Optimal Lower Bounds for Distributed and Streaming Spanning Forest Computation

Huacheng Yu
Oct 18, 2018
Harvard University

Joint work with Jelani Nelson
Warm-up

Consider the following dynamic problem:

- edges are inserted into an initially empty graph G on n vertices

Space complexity: $\Theta(n \log n)$ bits

- maintain list of edges in the spanning forest: $O(n \log n)$

- when the final graph is a tree itself, have to output the whole graph: $\Omega(n \log n)$

what if we allow edge deletions?
Consider the following dynamic problem:

- edges are inserted into an initially empty graph G on n vertices
- must output a spanning forest when queried

Goal: minimize space

- Space complexity: $\Theta(n \log n)$ bits
- maintain list of edges in the spanning forest: $O(n \log n)$
- when the final graph is a tree itself, have to output the whole graph: $\Omega(n \log n)$

what if we allow edge deletions?
Consider the following dynamic problem:

- edges are inserted into an initially empty graph G on n vertices
- must output a spanning forest when queried

Goal: minimize space
Warm-up

Consider the following dynamic problem:

- edges are inserted into an initially empty graph G on n vertices
- must output a spanning forest when queried

Goal: minimize space

Space complexity: $\Theta(n \log n)$ bits

- maintain list of edges in the spanning forest: $O(n \log n)$
- when the final graph is a tree itself, have to output the whole graph: $\Omega(n \log n)$
Consider the following dynamic problem:

- edges are inserted into an initially empty graph G on n vertices
- must output a spanning forest when queried

Goal: minimize space

Space complexity: $\Theta(n \log n)$ bits

- maintain list of edges in the spanning forest: $O(n \log n)$
- when the final graph is a tree itself, have to output the whole graph: $\Omega(n \log n)$

what if we allow edge deletions?
Fully dynamic spanning forest

Maintain a dynamic graph on n vertices, supporting

- edge insertions,
- edge deletions, and
- spanning forest queries

Goal: minimize space

Theorem (Ahn, Guha, McGregor’12)

... solvable using $O(n \log^3 n)$ bits of space with error probability $1/poly(n)$.
Fully dynamic spanning forest

Maintain a dynamic graph on n vertices, supporting

- edge insertions,
- edge deletions, and
- spanning forest queries

Goal: minimize space

Theorem (Ahn, Guha, McGregor’12)

... solvable using $O(n \log^3 n)$ bits of space with error probability $1/poly(n)$.

only two more log factors!
Fully dynamic spanning forest

Maintain a dynamic graph on n vertices, supporting

- edge insertions,
- edge deletions, and
- spanning forest queries

Goal: minimize space

Theorem (Ahn, Guha, McGregor’12)

... solvable using $O(n \log(n/\delta) \log^2 n)$ bits of space with error probability δ.

only two more log factors!
Fully dynamic spanning forest

Maintain a dynamic graph on n vertices, supporting

- edge insertions,
- edge deletions, and
- spanning forest queries

Goal: minimize space

Theorem (Ahn, Guha, McGregor’12)

... solvable using $O(n \log(n/\delta) \log^2 n)$ bits of space with error probability δ.

only two more log factors! why two more?
Main result I

Theorem (This paper)

Any data structure for *fully dynamic spanning forest* with error probability δ must use $\Omega(n \log(n/\delta) \log^2 n)$ bits of memory, for any $2^{-n^{0.99}} < \delta < 0.99$.

δ is a constant $\Rightarrow \Omega(n \log^3 n)$ bits of space: need exactly two more log factors!
Main result I

Theorem (This paper)

Any data structure for *fully dynamic spanning forest* with error probability δ must use $\Omega\left(n \log(n/\delta) \log^2 n\right)$ bits of memory, for any $2^{-n^{0.99}} < \delta < 0.99$.

