Scalable Algorithmic
Primitives for Data Science

Richard Peng
Sep 25, 2018



Large Scale graphs / matrices

 Network science:
centrality, partitioning ...

* Image/video processing:
segmentation, denoising ...

* Scientific computing:
stress/strain, heat/fluid, waves ...

..............




Tools for large graphs / matrices

* \ (linear system solve) jUIi.Oa

e CVX (convex optimization)

* Eigenvector / SVD / spectral algorithms

Most basic: solving Ax =b
* Optimization: interior point method
* Eigenvector: inverse power method



Solve Time(s)

x=Solve(A, b) vs. sorting
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[Kyng-Rao-Sachdeva "15]
we suggest rerunning the
program a few times and / or
using a different solver. An
alternate solver based on
incomplete Cholesky is provided
with the code.
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Works on solving Ax = b

from SITAM News. Volume 33, Number 4

The Best of the 20th Century: Editors Name Top 10 Algorithms

matrix decompositions,
QR factorization,
Krylov space methods (e.g. conjugate gradient)

O
On a laptop: many instance with | $ IOO
m = 10° solvable in seconds Ju Ia

Open: provably solve ALL graphs / matrices problems this fast

This talk: recent progresses and the central
role of high dimensional concentration

Focus: linear case, but most have non-linear extensions



Direct Methods (combinatorial)

M) & Eliminate(M{), x1)
MB) & Eliminate(M(2), x1)
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* Combinatorial scientific computing
* Matrix multiplication
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 Parallel graph algorithms
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 Sparsified squaring (e.g. connectivity in L)



terative Methods (numerical)
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Preconditioning:
Solve B1Ax = B-lb by: - | o
x € x + B1(Ax —Db)

f;r_qfl.l':l

* Fixed point: Ax—b =0
e Simple B: B =1, many iterations
 B=A:1iteration, but same problem

* Conjugate gradient (pcg)
* Convex optimization algorithms
* Krylov space methods



Difficulties in scaling

High performance computing: nonzeros < edges

& o+ 7

Highly connected, Long paths / trees,
need global steps need many steps
f Each easy on its own f
Iterative methods Direct methods

Must handle both simultaneously, but
avoid paying n iterations X m per iteration



Hybrid algorithms

* Approximate Gaussian elimination (pcg + ichol)
 [Vaidya 89] precondition with graphs

n S
e

EE e s

Algorithmic view:
* Operator error as another resource
* Fined grained coupling of discrete/continuous



Graph Structured Matrices

graph Laplacian Matrix L
Diagonal: degree

Off-diagonal: -edge weights

1 PS Laplacians arise in:
- > 11 Spectral algorithms
o‘-’ 1 10 Inference on graphs
1 -1 )0 1 Hessian matrices of IPM

n vertices n rows / columns

m edges O(m) non-zeros




Laplacian Paradigm

‘ [Spielman-Teng 04]

find x s.t. Lx = b in nearly-linear time

2004: mlog’°n

Zeno’s paradox?

2006: mlog30 2010: mlog?n

2014: mlog/?n

2011: mlogn

%
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Laplacians.jl

2011: approx maxflow in m*/3

2016: approx maxflow in m

2008: mincost-flow in m1->

Non-linear: min f(Bx) + <b, x>

2013: approx maxflow in m1+e(l)

2016: max weighted
matching in m7/4

2013: bipartite matching in m7/4

2017: matrix rescaling in m

2014: maxflow in mn/2

Where B = edge-vertex incidence matrix




Laplacian Paradigm(s)

e [Vaidya 89, Spielman-Teng 04, Koutis-Miller-P "10, 11...,
Kelner-Orecchia-Sidford-Zhu 13, Lee-Sidford 14...]
Turn graph into tree by removing off-tree edges

* [Gremban-Miller 96, P-Spielman 14, Kyng-Lee-P-Sachdeva-
Spielman 16, Kyng-Sachdeva 16, Cohen etal. '16, 17, '18]:
Turn graph into clique(s) while eliminating vertices
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Hybrid algorithms at a glance
| Ultra-sparsifiers | _ Elimination

