
Introduction Ensemble KSS Theory Numerical Results

Ensemble K-Subspaces

Laura Balzano

University of Michigan

Simons Institute for the Theory of Computing
Randomized Numerical Linear Algebra and Applications 2018

work with John Lipor, David Hong, and Yan Shuo Tan

L. Balzano University of Michigan

EKSS



Introduction Ensemble KSS Theory Numerical Results

Collaborators

John Lipor David Hong Yan Shuo Tan

L. Balzano University of Michigan

EKSS



Introduction Ensemble KSS Theory Numerical Results

Subspace Clustering

L. Balzano University of Michigan

EKSS



Introduction Ensemble KSS Theory Numerical Results

Subspace Clustering

L. Balzano University of Michigan

EKSS



Introduction Ensemble KSS Theory Numerical Results

Subspace Clustering

S3S2

S1

L. Balzano University of Michigan

EKSS



Introduction Ensemble KSS Theory Numerical Results

Subspace Clustering

S3S2

S1

Image	courtesy	Hopkins	155

L. Balzano University of Michigan

EKSS



Introduction Ensemble KSS Theory Numerical Results

Context for subspace clustering

data can be clustered into meaningful groups (cell type, image
content, object features, subnet)

but we do not have labels (at least for this work)

each cluster has low-rank structure
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K -Subspace Clustering Objective

Let xi ∈ Rd , i = 1, . . . , n be data points that we wish to cluster
into K low-rank clusters (rank r � min d , n).

min
C,U

K∑
k=1

∑
i :xi∈ck

∥∥∥xi − UkU
T
k xi

∥∥∥2

2
, (1)

C = {c1, . . . , cK} is a partition on {1, · · · , n}, denoting the set of
estimated clusters

U = {U1, . . . ,UK} with Uk ∈ Rd×r denotes the corresponding set
of orthonormal subspace bases

This is a generalization of the K -Means objective to clustering
with planes as “centers.”

L. Balzano University of Michigan

EKSS



Introduction Ensemble KSS Theory Numerical Results

KSS

Alternating algorithm generalizing K -Means1:

1: Input: X ∈ Rd×n: data, K : number of clusters, r : subspace rank,
{U1, . . . ,UK}: initial subspaces

2: Output: {c1, . . . , cK}: clusters of X
3: while Clustering changes and KSS objective decreases do
4: # Cluster by projection
5: ck ← {x ∈ X : ∀j ‖UT

k x‖2 ≥ ‖UT
j x‖2} for k = 1, . . . ,K

6: # Best-fit rank-r subspace from cluster data
7: Uk ← PCA (ck , r) for k = 1, . . . ,K
8: end while

1First derived in [Bradley and Mangasarian, 2000]
L. Balzano University of Michigan
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Initialization

Like K -Means, the K -Subspaces algorithm depends heavily on the
initialization. Random init for d = 100, n = 400, r = 5,K = 4,
additive noise variance 0.1 for each entry of the d × n matrix.

Indeed, it is known that there is a set of initializations of nonzero
measure that provably lead to a local optimal point.
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Initialization

Use ideas from consensus clustering and add together the affinity
matrices.
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Initialization

Average B = 1, 5, 50 runs.

Clustering error using spectral clustering K = 4: 53%, 12%, 2%.
error definition
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EKSS

1: Input: X ∈ Rd×n: data, F : distribution on subspaces
K̄ : number of candidate sets, K : number of output clusters,
q: threshold parameter, B: number of base clusterings

2: Output: C̃ := {c1, . . . , cK}: clusters of X
3: for b = 1, . . . ,B (in parallel) do

4: S̃ = {U1, . . . ,UK̄} where Uk
iid∼ F , k = 1, . . . , K̄

5: C̃(b) ← KSS(X , K̄ , S̃). Cluster using KSS
6: end for
7: Ai,j ← 1

B

∣∣∣{b : xi , xj are co-clustered in C̃(b)}
∣∣∣ for i , j = 1, . . . , n

8: Ā← Thresh(A, q) Keep top q entries per row/column
9: C ← SpectralClustering(Ā,K ) Final Clustering