δ is a constant $\implies \Omega(n \log^3 n)$ bits of space:

need *exactly two more* log factors!
Simultaneous communication

The [Ahn, Guha, McGregor’12] solution also solves the following n-player communication problem
Simultaneous communication

The [Ahn, Guha, McGregor’12] solution also solves the following n-player communication problem

A (fixed) graph on n vertices is given to n players w. shared randomness:

• each player only sees one vertex and its neighborhood
Simultaneous communication

The [Ahn, Guha, McGregor’12] solution also solves the following n-player communication problem

A (fixed) graph on n vertices is given to n players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
Simultaneous communication

The [Ahn, Guha, McGregor’12] solution also solves the following n-player communication problem

A (fixed) graph on n vertices is given to n players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1 - \delta$
Simultaneous communication

The [Ahn, Guha, McGregor’12] solution also solves the following n-player communication problem

A (fixed) graph on n vertices is given to n players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1 - \delta$

Goal: minimize communication
Simultaneous communication

The [Ahn, Guha, McGregor’12] solution also solves the following \(n \)-player communication problem

A (fixed) graph on \(n \) vertices is given to \(n \) players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. \(1 - \delta \)

Goal: minimize communication

(compute a global function given small “sketches” of “local information”)

A graph on n vertices is given to n players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1 - \delta$

Goal: minimize communication
A graph on \(n \) vertices is given to \(n \) players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. \(1 - \delta \)

Goal: minimize communication

Theorem (AGM’12)

... solvable using (worst-case) \(O(\log(n/\delta) \log^2 n) \) bits of communication per player with error probability \(\delta \).
AGM sketch for simultaneous communication

A graph on \(n \) vertices is given to \(n \) players w. shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. \(1 - \delta \)

Goal: minimize communication

Theorem (AGM’12)

... solvable using (worst-case) \(O(\log(n/\delta) \log^2 n) \) bits of communication per player with error probability \(\delta \).

Trivial: \(\Omega(\log n) \) since the referee has to learn \(\Omega(n \log n) \) bits
Main result II

Theorem (This paper)

Any simultaneous communication protocol for spanning forest with error probability 0.99 must use $\Omega(\log^3 n)$ bits of communication on average.
Main result II

Theorem (This paper)

Any simultaneous communication protocol for spanning forest with error probability 0.99 must use $\Omega(\log^3 n)$ bits of communication on average.

exactly two more log factors needed than the trivial information theoretical lower bound
Main result II

Theorem (This paper)

Any simultaneous communication protocol for spanning forest with error probability 0.99 must use $\Omega(\log^3 n)$ bits of communication on average.

Exactly two more log factors needed than the trivial information theoretical lower bound

Open: higher lower bounds when error probability δ is lower?
[AGM’12] designed a (randomized) linear sketch:

\[S : \mathbb{N}^{n^2} \rightarrow \mathbb{N}^{O(n \log^2 n)} \]

such that
Graph sketching for spanning forest

[AGM’12] designed a (randomized) linear sketch:

\[S : \mathbb{N}^{n^2} \rightarrow \mathbb{N}^{O(n \log^2 n)} \]

such that

- \(S \) is a linear mapping with poly-bounded coefficients
[AGM’12] designed a (randomized) linear sketch:

\[S : \mathbb{N}^{n^2} \rightarrow \mathbb{N}^{O(n \log^2 n)} \]

such that

- \(S \) is a linear mapping with poly-bounded coefficients
- \(S(G) \) is a concatenation of \(S_1(G), S_2(G), \ldots, S_n(G) \), each \(S_i(G) \) has \(O(\log^2 n) \) dimensions,
 and it is computed from the neighborhood of vertex \(i \)
[AGM’12] designed a (randomized) linear sketch:

\[S : \mathbb{N}^{n^2} \rightarrow \mathbb{N}^{O(n \log^2 n)} \]

such that

- \(S \) is a linear mapping with poly-bounded coefficients
- \(S(G) \) is a concatenation of \(S_1(G), S_2(G), \ldots, S_n(G) \), each \(S_i(G) \) has \(O(\log^2 n) \) dimensions,
 and it is computed from the neighborhood of vertex \(i \)
- \(S(G) \) determines a spanning forest with probability \(1 - 1/n^c \)
Store $S(G)$ in memory:

- update: $S(G \pm (u, v)) = S(G) \pm S((u, v))$
- at end of stream: $S(G)$ determines a spanning forest w.h.p.

