCA with heteroscedastic data
- We can predict the asymptotic recovery of weighted PCA, given fixed weights
- Idea: Choose the weights by maximizing the asymptotic recovery of the principal components.

Asymptotically Optimal Weights

Theorem (Weight Design [Hong et al., 2018]),

The asymptotic recovery of the *i*th component is maximized by weights

$$w_\ell^2 = rac{1}{\sigma_\ell^2} rac{1}{ heta_i^2 + \sigma_\ell^2}$$

The optimal weights:

- do not depend on samples per dimension or on proportions
- do depend on subspace amplitudes the weights are different for components with different amplitudes

Model	Weighted PCA	Theory	Numerical Results	Discussion

Asymptotically Optimal Weights

Theorem (Weight Design [Hong et al., 2018])

The asymptotic recovery of the *i*th component is maximized by weights

$$w_\ell^2 = \frac{1}{\sigma_\ell^2} \frac{1}{\theta_i^2 + \sigma_\ell^2}$$

Optimally Weighted PCA for High-Dimensional Heteroscedastic Data

Sub-optimal weighting: two case studies	

Both cases: c = 10 samples per dim; $\theta_i^2 = 1.5$ amplitude; p_1 at $\sigma_1^2 = 0.1$ (cleaner), p_2 at $\sigma_2^2 = 1$ (noisier).

Model	Weighted PCA	Theory	Numerical Results	Discussion
Sub-optim	al weighting: t	wo case stud	lies	

Both cases:
$$c = 10$$
 samples per dim; $\theta_i^2 = 1.5$ amplitude;
 p_1 at $\sigma_1^2 = 0.1$ (cleaner), p_2 at $\sigma_2^2 = 1$ (noisier).
Recall: $r_i^{(u)}$ is our prediction for $|\langle \hat{u}_i, u_i \rangle|^2$.
Case 1: $p_1 = p_2 = 50\%$

Unweighted PCA on only clean data is near optimal.

Model	Weighted PCA	Theory	Numerical Results	Discussion
Sub-opt	timal weighting	two case	studies	

Both cases: c = 10 samples per dim; $\theta_i^2 = 1.5$ amplitude; p_1 at $\sigma_1^2 = 0.1$ (cleaner), p_2 at $\sigma_2^2 = 1$ (noisier).

Case 1: $p_1 = p_2 = 50\%$

Case 2: $p_1 = 5\%$, $p_2 = 95\%$

Unweighted PCA on only clean data is near optimal.

Weighting significantly better than unweighted PCA.

Model	Weighted PCA	Theory	Numerical Results	Discussion
~ .				
Sub-on	timal weighting	. two case	studies	

Both cases: c = 10 samples per dim; $\theta_i^2 = 1.5$ amplitude; p_1 at $\sigma_1^2 = 0.1$ (cleaner), p_2 at $\sigma_2^2 = 1$ (noisier). **Case 1:** $p_1 = p_2 = 50\%$ **Case 2:** $p_1 = 5\%$, $p_2 = 95\%$

Unweighted PCA on only clean data is near optimal.

Weighting significantly better than unweighted PCA.

Optimal weights are same but recovery "curve" is quite different!

Weighting makes PCA more robust to contamination in the data. Optimal weighting is even more robust for extreme contamination.

Model	Weighted PCA	Theory	Numerical Results	Discussion

Impact of noise variances on component recovery

- c = 10 samples per dim $p_1 = 70\%$ at noise var. σ_1^2
- $\theta_i^2 = 1$ amplitude $p_2 = 30\%$ at noise var. σ_2^2

Model	Weighted PCA TI	heory	Numerical Results	Discussion
Impac	t of noise variances o	n compone	ent recovery	
	• $c = 10$ samples per dim • $\theta_i^2 = 1$ amplitude	 <i>p</i>₁ = 70% <i>p</i>₂ = 30% 	$\%$ at noise var. σ_1^2 $\%$ at noise var. σ_2^2	
	Linux advector a		Ontineal	

Unweighted PCA is most sensitive to <u>largest</u> noise variance. Weighted PCA is most sensitive to <u>smallest</u> noise variance.

Model	Weighted PCA	Theory	Numerical	Results	Discussion
Impact	of adding noisy	data on c	componen	t recovery	
	$\sigma_2^2 = \sigma_1^2 = 1.0$	$\cdots \sigma_2^2 = 1.4$	$\sigma_2^2 = 5.0$	— Original	
	∃ 0.6 ∃. 0.2	50	100		
			100		
		50	100	150	
	(j) 0.9				
	0	50	100	150	

*c*₂

Optimally Weighted PCA for High-Dimensional Heteroscedastic Data

Model	Weighted PCA	Theory	Numerical Results	Discussion
Discussion	: Maximum Lil	kelihood		

$$y_i = \mathbf{U} \mathbf{\Theta} z_i^{\mathsf{H}} + \underline{\eta}_i \varepsilon_i$$

Suppose z_i and ε_i are all iid normal $\mathcal{N}(0,1)$. Then the maximum likelihood estimator for **U** is given as

Model	Weighted PCA	Theory	Numerical Results	Discussion
Conclusio	1			

In summary, this work shows:

- analysis of the asymptotic performance of weighted PCA for high-dimensional and heteroscedastic data
- weights that optimize asymptotic recovery of the principal components
- numerical experiments illustrating practicality of asymptotics
- interesting cases/regimes where other weights are near-optimal
- how weighting changes the impact of data properties

Model	Weighted PCA	Theory	Numerical Results	Discussion
References	L			

Thank you!

