
Randomized Algorithms for Computing Full Matrix Factorizations

Per-Gunnar Martinsson
Department of Mathematics
University of Texas at Austin

Students & postdocs: Tracy Babb, Abinand Gopal, Nathan Halko, Nathan Heavner,
Sergey Voronin, Anna Yesypenko, Patrick Young.

Collaborators: Robert van de Geijn, Gregorio Quintana-Ortí.

Research support by:

Background: Randomized methods such as the “randomized SVD (RSVD)” have
proven effective at computing low rank approximations to matrices.

Topic of this talk: How to use methods based on randomized projections to efficiently
compute full factorizations. Say you want all of the eigenvalues, or that the effective
rank is not that much smaller than the matrix dimensions (say 10% or 50%).

Themes:

• Use randomization to reduce communication rather than flops.
• Quest for algorithms that spend most flops in matrix-matrix multiplications.
• Communication constrained environments:
• Distributed memory computing.
• Matrices stored “out-of-core” (say on a hard drive or an SSD).
• GPU computing.

Outline:
• Review of randomized SVD.
• A randomized method for computing a UTV decomposition.
(The UTV decomposition is a relaxation of a singular value decomposition.)
• A randomized method for computing a column pivoted QR decomposition.

Background/review: Randomized singular value decomposition (RSVD)

Problem: Given an m× n matrix A, and a target rank k, where k � min(m,n), we seek
to compute an approximate partial singular value decomposition:

A ≈ U D V∗,
m× n m× k k × k k × n

with U and V having orthonormal columns, and D diagonal.

Solution: Pick an over-sampling parameter p, say p = 5. Then proceed as follows:

1. Draw an n× (k + p) Gaussian random matrix R. R = randn(n,k+p)

2. Form the m× (k + p) sample matrix Y = AR. Y = A * R

3. Form an m× (k + p) orthonormal matrix Q s. t. col(Y) = col(Q). [Q, ∼] = qr(Y)

4. Form the (k + p)× n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of B (small!): B = Û DV∗. [Uhat, Sigma, V] = svd(B,’econ’)

6. Form the matrix U = QÛ. U = Q * Uhat

7. Optional: Truncate the last p terms in the computed factors.

Background/review: Randomized singular value decomposition (RSVD)

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• Often faster than alternative algorithms for low-rank approximation (CPQR, Krylov,
. . .) on traditional CPU based platforms.

• Order of magnitude acceleration for data stored out-of-core.

• Single pass algorithms have been developed for streaming environments.

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m× n. Reduction in complexity from O(mnk) to O(mnlog k).

• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Well understood mathematically — detailed performance analysis.

Question: Can these ideas be applied for a full rank factorization?

Background/review: Randomized singular value decomposition (RSVD)

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• Often faster than alternative algorithms for low-rank approximation (CPQR, Krylov,
. . .) on traditional CPU based platforms.

• Order of magnitude acceleration for data stored out-of-core.

• Single pass algorithms have been developed for streaming environments.

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m× n. Reduction in complexity from O(mnk) to O(mnlog k).

• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Well understood mathematically — detailed performance analysis.

Question: Can these ideas be applied for a full rank factorization?

Accelerate algorithms for FULL factorizations of matrices

Starting point (Demmel, Dumitriu, Holtz, 2007): Let A be an n× n matrix. We seek a
rank-revealing UTV factorization A = UTV∗, with U,V unitary, and T triangular.

Proceed as follows:
• Draw an n× n Gaussian matrix G and orthonormalize its columns [V,∼] = qr(G).
• Form a QR factorization of AV so that AV = UT.

Then A = UTV∗ is provably “rank-revealing.” But in a very weak sense.

Improved Demmel UTV (with power iteration): Same set-up.
• Draw an n× n Gaussian matrix G and compute Y =

(
A∗A

)qG for q = 1 or 2.
• Orthonormalize the columns of Y so that [V,∼] = qr(Y).
• Form a QR factorization of AV so that AV = UT.

Then A = UTV∗ is “rank-revealing.” Very good for q = 1. Excellent for q = 2.

These algorithms require a huge number of flops!
But much faster in practice than, say, CPQR.

Key fact: The matrix-matrix multiply can be done very rapidly in many environments
. . .GPU, distributed memory, fast algorithms, Strassen, etc.

