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Concentration of Scalar Random Variables

Random X = )., X;, X;eER
1. X; are independent

Is X =~ 0 with high probability?



Concentration of Scalar Random Variables

Bernstein’s Inequality
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Concentration of Scalar Martingales
Freedman’s Inequality
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Concentration of Scalar Martingales

Freedman’s Inequality

Random X = )., X;, X;eER

1. X; are independent
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Concentration of Matrix Random Variables

Matrix Bernstein’s Inequality (Tropp 11)
Random X = Y, X; X; € R¥*? symmetric
1. X; are independent

2. EX; =0

3. |[Xil]l <7

4. || % EXF| < o2

gives

2
P[||X]| > €] < d 2exp (— £T/2 )

re+o?



Concentration of Matrix Martingales

Matrix Freedman’s Inequality (Tropp 11)
Random X = Y, X; X; € R4 symmetric
1. X5aretdependent

2. EX—6 E|X;| previous steps] = 0
3. IX;ll <7

4. -H{TEH#ZH—_édl P[||>; E|X?| prev.steps]||| > 6%] < 6

gives E.g. ife =0.5andr, 0% = 0.1/log(d/7)

g%/2
re+o?

P[||X]| > €] < d 2exp (— ) + 6

<T1+4+6



Concentration of Matrix Martingales

Matrix Freedman’s Inequality (Tropp 11)

P[||>; E|X?| prev.steps]||| > 62] < &

Predictable quadratic variation
= z E[X?| prev. steps]

i



Laplacian Matrices

Graph G={V,E)
Edge weights w:E — R,
n=|V|

m = |E|

nXn matrix

a
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Laplacian Matrices

Graph G={V,E)
Edge weights w:E — R,
n=|V|

m = |E|

nXn matrix

Lia,p)y = W(a,p)
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Laplacian Matrices

Graph G =(V,E)
Edge weights w:E — R,
n=|V|
m = |E|

A; weighted adjacency matrix of the graph
D;;diagonaf; matrix of weighted degrees

L=D-A



Laplacian Matrices
Symmetric matrix L

All off-diagonals are non-positive and

Li = Z‘Lij‘

J#i



Laplacian of a Graph

I -1 0
-1 1 0
0O 0 0
1
1
2
2 0 =2
0O 0 O
-2 0 2

2
—1

—1



Laplacian Matrices

[STO4]: solving Laplacian linear equations in O(m) time

[KS16]: simple algorithm



Solving a Laplacian Linear Equation
Lx=0Db

Gaussian Elimination
Find U, upper triangular matrix, s.t.
U'U=L
Then
x=U1U"Th

EasytoapplyU tand U™ "



Solving a Laplacian Linear Equation
Lx=0D>b
Approximate Gaussian Elimination
Find U, upper triangular matrix, s.t.
U'U =L

U is sparse.

1) . :
0 (log Z) iterations to get
g-approximate solution X.



Approximate Gaussian Elimination

Theorem [KS]

When L is an Laplacian matrix with m non-zeros,
we can find in O(mlog3 n) time an upper triangular
matrix U with O(mlog> n) non-zeros,

s.t. w.h.p.
U'U =L



Additive View of Gaussian Elimination

Find U, upper triangular matrix, st U'U = M

(16 —4 =8 —4\
—4 5 0 -1
0 14

-8 0
\-4 -1 0 7




Additive View of Gaussian Elimination

16 4 -8 -4
—4 5 0 -1
-8 0 14 0
-4 -1 0 7

Find the rank-1 matrix that agrees with M
on the first row and column.

16 —4 -8 —4 1

-4 1 2 1| [-1
8 2 4 2| |-2
-4 1 2 1 ~1



Additive View of Gaussian Elimination

16 -4 -8 4
—4 5 0 -1
-8 0 14 0
—4 -1 0 7

Subtract the rank 1 matrix.
We have eliminated the first variable.