Use $O(n \log^3 n)$ bits of space
Communication protocol

Given graph G:

- Player i computes $S_i(G)$, and sends it to referee
- referee concatenates all $S_i(G)$, obtains $S(G)$
- referee outputs a spanning forest w.h.p.

Use $O(\log^3 n)$ bits of communication per player
Simultaneous communication complexity of spanning forest
Recall...

An n-vertex graph is given to n players with shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1 - \delta$

Goal: prove an average player must send $\Omega(\log^3 n)$ bits for constant δ
An n-vertex graph is given to n players with shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1 - \delta$

Goal: prove some player must send $\Omega(\log^3 n)$ bits for $\delta = 1/n^c$
An n-vertex graph is given to n players with shared randomness:

- each player only sees one vertex and its neighborhood
- each player sends a message to a referee
- referee outputs a spanning forest w.p. $1 - \delta$

Goal: prove some player must send $\Omega(\log^3 n)$ bits for $\delta = 1/n^c$

Starting point: Universal Relation UR^\supset...
Universal Relation UR^D

Alice: $S \subseteq [n]$

Bob: $T \subset S$

M

shared random bits...

output any $x \in S \setminus T$

Theorem (KNPWWY'17)

For failure probability $\delta > 2^{-n^{0.99}}$, the optimal length of M is $\Theta(\log(1/\delta) \log 2^n)$.

In particular, if $1/n$ failure probability, optimal length is $\Theta(\log 3^n)$.

12
Universal Relation \mathbb{UR}^\subset

Theorem (KNPWWY’17)

*For failure probability $\delta > 2^{-n^{0.99}}$, the optimal length of M is $\Theta(\log(1/\delta) \log^2 n)$.***
Universal Relation \mathcal{UR}^\supset

Theorem (KNPWWY'17)

For failure probability $\delta > 2^{-n^{0.99}}$, the optimal length of M is $\Theta(\log(1/\delta) \log^2 n)$.

In particular, $1/n^c$ failure probability, optimal length is $\Theta(\log^3 n)$.
Connection to \mathbb{UR}^3.

The referee M is only a neighbor of v. S is the set of neighbors of v and T is the set of vertices that v is only a neighbor of. The referee has to find some element in $S \setminus T$.

Why not already an $\Omega(\log^3 n)$ LB?

u_1 may also reveal (v, u_1)...
Connection to \mathbb{UR}^{\Box}

$v \succ u_1, u_2, \ldots, u_k$

Referee has to find some element in $S \setminus T$.

Why not already an $\Omega(\log^3 n)$ LB?

M_v may also reveal (v, u_1)...
Connection to UR^{3}

$v \subseteq u_1, u_2, \ldots, u_k$

Referee has to find some element in $S \setminus T$.

Why not already an $\Omega(\log^3 n)$ LB?

M_v may also reveal (v, u_1)...
Connection to \mathbb{UR}^3

v is only neighbor

$u_1 \rightarrow u_2 \rightarrow \ldots \rightarrow u_k \rightarrow v$

M_v to referee

v is only neighbor

$\Omega(\log^3 n)$ LB
Connection to UR^3

S: neighbors of v

T: vertices that v is only neighbor

v is only neighbor

Referee has to find some element in $S \setminus T$.

Why not already an $\Omega(\log^3 n)$ LB?

M_v may also reveal (v, u_1),...
Connection to \mathbb{UR}^k

v is only neighbor

S: neighbors of v

T: vertices that v is only neighbor

Referee has to find some element in $S \setminus T$. Why not already an $\Omega(\log^3 n)$ LB?

M_v may also reveal $(v, u_1, \ldots, u_k)\ldots$
Referee has to find some element in $S \setminus T$.

Why not already an $\Omega(\log^3 n)$ LB?
Connection to UR^3

Referee has to find some element in $S \setminus T$.

Why not already an $\Omega(\log^3 n)$ LB? M_{u_1} may also reveal (v, u_1)...
Hard instances

\[n - \epsilon |V_r| = n \epsilon |V_i| v_i \]

For vertex \(v_i \), its neighbors encode set \(S_i \), its neighbors on the left encode set \(T_i \).