Numerical results for the “Demmel URV” factorization

There are many different ways to measure the quality of a rank-revealing factorization.
Let us describe one common measure: Let A be an n× n matrix factored as

A = UTV∗

where U and V are unitary, and where T is upper triangular. Define for
k ∈ {1,2, . . . , n− 1} the quantities

νk = σk(T(1 : k,1 : k)),
τk+1 = σ1(T((k + 1) : n, (k + 1) : n)),

where σj(X) denotes the j ’th singular value of X. One can easily prove that

νk ≤ σk(A) ≤ τk.

The more tightly that (νk, τk) constrains the k’th singular value, the better.

Numerical experiments illustrating the errors in the URV factorization

20 40 60 80 100 120 140 160

j

10
-15

10
-10

10
-5

j
in

 r
e
d

Singular values and their estimates

svds

Basic URV (upper)

Basic URV (lower)

Numerical experiments illustrating the errors in the URV factorization

20 40 60 80 100 120 140 160

j

10
-15

10
-10

10
-5

j
in

 r
e
d

Singular values and their estimates

svds

Basic URV (upper)

Basic URV (lower)

CPQR (upper)

CPQR (lower)

Numerical experiments illustrating the errors in the URV factorization

20 40 60 80 100 120 140 160

j

10
-15

10
-10

10
-5

j
in

 r
e
d

Singular values and their estimates

svds

Basic URV (upper)

Basic URV (lower)

CPQR (upper)

CPQR (lower)

URV with q=1 (upper)

URV with q=1 (lower)

URV with q=2 (upper)

URV with q=2 (lower)

Numerical experiments illustrating the errors in the URV factorization

20 40 60 80 100 120 140 160

j

10
-2

10
-1

10
0

j
in

 r
e
d

Singular values and their estimates

svds

Basic URV (upper)

Basic URV (lower)

CPQR (upper)

CPQR (lower)

Numerical experiments illustrating the errors in the URV factorization

20 40 60 80 100 120 140 160

j

10
-2

10
-1

10
0

j
in

 r
e
d

Singular values and their estimates

svds

Basic URV (upper)

Basic URV (lower)

CPQR (upper)

CPQR (lower)

URV with q=1 (upper)

URV with q=1 (lower)

URV with q=2 (upper)

URV with q=2 (lower)

Numerical experiments illustrating the errors in the URV factorization

20 40 60 80 100 120 140 160

j

10
-4

10
-3

10
-2

10
-1

j
in

 r
e
d

Singular values and their estimates

svds

Basic URV (upper)

Basic URV (lower)

CPQR (upper)

CPQR (lower)

URV with q=1 (upper)

URV with q=1 (lower)

URV with q=2 (upper)

URV with q=2 (lower)

The UTV decomposition: A rank-revealing factorization

Given a dense m× n matrix A, with m ≥ n, compute a factorization

(1)
A = U T V∗,

m× n m× n n× n n× n
where T is upper triangular, and U and V are unitary. We want a factorization that is
“rank-revealing”, in the sense its truncation to a rank-k approximation should be of close
to optimal accuracy. We also would like for the diagonal entries of T to approximate the
singular values of A.

A rank-revealing factorization has many uses:
• Finding a low-rank approximation to a matrix. (Obviously!)
• Solving ill-conditioned linear systems, or linear regression problems.
• Finding bases for fundamental subspaces.

Basically, when (1) is rank-revealing, it can be used for almost anything that the SVD is
recommended for.

The UTV decomposition: Overview of proposed algorithm randUTV

Given a dense m× n matrix A, with m ≥ n, compute a factorization

A = U T V∗,
m× n m× n n× n n× n

where T is upper triangular, and U and V are unitary.

The technique proposed drives A to upper triangular form via unitary transformations:

A0 = A

A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3
Both Uj and Vj are (mostly...) products of b Householder reflectors.
Blocking enables high performance. Most flops are spent in matrix-matrix multiplication.

The UTV decomposition: Overview of proposed algorithm randUTV

Given a dense m× n matrix A, with m ≥ n, compute a factorization

A = U T V∗,
m× n m× n n× n n× n

where T is upper triangular, and U and V are unitary.

The technique proposed drives A to upper triangular form via unitary transformations:

A0 = A A1 = U∗1A0V1

A2 = U∗2A1V2 A3 = U∗3A2V3
Both Uj and Vj are (mostly...) products of b Householder reflectors.
Blocking enables high performance. Most flops are spent in matrix-matrix multiplication.