End goal Tree Expander
Progress Hedges Condition number
Reduction / step Factor of k Factor of 2
Error / step O(k log?n) 1/0(logn)
Objects sampled Off-tree edges Walks
Building upon DFS / BFS / MST Multi-grid,

Global Min-Cut Connectivity in L

Core step: gradual transfer between
sizes and numerical complexities



Dimensionality Reduction

N N

f(Ax): Banach space

A’l; \‘
| \

Can work on A’ instead: f(A’x) = f(Ax) Vx:
< min f(Ax) + <b, x> = min f(A’x) + <b, x>
Functional analysis (e.g. (Talagrande '90]): for many f,
including p-norms with 1 <= p <=2, any n-dimensional
Banach space embeds with constant errorinto RO(nlogn)

p-norm: ” Y ” q = (Z|yi|p)1/p




Edge-vertex incidence matrix

graph Laplacian Matrix L

edge-vertex incidence matrix

Dlagénalr degree | B.,= -1/1 for endpoints u
Off-diagonal: -edge weights 0 everywhere else
1 o)
2 -11-1
o . 1 -1 0
— -1 1 0 -1 01
1 -1 )0 1
n vertices n rows / columns m rows
m edges O(m) non-zeros n columns

L is the Gram matrix of B, L= BB




Implications of ||B:x||, = ||B.X||,

G = Hon all cuts: x ={0, 1}V: 3 R .' fft e
For edge e = UV, (Be:x) 2 — (Xu - Xv)z » :.""-.._.I £ 'I.H'.- _ ...
IBsx|l,? = size of cut given by x .' X ud-a

Operation approximations:
L; = Bs'Bg,
X'Lex =||Bx|[,2 < Lg = L,

Undirected graph have sparse approximations

Key: outputs of randomized methods structured




Fine Grained Incorporation of =

Schur complement, SC(A, C) A[CC] — A[CF] A[FF]*A[FC]
eliminate all variablesin F=V \ C

[Strassen '69]: suffices to invert:
A[FF]:|F|-by-|F]
SC(A, C):|C|-by-|C|

SC(A, C) is another graph Laplacian!

[Kyng-Lee-P-Sachdeva-Spielman "16]:
Sparsify(SC(L, C)) without building it

O(mlogn + nlog?n) overall
extensions to connection Laplacians




Algorithmic issues

* How to construct / sample SC(L, C) efficiently
e Similar issues in the graph =» tree approach

Algorithmic kitchen sink applicable:

* Embeddings: Lx = b, max-flow, sketching,

* Spanners: Lx = b, max-flow, sketching

e Data structures: Lx = b, streaming settings

* Matrix martingales: Lx = b, directed graphs

e Recursion: Lx = b, max-flow, row sampling,
directed graphs, connection Laplacians




ELIMINATING MORE

Linear elasticity problems: physical forces on trusses

[Kyng-P-Schweiterman-Zhang STOC'18]: O(n>/3 ) time for
trusses on well-shaped simplicial complexes

A4 W

[Kyng-Zhang FOCS 17]: any PSD matrix :\&
is the partially eliminated state of:

VY ! N

A generalized 2-D truss matrix

A 2-commodity flow matrix

Reversibility of eliminations =
trusses are ‘complete’ for all Mx = b!




DIRECTED SPECTRAL METHODS

[Cohen-Kelner-Peebles-P-Rao-Sidford-Vladu 16, 17]

sparse approx. of directed graph,
and solving directed Lx = b in nearly-linear time

Difficult in general: Q O
Undirected : connected components &
o o
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Directed reachability: Q(n?) bits

Key: use states of iterative methods to restrict
the information that need to be preserved




Questions / Future directions

* Generalizations of high-dimensional concentration?

* How much of these work in non-linear cases?

* Dynamic / streaming via. adaptive sampling?

Property ______|Direct| Iterative | Hybrid_

Convex functions
Arbitrary values
Dynamic / streaming
Sparse / low memory
Parallelizable

© on trees

© on well-connected
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