Spanning forest contains an edge between \(v_i \) and \(V_r \).
Hard instances

For vertex v_i, its neighbors encode set S_i, its neighbors on the left encode set T_i. Spanning forest contains an edge between v_i and $V_{r \epsilon}$.

$n^{1-\epsilon}$
Hard instances

For vertex v_i, its neighbors encode set S_i, its neighbors on the left encode set T_i. Spanning forest contains an edge between v_i and V_r.

$n^{1-\epsilon}$

$|V_r| = n^\epsilon$
Hard instances

$|V_r| = n^\epsilon$

V_i

n^ϵ
Hard instances

\[n^{1 - \varepsilon} | V_r | = n^\varepsilon \]

vertices randomly permuted
Hard instances

Vertices randomly permuted

For vertex v_i, its neighbors encode set S_i
Hard instances

vertices randomly permuted

For vertex v_i, its neighbors encode set S_i, its neighbors on the left encode set T_i.
Hard instances

For vertex v_i, its neighbors encode set S_i, its neighbors on the left encode set T_i.

Spanning forest contains an edge between v_i and V_r.

vertices randomly permuted
Generating hard instances:

1. Fix \{v_i\} arbitrarily, randomly partition the rest into \{V_i\}, \ V_r;
Generating hard instances:

1. Fix \(\{v_i\} \) arbitrarily, randomly partition the rest into \(\{V_i\}, \ V_r; \)
2. For each \(v_i \), generate \(S_i, T_i \) from hard distribution for \(UR^\ominus; \)

\[\text{Diagram showing connections between } V_i, T_i, S_i, \text{ and } V_r. \]
Generating hard instances:

1. Fix \{v_i\} arbitrarily, randomly partition the rest into \{V_i\}, \ V_r;
2. For each \ v_i, generate \ S_i, T_i \ from hard distribution for UR\supseteq;
3. Connect each \ v_i \ to |T_i| \ random vertices in \ V_i;
4. Connect each \ v_i \ to |S_i \setminus T_i| \ random vertices in \ V_r.
Reduction from $\mathsf{UR}^\triangleright$

Make a reduction from $\mathsf{UR}^\triangleright$, main idea to solve $\mathsf{UR}^\triangleright$:

embed input (S, T) into one of (S_i, T_i),

then simulate the spanning forest protocol.
Reduction from $\text{UR}^<$

Make a reduction from $\text{UR}^<$, main idea to solve $\text{UR}^<$:

embed input (S, T) into one of (S_i, T_i),

then simulate the spanning forest protocol.

Goals:

1. Generate a graph G that “looks like” a hard instance
Reduction from UR^\supset

Make a reduction from UR^\supset, main idea to solve UR^\supset:

embed input (S, T) into one of (S_i, T_i),

then simulate the spanning forest protocol.

Goals:

1. Generate a graph G that “looks like” a hard instance
2. Spanning forest tells us an element in $S \setminus T$
Reduction from UR^\supset

Make a reduction from UR^\supset, main idea to solve UR^\supset:

embed input (S, T) into one of (S_i, T_i),

then simulate the spanning forest protocol.

Goals:

1. Generate a graph G that “looks like” a hard instance
2. Spanning forest tells us an element in $S \setminus T$
3. Low communication cost and preserve success probability
Given \((S, T)\) over universe \([n^\epsilon]\), generate a random graph \(G\):

1. Sample a random \(v_i\), a random injection \(f : [n^\epsilon] \rightarrow \mathcal{V} \setminus \{v_i\}_i\)
Solving \(\mathbf{UR}^\square \)

Given \((S, T)\) over universe \([n^\epsilon]\), generate a random graph \(G\):

1. Sample a random \(v_i\), a random injection \(f: [n^\epsilon] \rightarrow V \setminus \{v_i\}_i\)
2. Connect \(v_i\) to \(f(S)\)
Given \((S, T)\) over universe \([n^e]\), generate a random graph \(G\):