The UTV decomposition: Overview of proposed algorithm randUTV

Given a dense m× n matrix A, with m ≥ n, compute a factorization

A = U T V∗,
m× n m× n n× n n× n

where T is upper triangular, and U and V are unitary.

The technique proposed drives A to upper triangular form via unitary transformations:

A0 = A A1 = U∗1A0V1 A2 = U∗2A1V2

A3 = U∗3A2V3
Both Uj and Vj are (mostly...) products of b Householder reflectors.
Blocking enables high performance. Most flops are spent in matrix-matrix multiplication.

The UTV decomposition: Overview of proposed algorithm randUTV

Given a dense m× n matrix A, with m ≥ n, compute a factorization

A = U T V∗,
m× n m× n n× n n× n

where T is upper triangular, and U and V are unitary.

The technique proposed drives A to upper triangular form via unitary transformations:

A0 = A A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3
Both Uj and Vj are (mostly...) products of b Householder reflectors.
Blocking enables high performance. Most flops are spent in matrix-matrix multiplication.

The UTV decomposition: A single blocked step

Consider a single blocked step: We apply unitary matrices U and V to get

T = U∗AV.

Let b be a block size, and separate out the first b rows and columns so that

T =

[
U∗1
U∗2

]
A
[
V1 V2

]
=

[
T11 T12
0 T22

]
.

We want the following properties in the transformed matrix T:
• T11 should hold as much mass as possible.
• T12 should be tiny.

A perfect choice of U and V would be:
• The columns of U1 span the space spanned by the first k left singular vectors.
• The columns of V1 span the space spanned by the first k right singular vectors.

We use randomization to cheaply find a close to optimal choice:

Y =
(
A∗A

)qA∗G, [
V,∼

]
= qr(Y),

where G is an m× b Gaussian random matrix, and where q ∈ {0,1,2}.
(Over-sampling can be used as well.)

The UTV decomposition: Overview of proposed algorithm randUTV
Given a dense m× n matrix A, with m ≥ n, compute a factorization

A = U T V∗,
m× n m× n n× n n× n

where T is upper triangular, and U and V are unitary.
The technique proposed drives A to upper triangular form via unitary transformations:

A0 = A

A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3
The V matrices are found using the randomized projections. (Basically RSVD.)
The U matrices zero out the sub-diagonal elements.
Both U and V must be represented efficiently as products of Householder reflectors.
A full, but small (of size b× b) SVD is used to diagonalize the diagonal blocks.
The super-diagonal elements are very small — often of relative size 10−5 or so!

The UTV decomposition: Overview of proposed algorithm randUTV
Given a dense m× n matrix A, with m ≥ n, compute a factorization

A = U T V∗,
m× n m× n n× n n× n

where T is upper triangular, and U and V are unitary.
The technique proposed drives A to upper triangular form via unitary transformations:

A0 = A A1 = U∗1A0V1

A2 = U∗2A1V2 A3 = U∗3A2V3
The V matrices are found using the randomized projections. (Basically RSVD.)
The U matrices zero out the sub-diagonal elements.
Both U and V must be represented efficiently as products of Householder reflectors.
A full, but small (of size b× b) SVD is used to diagonalize the diagonal blocks.
The super-diagonal elements are very small — often of relative size 10−5 or so!

The UTV decomposition: Overview of proposed algorithm randUTV
Given a dense m× n matrix A, with m ≥ n, compute a factorization

A = U T V∗,
m× n m× n n× n n× n

where T is upper triangular, and U and V are unitary.
The technique proposed drives A to upper triangular form via unitary transformations:

A0 = A A1 = U∗1A0V1 A2 = U∗2A1V2

A3 = U∗3A2V3
The V matrices are found using the randomized projections. (Basically RSVD.)
The U matrices zero out the sub-diagonal elements.
Both U and V must be represented efficiently as products of Householder reflectors.
A full, but small (of size b× b) SVD is used to diagonalize the diagonal blocks.
The super-diagonal elements are very small — often of relative size 10−5 or so!