L. Balzano University of Michigan
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EKSS Performance

Algorithm Hopkins Yale B COIL-20 COIL-100 USPS MNIST-10k

EKSS 0.26 14.31 13.47 28.57 15.84 2.58
KSS 0.35 54.28 33.12 74.53 18.31 2.60

CoP-KSS 0.69 56.00 29.10 51.38 10.12 8.80
MKF 0.24 46.22 39.24 66.49 28.62 43.49
TSC 2.07 22.20 15.28 29.82 31.57 15.98

SSC-ADMM 1.07 9.83 13.19 44.06 56.61 19.17
SSC-OMP 25.25 13.28 27.29 34.79 77.94 19.19

EnSC 9.75 18.87 8.26 28.75 33.66 17.97

Table: Clustering error comparison. The lowest three clustering errors are
given in bold.

data sets error definition
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K-Subspaces Theory

Hardness results2:

For r = 1, with d , n,K input to the problem, ∃ε > 0 such that it is
NP-hard to approximate the KSS objective within (1 + ε).

For K = 2, with d , n, r input to the problem, it is NP-hard to
approximate the KSS objective within (1 + ε) for any ε > 0.

2[Tao and Balzano, 2018]
L. Balzano University of Michigan
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K-Subspaces Theory

For the KSS alternating algorithm, we know that KSS objective
function decreases at every iteration (by definition) and it reaches
a local optimum3.

There is a set of initializations of nonzero measure that provably
lead to a local optimal point.

3[Bradley and Mangasarian, 2000]
L. Balzano University of Michigan
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What we see from random initialization

Generate data X ∈ Rd×n from a union of subspaces with no noise,
d = 500, n = 1000, and vary rank r , number of subspaces k (in
this slide k = 5), affinity between subspaces pairwise.

Subspace affinity: ‖UT
i Uj‖2

F ∈ [0, r ] for orthonormal Ui ,Uj
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What we see from random initialization
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Overview of our results

Random initializations cluster a pair of points with probability
monotonic in their inner product

We proved conditions under which one can correctly subspace
cluster with any (possibly perturbed) monotonic function of
inner products (generalizing TSC)

Aij = f
(∣∣∣〈x (l)

i , x
(k)
j

〉∣∣∣)+ τ
(l ,k)
i ,j

We proved that the EKSS-0* affinity matrix concentrates to a
monotonic function of inner products. (*with consensus
applied only to the clustering from the projection onto random
initialization)

E[Aij ] = f
(∣∣∣〈x (l)

i , x
(k)
j

〉∣∣∣)
L. Balzano University of Michigan
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A Simple Problem

Suppose we have two unit norm data points x , y ∈ Rd , and two
random candidate subspaces, U,V ∈ Rd×r .
What is the probability that both points are closer to the same
subspace?

‖UT x‖ > ‖V T x‖ and ‖UT y‖ > ‖V T y‖ (or flip U,V )

L. Balzano University of Michigan
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A Simpler Problem

Suppose we have two unit norm data points x , y ∈ Rd , and two
random candidate subspaces, u, v ∈ Rd×1.

1 Question

Suppose we have two unit vectors x and y angle θ apart (where θ 2 [0,π/2],
symmetry covers the rest). Draw two iid Gaussian vectors u and v. What is the
probability that u has larger projection than v onto both x and y or vice versa?

2 Answer

Theorem 1 The probabillty that u has larger projection than v onto both x and
y or vice versa is

P (θ) = 1− 2
θ

π

!
1−

θ

π

"

A tempting proof. Note that the sectors from x to y and from −x to −y
both cover θ/π of the space each. Hence the probability that one of u or v is
in the sector and the other is outside is exactly 2θ/π (1− θ/π). It is tempting
then to think that this event is complementary (and so disjoint) to the event
that u has larger projection than v onto both x and y or vice versa. If this is
true, then we are done!

Counter-example. However, the events are not complementary; they can
overlap significantly. Suppose, for example, that x = [1, 0], y = [

p
3/2, 1/2],

u = [1, 0] and v = [0, 1]. In this case, u is in the sector between x and y, v is
outside the sector, and u has larger projection than v onto both x and y. These
properties still hold when u and v are perturbed by small amounts, providing a
positive probability set of u and v where the events overlap.