16 -4 -8 4
—4 1 2 1
-8 2 4 2
—4 1 2 1



Additive View of Gaussian Elimination

0 0 0
4 =2 =2
-2 10 =2
-2 =2 6

o O O O

The remaining matrix is PSD.



Additive View of Gaussian Elimination

0 0 0 0
0 4 -2 =2
0 -2 10 -2
0 -2 -2 6

Find rank-1 matrix that agrees with
our matrix on the next row and column.

0 0 0 0 0 0
0 4 —2 —2| |2 2
0 =2 1 1| |-1][-1

0 —2 1 1 —1 —1



Additive View of Gaussian Elimination

O 0 0 0 0 0
0 4 -2 -2 070
0o -2 10 -2 10 0
0 -2 —2 6 0 0

Subtract the rank 1 matrix.
We have eliminated the second variable.

0 O 0 0
0o 4 -2 =2
0 -2 1 1
0 -2 1 1



Additive View of Gaussian Elimination

Repeat until all parts written as rank 1 terms.

16 -4 -8 -4

M = —4 5 0 —1

8 0 14 0
4 -1 0 7
4 4\ " 0 0\ "' 0 0o\ '
1] | =1 9 9 0 0
=l ol |2 Tt |-t T3 s | T

—1 —1 —1 —1 —1 —1

N O O O

O OO



Additive View of Gaussian Elimination

Repeat until all parts written as rank 1 terms.

16 -4 -8 -4
—4 5 0 -1

M=1_58 0o 14 o
—4 -1 0 7
4 0 0 0 4 -1 -2 -1
-1 2 0 o0 0 2 -1 -1
—2 -1 3 0 0 0 3 -1
~1 -1 -1 2 0 0 0 2



Additive View of Gaussian Elimination

Repeat until all parts written as rank 1 terms.

16 -4 -8 -4
—4 5 0 -1

M=l s o 14 o
4 -1 0 7
4 -1 -2 -1\ /4 -1 —2 -1
o o2 -1 -1 0 2 -1 —-1| .-
“lo o 3 -1 0 0 3 -1 v u
0 0 0 2 0 0 0 2



Additive View of Gaussian Elimination

What is special about Gaussian Elimination on
Laplacians?

The remaining matrix is always Laplacian.

16 -8 —4 -4

8 8 0 0
L=1_4 o 4 o
4 0 0 4



Additive View of Gaussian Elimination

What is special about Gaussian Elimination on
Laplacians?

The remaining matrix is always Laplacian.

16 -8 —4 —4 0 0 0 0
8 4 2 9 0 4 -2 -2
L=1{_4 o 1 1 |[T|o =2 3 -1
4 2 1 1 0 -2 -1 3



Additive View of Gaussian Elimination

What is special about Gaussian Elimination on
Laplacians?

The remaining matrix is always Laplacian.

4 4\ ' 0 0 0 0
9] | =2 0 4 -9 -2
L=1_111_-1 Tlo 2 3 1
1/ \ -1 0 -2 -1 3

A new Laplacian!



Why is Gaussian Elimination Slow?

Solving Lx = b by Gaussian Elimination
can take Q(n®) time.

The main issue is fill

I =

%
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Why is Gaussian Elimination Slow?

Solving Lx = b by Gaussian Elimination
can take Q(n®) time.

The main issue is fill

L= New Laplacian

%

Elimination creates a clique
on the neighbors of v



Why is Gaussian Elimination Slow?

Solving Lx = b by Gaussian Elimination
can take Q(n®) time.

The main issue is fill

L= New Laplacian
— ;

Laplacian cliques can be sparsified!