The UTV decomposition: Overview of proposed algorithm randUTV
Given a dense m× n matrix A, with m ≥ n, compute a factorization

A = U T V∗,
m× n m× n n× n n× n

where T is upper triangular, and U and V are unitary.
The technique proposed drives A to upper triangular form via unitary transformations:

A0 = A A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3
The V matrices are found using the randomized projections. (Basically RSVD.)
The U matrices zero out the sub-diagonal elements.
Both U and V must be represented efficiently as products of Householder reflectors.
A full, but small (of size b× b) SVD is used to diagonalize the diagonal blocks.
The super-diagonal elements are very small — often of relative size 10−5 or so!

Matlab code for the algorithm randUTV that given an m× n matrix A computes its UTV
factorization A = UTV∗. The input parameters b and q reflect the block size and the
number of steps of power iteration, respectively. In actual implementations, all unitary
matrices are stored as products of Householder reflectors.

Numerical experiments illustrating the errors in the UTV factorization

0 500 1000 1500 2000 2500 3000 3500

k

10-4

10-3

10-2

10-1

||
A

 -
 A

k
||

Spectral norm errors

svds

CPQR

QLP

randUTV: q=0

randUTV: q=1

randUTV: q=2

0 500 1000 1500 2000 2500 3000 3500

k

0

50

100

150

200

250

300

350

400

450

500

1
0
0
%

 x
 |
|A

-A
k
||
 /
 |
|A

-A
ko
p
ti
m

a
l ||

Relative spectral norm errors in percent

Rank-k approximation errors for the matrix “Fast Decay” of size 4000× 4000. The block
size was b = 100. Left: Absolute errors in spectral norm. The black line (circles) marks
the theoretically minimal errors. Right: Relative errors erelative

k = 100%× ‖A− Ak‖
‖A− Aoptimal

k ‖
.

Numerical experiments illustrating the errors in the UTV factorization

0 500 1000 1500 2000 2500 3000 3500

k

10-2

10-1

||
A

 -
 A

k
||

Spectral norm errors

svds

CPQR

QLP

randUTV: q=0

randUTV: q=1

randUTV: q=2

0 500 1000 1500 2000 2500 3000 3500

k

0

100

200

300

400

500

600

700

800

1
0
0
%

 x
 |
|A

-A
k
||
 /
 |
|A

-A
ko
p
ti
m

a
l ||

Relative spectral norm errors in percent

Rank-k approximation errors for the matrix “S-shape” of size 4000× 4000. The block
size was b = 100. Left: Absolute errors in spectral norm. The black line (circles) marks
the theoretically minimal errors. Right: Relative errors erelative

k = 100%× ‖A− Ak‖
‖A− Aoptimal

k ‖
.

Numerical experiments illustrating the errors in the UTV factorization

0 500 1000 1500 2000 2500 3000 3500

k

10-4

10-3

10-2

10-1

100

||
A

 -
 A

k
||

Spectral norm errors

svds

CPQR

QLP

randUTV: q=0

randUTV: q=1

randUTV: q=2

0 500 1000 1500 2000 2500 3000 3500

k

0

100

200

300

400

500

600

700

800

1
0
0
%

 x
 |
|A

-A
k
||
 /
 |
|A

-A
ko
p
ti
m

a
l ||

Relative spectral norm errors in percent

Rank-k approximation errors for the matrix “Gap” of size 4000× 4000. The block size
was b = 100. Left: Absolute errors in spectral norm. The black line (circles) marks the
theoretically minimal errors. Right: Relative errors erelative

k = 100%× ‖A− Ak‖
‖A− Aoptimal

k ‖
.

Numerical experiments illustrating the errors in the UTV factorization

0 500 1000 1500 2000 2500 3000 3500

k

10-3

10-2

10-1

||
A

 -
 A

k
||

Spectral norm errors

svds

CPQR

QLP

randUTV: q=0

randUTV: q=1

randUTV: q=2

0 500 1000 1500 2000 2500 3000 3500

k

0

50

100

150

200

1
0
0
%

 x
 |
|A

-A
k
||
 /
 |
|A

-A
ko
p
ti
m

a
l ||

Relative spectral norm errors in percent

Rank-k approximation errors for the matrix “BIE” of size 4000× 4000. The block size
was b = 100. Left: Absolute errors in spectral norm. The black line (circles) marks the
theoretically minimal errors. Right: Relative errors erelative

k = 100%× ‖A− Ak‖
‖A− Aoptimal

k ‖
.

