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Function Composition

Say we have Boolean functions
g:S5—1{0,1}, §C{0,1}™

f:40,1}" — 10,1}
We can form the composition of these functions
fog:5"—4{0,1}

where

(fog)x1, .. xn) = fg(x1),...,9(xn))



fog:S"—{0,1}
- ajn) — f(g(xl)v”'?g(x”))
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What is the complexity of a composed function in terms of
the complexities of f and g ?



Typically a complexity measure m(-) is submultiplicative
m(fog) <m(f)-m(g)
The other (difficult) direction is a composition theorem.

» degy 3(AND,;, 0 ORy,) = Q(degy ;3(ANDy,) - degy ;3(OR,,))
[Sherstov, Bun-Thaler]

- Lifting theorems: For the index communication gadget g
D™(f og) =Q(D(f) - D"(g))
175(f o g) = QRy3(f) - B*(9))

[Goos, Pitassi, Watson]

. Composition behavior of certificate complexity, block
sensitivity, etc. [Gilmer, Saks, Srinivasan and Tal]



Query Complexity
In this talk we focus on query complexity.

It is easy to see that for deterministic query complexity

D(fog) <D(f)-D(g)

Montanaro and (indep.) Tal show this is tight:

D(fog) = D(f)-D(g)

Deterministic query complexity perfectly composes.



Quantum Query Complexity

For quantum query complexity we also have a perfect
composition theorem [Reichardt, Hoyer-L-Spalek]:

Q1/3(fog) =0(Q1/3(f)  Qi1/3(9))



Randomized Query
Complexity

The randomized case still remains open!

The easy direction holds:

Rl/S(f 0g) = O(Rl/S(f) ' Rl/S(g) - log Rl/S(f))

What about a lower bound?



Randomized Composition
Theorem

Ben-David and Kothari show the following lower bound:

R1/3(9)
log R1/3(9)

Ry3(fog) =9 (31/3(f) ' \/
for any partial function f and total function g.

The square root is strange!

We show an example where f is arelation and g Is a
partial function where the square root is needed.



Result

There is arelation f and partial function g such that

Ri/3(fog)=0 (34/9(f)\/R1/3(9))

For any relation f and partial function ¢ it holds that

Ry/3(fog) =1 (R4/9(f)\/R1/3(9))



Example

First we describe the example.
The relation f C {0,1}" x {0,1}" is defined as
f=A(z,a) :du(z,a) <n/2—/n}

Make queries to « and the goal is to output an a that
agrees with = in at least n/2 + v/n positions.

Claim: Ryo(f) = O(v/n).



Example

Take the inner partial functionas ¢ : S — {0,1},

S =1{zec{0,1V": |z| <n/2—/n}U{zec{0,1V": |z| >n/2+ /n)

0 if |z| <n/2—+/n
1 if |[z| >n/2—+/n

Claim: R;/3(g) = ©(n).



Example

~J0 if x| <n/2 —/n
9@0{1 if |z| > n/2 —/n

Claim: Ry 3(g) = O(n).

Proof: The gap hamming distance communication problem is

GHD(z,y) = g(z © y)

Chakrabarti and Regev "10 show RY'3(GHD) = (n), which
implies the query complexity lower bound.



Observation

0 if |z| <n/2—+/n
1 if|x| >n/2—+/n

C|a|m R1/2_10/\/ﬁ(g) — O(l)

Proof: For any z in the domain of ¢,

Pris = (o)) = 5 + =

Sample 100 bits randomly from x and take the majority vote.



fZ{(CE,CL)IdH(ZC,CL) Sn/2_\/ﬁ}

0 if |z| <n/2—+\/n

1 if|lx| >n/2—+/n
Here is a protocol for f og oninput z1,...,Zs,.
We want to output something close to (g(z1),-..,9(xn)).
Foreach :=1,...,n let a; be the majority of 100 randomly
chosen bits from z;. Output a =aq,...,a,.

Each a; = g(z;) with probability 1/2 +10/v/n , S0 a agrees
with = in at least n/2 + /n positions with high probability
by a Chernoff bound.



f:{(xva):dH(xva) §n/2—\/ﬁ}

0 if |z
g(x){l if |

<n/2—+n
>n/2—/n

We have given a protocol for f o g with O(n) queries.

For this problem the bound

Recall that R, /9(f) = Q(v/n), R1/3(9) = Q(n).

Ry/3(fog) =9 (34/9(f)\/R1/3(9)>

s tight.



Lower Bound

R1/3(f09)
m(g) >

Rialh) =0

Natural idea: use a protocol 7 for f o g to give a
protocol for / (also used by Ben-David and Kothari).

Oninput z € {0,1}" sample (z1,...,z,) with g(z;) = 2;
and run ™ on (z1,...,%x).

For any such (z1, ..., x,), whp woutputs an a with (2,a) € f.

Problem: Sampling z; with g(z;) = 2; requires knowledge
of z; .



Let 1o, 11 be distributions over ¢~ (0),¢g *(1), resp.
Fix z € {0,1}" and sample x; ~ u,, fori=1,....,n.

This induces a probability
distribution over paths in the
tree.

We want to simulate this
distribution while querying

0 R as little as possible.

Deterministic tree for f o g.



Think about the first query in the tree for f o g.

To simulate this query, uniformly choose r € |0,1].



Bitsampler: uniformly choose r € [0, 1].

If < poanswer x13 =0,



Bitsampler: uniformly choose r € [0, 1].

If »>p1 answer r13=1.



Bitsampler: uniformly choose r € [0, 1].

If po <7 < p1 then query z1 and answer accordingly.



Bitsampler: uniformly choose r € [0, 1].

With this procedure we always move left with the correct
probabillity.



Conflict Complexity

To analyze how many queries this algorithm makes we
introduce the conflict complexity x(g) .

For a tree computing ¢ and distributions (o, 41 look at
expected number of times Bitsampler is run before making

a query.

Maximize over distributions, minimize over trees = x(9).



Wrapping up

With a direct sum theorem for conflict complexity we show

R1/3(f O 9)>
x(9)

Ryah) =0

Conflict complexity is quadratically tight, even for partial 9

x(9) = (\/Rys(9)

There exists an unbounded separation between sabotage
complexity and R;,3(g) for a partial g.



Open Questions

What about the case where f, g are total functions?

How does conflict complexity compare to other lower
bounds?

Rq/2—c
Is x(9) Zmein 1/26 (9)

?

[suggested by reviewer]