Gaussian Elimination

1. Pick a vertex v to eliminate
2. Add the clique created by eliminating v
3. Repeat until done



Approximate Gaussian Elimination

1. Pick a vertex v to eliminate

2. Add the clique created by eliminating v
3. Repeat until done



Approximate Gaussian Elimination

1. Pick a random vertex v to eliminate

2. Add the clique created by eliminating v
3. Repeat until done



Approximate Gaussian Elimination
1. Pick a random vertex v to eliminate
2. Sample the cligue created by eliminating v

3. Repeat until done

Resembles randomized Incomplete Cholesky



Approximating Matrices by Sampling

Goal
U'U =L

Approach

1. EU'U=L
2. Show U'U concentrated around expectation

Gives UTU =~ L w. high probability



Approximating Matrices in Expectation

Consider eliminating the first variable

T

HE B =
(0) —
HE B =
Original Rank 1 Remaining graph

Laplacian term + clique
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Approximating Matrices in Expectation

Consider eliminating the first variable

T

HE N
(1) =
IE( L ) <c1><c1> + E T B m
HE =
Rank 1 Remaining graph

term + sparsified clique



Approximating Matrices in Expectation

Consider eliminating the first variable

-
E( LD )=<c1><c1> +E - -
HE =

Rank 1 Remaining graph
term + sparsified clique

T

HE B =
Suppose —<c1)<c1) + T = =



Approximating Matrices in Expectation

Consider eliminating the first variable

T

E( LD )=<c1><c1> +E - -
HE =

Rank 1 Remaining graph

term + sparsified clique

Then = L



Approximating Matrices in Expectation

Let L) be our approximation after i eliminations

If we ensure at each step

B E = B E B =
E B E| E B BN
HE N E B =
Sparsified clique Clique
Then

EL® = (-1
E[ LY —L¢D)| previous steps| = 0



Approximation?

Approximate Gaussian Elimination

Find U, upper triangular matrix, s.t.
U'U =L

HH——<85

|L~Y2UTUL™ Y2 -1 || < 0.5



Essential Tools

Goal is now

PSD Order

iff for all x

x"Ax < x"Bx



Matrix Concentration: Edge Variables

.
lLe w. probability p,
Ye — < pe
0 ow.
.
Zero-mean variables X, =Y,—L,

Isotropic position variables



Predictable Quadratic Variation

Predictable quadratic variation = ), IE[X?| prev. steps]

Want to show IP[HZi IE[X?| prev. steps]H > 02] <9

Promise: EX2<rL,




Sample Variance
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Sample Variance

-

-~
-~
)
~_—_— ==

€€ elim. clique of V =YY
2current lap. 41, 41
— B ) j—
# vertices ’ # vertices # vertices

WARNING: only true w.h.p.



Sample Variance

Recall EX2<rL,

PutE’ng it toxether I <
v e N
4]

IESE elim. cliqye of V ]EX% s .

€€ elim. clique of V # vertices 41

\ 1
! # vertices

variance
in one round of elimination



Sample Variance

. 4]
z variance < z r . _
H vertices

rounds of rounds of
elimination elimination

<4rlogn -1




Summary

Matrix martingales: a natural fit for algorithmic analysis
Understanding the Predictable Quadratic Variation is key

Some results using matrix martingales

Cohen, Musco, Pachocki ’16 — online row sampling

Kyng, Sachdeva 17 — approximate Gaussian elimination

Kyng, Peng, Pachocki, Sachdeva '17 — semi-streaming graph sparsification

Cohen, Kelner, Kyng, Peebles, Peng, Rao, Sidford '18 — solving Directed Laplacian eqgs.

Kyng, Song ‘18 — Matrix Chernoff bound for negatively dependent random variables



Thanks!



How to Sample a Clique

For each edge (1, v)
pick an edge (1, u) with probability ~ w,,

WyuWy

insert edge (v, u) with weight ——
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How to Sample a Clique

For each edge (1, v)
pick an edge (1, u) with probability ~ w,,

_ : . WyuWy
insert edge (v, u) with weight ——
1
\ 5
NG a
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How to Sample a Clique

For each edge (1, v)
pick an edge (1, u) with probability ~ w,,

WyuWy

insert edge (v, u) with weight ——



Practice
Julia Package: Laplacians.jl

tiny.cc/spielman-solver-code

Theory

Nearly-linear time Directed Laplacian solvers
using approximate Gaussian elimination
[CKKPPSR17]



This is really the end