What follows is the current proof. The connection described above suggests,
though, that there may be a simpler proof!
Proof. Note that u has larger projection than v onto both x and y with equal
(and disjoint) probability as v having larger projection than u. Thus

P (θ) = 2P
#$$uTx

$$ >
$$vTx

$$ ,
$$uT y

$$ >
$$vT y

$$% .

Recall that

|a| > |b| () (a+ b > 0, a− b > 0 or a+ b < 0, a− b < 0) .

1

1 Question

Suppose we have two unit vectors x and y angle θ apart (where θ 2 [0,π/2],
symmetry covers the rest). Draw two iid Gaussian vectors u and v. What is the
probability that u has larger projection than v onto both x and y or vice versa?

2 Answer

Theorem 1 The probabillty that u has larger projection than v onto both x and
y or vice versa is

P (θ) = 1− 2
θ

π

!
1−

θ

π

"

A tempting proof. Note that the sectors from x to y and from −x to −y
both cover θ/π of the space each. Hence the probability that one of u or v is
in the sector and the other is outside is exactly 2θ/π (1− θ/π). It is tempting
then to think that this event is complementary (and so disjoint) to the event
that u has larger projection than v onto both x and y or vice versa. If this is
true, then we are done!

Counter-example. However, the events are not complementary; they can
overlap significantly. Suppose, for example, that x = [1, 0], y = [

p
3/2, 1/2],

u = [1, 0] and v = [0, 1]. In this case, u is in the sector between x and y, v is
outside the sector, and u has larger projection than v onto both x and y. These
properties still hold when u and v are perturbed by small amounts, providing a
positive probability set of u and v where the events overlap.

What follows is the current proof. The connection described above suggests,
though, that there may be a simpler proof!
Proof. Note that u has larger projection than v onto both x and y with equal
(and disjoint) probability as v having larger projection than u. Thus

P (θ) = 2P
#$$uTx

$$ >
$$vTx

$$ ,
$$uT y

$$ >
$$vT y

$$% .

Recall that

|a| > |b| () (a+ b > 0, a− b > 0 or a+ b < 0, a− b < 0) .

1

1 Question

Suppose we have two unit vectors x and y angle θ apart (where θ 2 [0,π/2],
symmetry covers the rest). Draw two iid Gaussian vectors u and v. What is the
probability that u has larger projection than v onto both x and y or vice versa?

2 Answer

Theorem 1 The probabillty that u has larger projection than v onto both x and
y or vice versa is

P (θ) = 1− 2
θ

π

!
1−

θ

π

"

A tempting proof. Note that the sectors from x to y and from −x to −y
both cover θ/π of the space each. Hence the probability that one of u or v is
in the sector and the other is outside is exactly 2θ/π (1− θ/π). It is tempting
then to think that this event is complementary (and so disjoint) to the event
that u has larger projection than v onto both x and y or vice versa. If this is
true, then we are done!
Counter-example. However, the events are not complementary; they can

overlap significantly. Suppose, for example, that x = [1, 0], y = [
p
3/2, 1/2],

u = [1, 0] and v = [0, 1]. In this case, u is in the sector between x and y, v is
outside the sector, and u has larger projection than v onto both x and y. These
properties still hold when u and v are perturbed by small amounts, providing a
positive probability set of u and v where the events overlap.
What follows is the current proof. The connection described above suggests,

though, that there may be a simpler proof!
Proof. Note that u has larger projection than v onto both x and y with equal
(and disjoint) probability as v having larger projection than u. Thus

P (θ) = 2P
#$$uTx

$$ >
$$vTx

$$ ,
$$uT y

$$ >
$$vT y

$$% .

Recall that

|a| > |b| () (a+ b > 0, a− b > 0 or a+ b < 0, a− b < 0) .

1

1 Question

Suppose we have two unit vectors x and y angle θ apart (where θ 2 [0,π/2],
symmetry covers the rest). Draw two iid Gaussian vectors u and v. What is the
probability that u has larger projection than v onto both x and y or vice versa?