Numerical experiments illustrating how close the UTV is to the SVD

As a consequence of the fact that the super-diagonal elements of T are very small, the
diagonal elements of T are excellent approximants to the singular values of A:

T(j, j) ≈ σj, j = 1, 2 . . . , min(m,n).

Question: How good?

200 400 600 800 1000 1200 1400 1600 1800 2000

10
-4

10
-3

10
-2

10
-1

Fast decay - diagonal values

svds

cpqr

qlp

randUTV,q=2

200 400 600 800 1000 1200 1400 1600 1800 2000
10

-2

10
-1

S-shaped decay - diagonal values

Numerical experiments illustrating how close the UTV is to the SVD

As a consequence of the fact that the super-diagonal elements of T are very small, the
diagonal elements of T are excellent approximants to the singular values of A:

T(j, j) ≈ σj, j = 1, 2 . . . , min(m,n).

Question: How good?

200 400 600 800 1000 1200 1400 1600 1800 2000

10
-4

10
-3

10
-2

10
-1

Fast decay - diagonal values

svds

cpqr

qlp

randUTV,q=2

200 400 600 800 1000 1200 1400 1600 1800 2000
10

-2

10
-1

S-shaped decay - diagonal values

Numerical experiments illustrating how close the UTV is to the SVD

As a consequence of the fact that the super-diagonal elements of T are very small, the
diagonal elements of T are excellent approximants to the singular values of A:

T(j, j) ≈ σj, j = 1, 2 . . . , min(m,n).

Question: How good?

200 400 600 800 1000 1200 1400 1600 1800 2000

10
-4

10
-3

10
-2

10
-1

10
0

Gap - diagonal values

svds

cpqr

qlp

randUTV,q=2

200 400 600 800 1000 1200 1400 1600 1800 2000

10
-3

10
-2

10
-1

BIE - diagonal values

0

0.5

1

1.5

2

0 20480 40960 61440 81920 102400

1
0

1
0
 ×

 T
im

e
/

n
3

n

Orthonormal matrices (14 cores)

In-core MKL SVD

In-core MKL CPQR

In-core randUTV pblas q=2

Out-of-core randUTV v21v q=2

0 2000 4000 6000 8000 10000 12000

n

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 [
s
]
/
n

3

10
-10 GPU, no oversampling (p=0), no orthonormalization, b=128

MAGMA dgesdd (SVD)

MAGMA dgeqp3 (CPQR)

rand_utv_gpu, q=0

rand_utv_gpu, q=1

rand_utv_gpu, q=2

Randomized Column Pivoted QR (randCPQR)

Given an m× n matrix A (with m ≥ n), we seek a QR factorization

A P ≈ Q R
m× n n× n m× k k × n

for either k = n (full factorization) or k comparable to min(m,n). As usual, Q is
orthonormal, P is a permutation, and R is upper triangular.

Question: Is the CPQR “rank-revealing”? Does it satisfy:
• The truncated factorization is a close to optimal low-rank factorization, so that

‖A−Q(:,1 : k)R(1 : k, :)P∗‖ =≈ inf{‖A− B‖ : B has rank k}.

• σj(T(1 : k,1 : k)) ≈ σj(A) for j ∈ {1,2, . . . , k}.
In practice, it is pretty good; it is often used as a cheap substitute for SVD.
There are counter-examples, for which it performs very badly.

Note: There are sophisticated pivoting strategies that improve on how well CPQR
reveals numerical rank — seminal work by Gu and Eisenstat (1996). Tricky to implement
efficiently.

Randomized Column Pivoted QR (randCPQR)

Given an m× n matrix A (with m ≥ n), we seek a QR factorization

A P ≈ Q R
m× n n× n m× k k × n

for either k = n (full factorization) or k comparable to min(m,n). As usual, Q is
orthonormal, P is a permutation, and R is upper triangular.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = Q∗1A0P1 A2 = Q∗2A1P2 A3 = Q∗3A2P3 A4 = Q∗4A3P4
Each Qj is a product of Householder reflectors. Each Pj is a permutation matrix
computed via randomized sampling.

Randomized Column Pivoted QR. How to do block pivoting using randomization:
Let A be of size m× n, and let b be a block size.