1. Sample a random \(v_i\), a random injection \(f : [n^e] \rightarrow V \setminus \{v_i\}\)
2. Connect \(v_i\) to \(f(S)\)
3. \(V_i := f(T) \cup (n^e - |T| \text{ other vertices})\)
Given \((S, T)\) over universe \([n^e]\), generate a random graph \(G\):

1. Sample a random \(v_i\), a random injection \(f : [n^e] \rightarrow V \setminus \{v_i\}_i\)
2. Connect \(v_i\) to \(f(S)\)
3. \(V_i := f(T) \cup (n^e - |T| \text{ other vertices})\)
4. \(V_r := f([n^e] \setminus T) \cup (|T| \text{ other vertices})\)
Given \((S, T)\) over universe \([n^e]\), generate a random graph \(G\):

1. Sample a random \(v_i\), a random injection \(f : [n^e] \rightarrow V \setminus \{v_i\}_i\)
2. Connect \(v_i\) to \(f(S)\)
3. \(V_i := f(T) \cup (n^e - |T| \text{ other vertices})\)
4. \(V_r := f([n^e] \setminus T) \cup (|T| \text{ other vertices})\)
5. Randomly partition other vertices into \(V_1, \ldots, V_{i-1}, V_{i+1}, \ldots\), sample the neighborhoods of \(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots\)
Given \((S, T)\) over universe \([n^e]\), generate a random graph \(G\):

1. Sample a random \(v_i\), a random injection \(f : [n^e] \rightarrow V \setminus \{v_i\}\)
2. Connect \(v_i\) to \(f(S)\)
3. \(V_i := f(T) \cup (n^e - |T| \text{ other vertices})\)
4. \(V_r := f([n^e] \setminus T) \cup (|T| \text{ other vertices})\)
5. Randomly partition other vertices into \(V_1, \ldots, V_{i-1}, V_{i+1}, \ldots\), sample the neighborhoods of \(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots\)

Distribution of \(G\) is the hard distribution.
Given \((S, T)\) over universe \([n^\epsilon]\), generate a random graph \(G\):

1. Sample a random \(v_i\), a random injection \(f : [n^\epsilon] \rightarrow V \setminus \{v_i\}_i\)
2. Connect \(v_i\) to \(f(S)\)
3. \(V_i := f(T) \cup (n^\epsilon - |T|\) other vertices\)
4. \(V_r := f([n^\epsilon] \setminus T) \cup (|T|\) other vertices\)
5. Randomly partition other vertices into \(V_1, \ldots, V_{i-1}, V_{i+1}, \ldots\)
 sample the neighborhoods of \(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots\)

Distribution of \(G\) is the hard distribution.

Let \(u\) be one \(v_i\)'s neighbor in \(V_r\), then \(f^{-1}(u) \in S \setminus T\).
Given \((S, T)\) over universe \([n^\epsilon]\)

A: send \(M_{v_i}\) based on \(f(S)\)

B: analyze the distribution of \(G\) conditioned on \(f, T, M_{v_i}\)

B: find \(u \in V_r\) that is a neighbor of \(v_i\) with the highest prob., output \(f^{-1}(u)\)

\[V_r = f([n^\epsilon] \setminus T) \cup (|T| \text{ other vertices}) \]
Analyzing the protocol

The protocol for UR^\supset has

- communication cost $|M_{v_i}|$, and
- failure probability $\leq \delta + 1/n^{0.1}$.

By [KNPWY'17], $|M_{v_i}| \geq \Omega(\log(1/\delta) \log^2 n)$

($\Omega(\log^3 n)$ lower bound when $\delta = 1/n^c$)
Open question

Lower bounds for simultaneous communication when error probability is small? \(\Omega(\log(n/\delta) \log^2 n) \)?
Open question

Lower bounds for simultaneous communication when error probability is small? $\Omega(\log(n/\delta) \log^2 n)$?

Proving the same lower bounds for maintaining connected components? and for connectivity: “if the whole graph is connected”?
Open question

Lower bounds for simultaneous communication when error probability is small? $\Omega(\log(n/\delta) \log^2 n)$?

Proving the same lower bounds for maintaining connected components? and for connectivity: “if the whole graph is connected”?

Thank you!