2 Answer

Theorem 1 The probabillty that u has larger projection than v onto both x and
y or vice versa is

P (θ) = 1− 2
θ

π

!
1−

θ

π

"

A tempting proof. Note that the sectors from x to y and from −x to −y
both cover θ/π of the space each. Hence the probability that one of u or v is
in the sector and the other is outside is exactly 2θ/π (1− θ/π). It is tempting
then to think that this event is complementary (and so disjoint) to the event
that u has larger projection than v onto both x and y or vice versa. If this is
true, then we are done!

Counter-example. However, the events are not complementary; they can
overlap significantly. Suppose, for example, that x = [1, 0], y = [

p
3/2, 1/2],

u = [1, 0] and v = [0, 1]. In this case, u is in the sector between x and y, v is
outside the sector, and u has larger projection than v onto both x and y. These
properties still hold when u and v are perturbed by small amounts, providing a
positive probability set of u and v where the events overlap.

What follows is the current proof. The connection described above suggests,
though, that there may be a simpler proof!
Proof. Note that u has larger projection than v onto both x and y with equal
(and disjoint) probability as v having larger projection than u. Thus

P (θ) = 2P
#$$uTx

$$ >
$$vTx

$$ ,
$$uT y

$$ >
$$vT y

$$% .

Recall that

|a| > |b| () (a+ b > 0, a− b > 0 or a+ b < 0, a− b < 0) .

1

1 Question

Suppose we have two unit vectors x and y angle θ apart (where θ 2 [0,π/2],
symmetry covers the rest). Draw two iid Gaussian vectors u and v. What is the
probability that u has larger projection than v onto both x and y or vice versa?

2 Answer

Theorem 1 The probabillty that u has larger projection than v onto both x and
y or vice versa is

P (θ) = 1− 2
θ

π

!
1−

θ

π

"

A tempting proof. Note that the sectors from x to y and from −x to −y
both cover θ/π of the space each. Hence the probability that one of u or v is
in the sector and the other is outside is exactly 2θ/π (1− θ/π). It is tempting
then to think that this event is complementary (and so disjoint) to the event
that u has larger projection than v onto both x and y or vice versa. If this is
true, then we are done!
Counter-example. However, the events are not complementary; they can

overlap significantly. Suppose, for example, that x = [1, 0], y = [
p
3/2, 1/2],

u = [1, 0] and v = [0, 1]. In this case, u is in the sector between x and y, v is
outside the sector, and u has larger projection than v onto both x and y. These
properties still hold when u and v are perturbed by small amounts, providing a
positive probability set of u and v where the events overlap.
What follows is the current proof. The connection described above suggests,

though, that there may be a simpler proof!
Proof. Note that u has larger projection than v onto both x and y with equal
(and disjoint) probability as v having larger projection than u. Thus

P (θ) = 2P
#$$uTx

$$ >
$$vTx

$$ ,
$$uT y

$$ >
$$vT y

$$% .

Recall that

|a| > |b| () (a+ b > 0, a− b > 0 or a+ b < 0, a− b < 0) .

1

L. Balzano University of Michigan

EKSS



Introduction Ensemble KSS Theory Numerical Results

A Simpler Problem

Theorem 1

Let x , y ∈ Rd be unit norm and |xT y | = cos θ for θ ∈ [0, pi/2].
The probability that both x and y have larger projection on either
u or v is

P(θ) = 1− 2
θ

π

(
1− θ

π

)
.
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Generalize the model

What if one is only able to observe some noisy version of a
monotonic function of the inner products? (as in noisy data,
missing data, compressed data etc).

xkj is the j th point in the kth subspace,

f (·) is a monotonic function,

τ is a bounded deviation term.

f
(∣∣∣〈x (l)

i , x
(k)
j

〉∣∣∣)+ τ
(l ,k)
i ,j , k ∈ 1, . . . ,K (2)

L. Balzano University of Michigan
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Results

Definition 2 (Angular separation)

Let X = X1 ∪ · · · ∪ XK be a set of points with the ith point of Xl

denoted as x
(l)
i . Then we define the q-angular separation as

φq = min
l∈[K ],i

f

(∣∣∣〈x (l)
i , x

(l)
6=i

〉∣∣∣
[q]

)
− f

(
maxk 6=l ,j

∣∣∣〈x (l)
i , x

(k)
j

〉∣∣∣)
2

(3)

where
∣∣∣〈x (l)

i , x
(l)
6=i

〉∣∣∣
[q]

denotes the qth largest absolute inner

product between x
(l)
i and others in subspace l .