→

A Q∗AP
Q is a product of b Householder reflectors. P is a pivoting matrix that moves b “pivot”
columns to the leftmost slots. We seek P so that the set of chosen columns has maximal
spanning volume. Draw a Gaussian random matrix G of size b×m and form

Y = G A
b× n b×m m× n

The rows of Y are random linear combinations of the rows of A.
Then compute the pivot matrix P for the first block by executing traditional column
pivoting on the small matrix Y:

Y P = Qtrash Rtrash

b× n n× n b× b b× n

References: Martinsson, arxiv, 2015. Martinsson, Quintana-Orti, Heavner, van de Geijn, SISC, 2017.
Duersch & Gu, arxiv, 2015. Duersch & Gu, SISC, 2017.

Connection to randomized Interpolatory Decomposition (ID), CUR, etc.

Let A be an m× n matrix of numerical rank k. An Interpolatory Decomposition (ID) of A
takes the form

A ≈ C X
m× n m× k k × n

where C consists of k columns of A, and where X is a well-conditioned matrix.

Let Js denote an index vector identifying the “skeleton” columns so that C = A(:, Js).

A randomized algorithm for computing the ID, given an over-sampling parameter p:
• Draw a (k + p)×m Gaussian matrix G.
• Form a (k + p)× n sampling matrix Y = GA.
• Perform a rank-k CPQR on Y so that Y ≈ Y(:, Js)X.

Then we automatically (and almost magically) get an ID of A:

A ≈ A(:, Js)X.

Can be used to compute a CUR decomposition as well.

Reference: “Randomized algorithms for the low-rank approximation of matrices.” E. Liberty, F. Woolfe,

P.G. Martinsson, V. Rokhlin, and M. Tygert; PNAS, 2007

Randomized Column Pivoted QR (randCPQR)

Sp
ee

d-
up

of
HQ

RR
P
vs

dg
eq

p3
Versus netlib dgeqp3 Versus Intel MKL dgeqp3

n n

Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an n × n matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/

0 5 10 15

n 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
im

e
 [

s
]

/
n

2

10
-7 Partial Factorization Times, cols processed=1000, b=250

In Core

SSD

HDD

Randomized Column Pivoted QR (randCPQR)

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

The randomized algorithm randUTV combines the best properties of both factorizations.
Additionally, randUTV parallelizes better, and allows the computation of partial
factorizations (like CPQR, but unlike SVD).

Randomized Column Pivoted QR (randCPQR)

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

The randomized algorithm randUTV combines the best properties of both factorizations.
Additionally, randUTV parallelizes better, and allows the computation of partial
factorizations (like CPQR, but unlike SVD).

Randomized Column Pivoted QR (randCPQR)

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

Future work: Continued development or randCPQR and randUTV. Adapt to different
computing architectures (distributed memory, out-of-core, etc). Theory. Exploit
information that is currently wasted. Multiple sweeps version. Algorithm-by-blocks.

Randomized Column Pivoted QR (randCPQR)

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

Block Krylov methods: For partial factorizations of sparse matrices, integrate ideas
from Krylov methods. Explore design space between the basic RSVD and classical
“single-vector” Krylov methods. Recent work by Musco & Musco; Tropp; Gu.

References:

• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions.” SIAM Review, 53(2), pp. 217–288, 2011.

• P.G. Martinsson, “Randomized methods for matrix computations.” Arxiv.org #1607.01649. In
proceedings book for 2016 PCMI summer school.

• P.G. Martinsson, G. Quintana-Ortí, N. Heavner, and R. van de Geijn, “Householder QR Factorization
With Randomization for Column Pivoting (HQRRP).” SIAM J. on Scientific Comp., 39(2), pp.
C96-C115, 2017.

• P.G. Martinsson, G. Quintana-Ortí, N. Heavner, and R. van de Geijn, “Householder QR Factorization
With Randomization for Column Pivoting (HQRRP).” SIAM J. on Scientific Comp., 39(2), pp.
C96-C115, 2017.

• P.G. Martinsson, G. Quintana-Ortí, N. Heavner, “randUTV: A blocked randomized algorithm for
computing a rank-revealing UTV factorization.” Accepted for publication by ACM TOMS. arxiv.org
#1703.00998.

• J. Duersch & M. Gu, “Randomized QR with Column Pivoting”, SIAM Journal on Scientific Computing,
39(4), 2017.

Software for UTV: https://github.com/flame/randutv
Software for CPQR: https://github.com/flame/hqrrp