Hong, D., Fessler, J., and Balzano, L. (2018). Optimally weighted PCA for high-dimensional heteroscedastic data.

Preprint at https://arxiv.org/abs/1810.12862.

Model	Weighted PCA	Theory	Numerical Results	Discussion
Overlai	id predictions			

Overlaid: Inv (black) Opt (white)

Theory: Asymptotic Weighted PCA performance

Theorem (Recovery of amplitudes [Hong et al., 2018])

Suppose the sample-to-dimension ratio $n/d \rightarrow c > 0$ and the proportions of different quality data $n_{\ell}/n \rightarrow p_{\ell}$ for $\ell = 1, ..., L$ as $n, d \rightarrow \infty$. Then the *i*th WPCA amplitude $\hat{\theta}_i$ converges as

$$\hat{\theta}_i^2 \xrightarrow{a.s.} r_i^{(\theta)} = \frac{1}{c} \max\{\alpha, \beta_i\} C(\max\{\alpha, \beta_i\}), \tag{1}$$

where α and β_i are, respectively, the largest real roots of A(x) and $B_i(x)$ (given before) and

$$C(x) = 1 + c \sum_{\ell=1}^{L} \frac{p_{\ell} w_{\ell}^2 \sigma_{\ell}^2}{x - w_{\ell}^2 \sigma_{\ell}^2}.$$
 (2)

Model	Weighted PCA	Theory	Numerical Resu	lts Discussion
Theory:	inverse noise	variance		
Recall		$w_\ell^4 \sigma_\ell^4$	- ()	$\sum_{k=1}^{L} p_{\ell} w_{\ell}^2$
A(x) :	$r = 1 - c \sum_{\ell=1}^{r} p_{\ell} \overline{(x - c)}$	$\frac{v}{-w_\ell^2\sigma_\ell^2)^2},$	$B_i(x) := 1 - c\theta_i^2$	$\sum_{\ell=1}^{\infty} \frac{1}{x - w_{\ell}^2 \sigma_{\ell}^2}.$
Consid	der $w_\ell^2 = rac{ar\sigma^2}{\sigma_\ell^2}$. Ther	1		
A(x) =	$=1-rac{car{\sigma}^4}{(x-ar{\sigma}^2)^2} \implies$	$\alpha = \bar{\sigma}^2 (1 +$	- \sqrt{c}), and	
$B_i(x)$	$=1-rac{c heta_i^2}{x-ar\sigma^2} \implies 0$	$\beta_i = \bar{\sigma}^2 + c\ell$	θ_i^2 .	
	$\hat{\theta}_i^2 \xrightarrow{a.s.} r_i^{(\theta)}$	$=\begin{cases} \theta_i^2 \left(1 + \bar{\sigma}^2\right) \\ \bar{\sigma}^2 \left(1 + \bar{\sigma}^2\right) \end{cases}$	$\frac{\bar{\sigma}^2}{c\theta_i^2}\left(1+\frac{\bar{\sigma}^2}{\theta_i^2}\right)\\1+1/\sqrt{c}\right)^2$	$ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\sum_{j:\theta_j=\theta_i}$	$ \langle \hat{u}_i, u_j \rangle ^2 \stackrel{a.s.}{\longrightarrow} r_i^{(u)}$	$=\frac{A(\beta_i)}{\beta_i B_i'(\beta_i)}$	$=rac{c-ar{\sigma}^4/ heta_i^4}{c+ar{\sigma}^2/ heta_i^2} \ .$	

Optimally Weighted PCA for High-Dimensional Heteroscedastic Data

Model	Weighted PCA	Theory	Numerical Results	Discussion
	_			

Theory: Base case, no noise

Recall

$$A(x) := 1 - c \sum_{\ell=1}^{L} rac{p_{\ell} w_{\ell}^4 \sigma_{\ell}^4}{(x - w_{\ell}^2 \sigma_{\ell}^2)^2}, \quad B_i(x) := 1 - c heta_i^2 \sum_{\ell=1}^{L} rac{p_{\ell} w_{\ell}^2}{x - w_{\ell}^2 \sigma_{\ell}^2}.$$

Consider the noise free case: All $\sigma_i = 0$. Then A(x) = C(x) = 1 $\forall x$, and $B_i(x) = 1 - \frac{c\theta_i^2 \sum_{\ell} p_\ell w_\ell^2}{x} \implies \beta_i = c\theta_i^2 \sum_{\ell} p_\ell w_\ell^2$.

$$egin{aligned} &\hat{ heta}_i^2 \xrightarrow{a.s.} rac{1}{c} eta_i = heta_i^2 \sum_\ell p_\ell w_\ell^2 \ &\sum_{j: heta_j = heta_i} |\langle \hat{u}_i, u_j
angle|^2 \xrightarrow{a.s.} rac{A(eta_i)}{eta_i B_i'(eta_i)} = 1 \end{aligned}$$

Optimally Weighted PCA for High-Dimensional Heteroscedastic Data