L. Balzano University of Michigan
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Results

Lemma 3 (Expected affinity matrix)

The (i , j)th entry of the affinity matrix A formed by EKSS-0 has
expected value

E [Ai ,j ] = f (|〈xi , xj〉|) (4)

where f : R+ → R+ is a strictly increasing function, and the
expectation is taken with respect to the random subspaces drawn
in EKSS-0.

We can prove concentration/deviation τ < φq for different
assumptions on the subspaces and random data models, e.g., with
additive noise or missing data.

L. Balzano University of Michigan
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Results

Theorem 4 (EKSS-0 provides correct clustering for subspaces with
bounded affinity)

Let Sk , k = 1, . . . ,K be subspaces of dimension r in Rd . Let the
points in Xk be a set of points drawn uniformly from the unit
sphere in subspace k. Let q ∈ [c4 log nmax , nmin/6), where
c4 = 12(24π)r−1. If

max
k,l :k 6=l

aff(Sk ,Sl) ≤
1

15 log n
,

then Ā obtained by EKSS-0 results in correct clustering of the data
with probability at least 1− 10

n − ne−c2nmin − n2e−c3γB , where
c2, c3 > 0 are numerical constants, and (roughly) 0 < γ < φq.

L. Balzano University of Michigan
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Other algorithms

(CoP-KSS) Coherence Pursuit K -Subspaces [Gitlin et al., 2018]

(MKF) Median K -Flats [Zhang et al., 2009]

(TSC) Thresholded Subspace Clustering
[Heckel and Bölcskei, 2015]

(SSC-ADMM) Sparse Subspace Clustering with its ADMM
implementation [Elhamifar and Vidal, 2013]

(SSC-OMP) SSC with Orthogonal Matching Pursuit
[You et al., 2016b]

(EnSC) Elastic Net Subspace Clustering [You et al., 2016a]

L. Balzano University of Michigan
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Synthetic data
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 % EKSS-0

TSC

EKSS

SSC

Problem params: d = 100, r = 10,K = 3,Nk = 500, σ2 = 0.05.

Although our experiments indicate that EKSS-0 appears to have no
benefits over TSC, we do find that by running a small number of
KSS iterations, significant performance improvements are achieved.
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EKSS Performance

Algorithm Hopkins Yale B COIL-20 COIL-100 USPS MNIST-10k
EKSS 0.26 14.31 13.47 28.57 15.84 2.58
KSS 0.35 54.28 33.12 74.53 18.31 2.60

CoP-KSS 0.69 56.00 29.10 51.38 10.12 8.80
MKF 0.24 46.22 39.24 66.49 28.62 43.49
TSC 2.07 22.20 15.28 29.82 31.57 15.98

SSC-ADMM 1.07 9.83 13.19 44.06 56.61 19.17
SSC-OMP 25.25 13.28 27.29 34.79 77.94 19.19

EnSC 9.75 18.87 8.26 28.75 33.66 17.97

Table: Clustering error of subspace clustering algorithms for a variety of
benchmark datasets. The lowest three clustering errors are given in bold.
No other algorithm is in the top five for all datasets.
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Conclusion

Subspace Clustering using Ensembles of K-Subspaces
John Lipor, David Hong, Yan Shuo Tan, Laura Balzano
https://arxiv.org/abs/1709.04744

We have presented a new subspace clustering algorithm based
on ensembles of K-Subspaces with random initialization.

It has theoretical guarantees as strong as state-of-the-art.

Its performance exceeds those guarantees.

We have not analyzed the alternating steps of KSS. Showing
the impact of this improvement is a matter of ongoing work.

L. Balzano University of Michigan
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Clustering error

Let Qout and Qtrue be the output and ground-truth labelings of the
data, with Qi ,j = 1 if point j belongs to cluster i and zero
otherwise. Then we measure error by

err =
100

n

1−max
π

∑
i ,j

Qout
π(i)jQ

true
ij

 ,

where π is a permutation of the cluster labels.
Back to progression
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Data sets

Yale:

COIL:

USPS:
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What we see from random initialization
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What we see from random initialization
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What we see from random initialization
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A couple runs
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