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Abstract

We develop a new family of variance reduced stochastic gradient descent methods for minimizing the
average of a very large number of smooth functions. Our method—JacSketch—is motivated by novel de-
velopments in randomized numerical linear algebra, and operates by maintaining a stochastic estimate of a
Jacobian matrix composed of the gradients of individual functions. In each iteration, JacSketch efficiently
updates the Jacobian matrix by first obtaining a random linear measurement of the true Jacobian through
(cheap) sketching, and then projecting the previous estimate onto the solution space of a linear matrix equa-
tion whose solutions are consistent with the measurement. The Jacobian estimate is then used to compute
a variance-reduced unbiased estimator of the gradient, followed by a stochastic gradient descent step. Our
strategy is analogous to the way quasi-Newton methods maintain an estimate of the Hessian, and hence our
method can be seen as a stochastic quasi-gradient method. Indeed, quasi-Newton methods project the current
Hessian estimate onto a solution space of a linear equation consistent with a certain linear (but non-random)
measurement of the true Hessian. Our method can also be seen as stochastic gradient descent applied to a
controlled stochastic optimization reformulation of the original problem, where the control comes from the
Jacobian estimates.

We prove that for smooth and strongly convex functions, JacSketch converges linearly with a meaningful
rate dictated by a single convergence theorem which applies to general sketches. We also provide a refined
convergence theorem which applies to a smaller class of sketches, featuring a novel proof technique based on
a stochastic Lyapunov function. This enables us to obtain sharper complexity results for variants of JacSketch
with importance sampling. By specializing our general approach to specific sketching strategies, JacSketch
reduces to the celebrated stochastic average gradient (SAGA) method, and its several existing and many new
minibatch, reduced memory, and importance sampling variants. Our rate for SAGA with importance sampling
is the current best-known rate for this method, resolving a conjecture by Schmidt et al (2015). The rates we
obtain for minibatch SAGA are also superior to existing rates. Moreover, we obtain the first minibatch SAGA
method with importance sampling.
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Finite Sum Minimization Problem

1 R R

min f(x Z fi(x
rERA i

Data vector Label L2 regularizer
L2 regularized least squares filx) = 2(a) z — y;)* + 5|z
(ridge regression)
. e . 1 —ial x A 2
L2 regularized logistic regression fi(z) = 5 log (1 + e~ Vit ) + 5\\33”



Stochastic Gradient Methods
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Variance Matters

V[g*] =E[lg" - Vf("))?]

1

Gradient Descent (GD)
g" — V")  wp V[ =0

Stochastic Gradient Descent (SGD)

" — V()  mp V][4 =BIG






Variance Reduction

Decreasing Mini- Importance | Adjusting the

stepsizes batching sampling direction

Sample more  Duality (SDCA)

How does it Scaling down  More samples, important data or Control
work? the noise less variance  (or parameters) Variate (SVRG,
more often S2GD, SAGA)
A bit (SVRG,
Slow down; Might overfit ~ S2GD) or a lot

More work per

CONS: Hard to tune probabilitiesto  (SDCA, SAGA)

, iteration ,
the stepsize outliers more memory
needed
Still converees Improved Improved
PROS: : 8 Parallelizable condition dependence on
Widely known .
number epsilon

All tricks can be combined!
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Robert M Gower, Peter Richtarik and Francis Bach
Stochastic Quasi-Gradient Methods: Variance Reduction via

Jacobian Sketching
arXiv:1805.02632, 2018




Lift and Sketch




Lift and Sketch

?Ewg Jacobian of F
F@)= |70 | €R UR@) = (V) V), . V()] € R
fn(x)
a SKETCH ith unit basis vector Vector of all ones
1
VF(xz)e; = Vf;(x) EVF(Q?)@ =V f(x)

Leads to Stochastic Gradient Descent Leads to Gradient Descent



Introducing General Sketches

We would like to solve the linear matrix equation:

1J= VF(z")

n

Solve a random linear matrix equation instead:

Jacobian sketch




Sketch and Project
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New Jacobian
estimate

T o

Solution:

Jk—|—1 _ Jk

Current Jacobian

. Frobenius norm
estimate us no

arg min ||J —J"|]
JeRAXn

subject to JS; = VF(2")S;

Random LME

(VF(ij) — Jk)HSk ensuring consistency

with Jacobian sketch

Iis, ©'s, (S7Sy)'s]



Sketch and Project |

Original sketch and project
¢ 2017 IMA Fox Prize (2" Prize) in Numerical Analysis

Robert Mansel Gower and P.R.
! Randomized Iterative Methods for Linear Systems * Most downloaded SIMAX paper (2017)
Adobe

SIAM J. Matrix Analysis and Applications 36(4):1660-1690, 2015

Removal of full rank assumption + duality
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Stochastic Dual Ascent for Solving Linear Systems
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Robert Mansel Gower and P.R.

Randomized Quasi-Newton Methods are Linearly Convergent Matrix Inversion Algorithms
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Computing the pseudoinverse

Robert Mansel Gower and P.R.
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Mobe qrXiv:1612.06255, 2016

Application to machine learning

Stochastic Block BFGS: Squeezing More Curvature out of Data

lﬁe Robert Mansel Gower, Donald Goldfarb and P.R.
Mobe /CML 2016

Sketch and project revisited: stochastic reformulations of linear systems

P.R. and Martin Takac
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory
Aobe  arXiv:1706.01108, 2017



Sketch and Project Il

Linear convergence of the stochastic heavy ball method

Nicolas Loizou and P.R.
Momentum and stochastic momentum for stochastic gradient, Newton, proximal point and subspace descent methods
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Stochastic projection methods for convex feasibility

lon Necoara, Andrei Patrascu and P.R.
Randomized projection methods for convex feasibility problems: conditioning and convergence rates
Mobe arXiv:1801.04873, 2018

Stochastic spectral & conjugate descent

Stochastic Spectral and Conjugate Descent Methods

ﬁ Dmitry Kovalev, Eduard Gorbunov, Elnur Gasanov and P.R.
Adobe  \jPS 2018

Accelerated stochastic matrix inversion
i Robert M. Gower, Filip Hanzely, P.R. and Sebastian Stich
Adobe

Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization
NIPS 2018

SAGD: a “strange” special case of JacSketch

Adel Bibi, Alibek Sailanbayev, Bernard Ghanem, Robert Mansel Gower and P.R.
Improving SAGA via a Probabilistic Interpolation with Gradient Descent

Mobe  arXiv:1806.05633, 2018
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Gradient sketching

Filip Hanzely, Konstantin Mishchenko and P.R.
SEGA: Variance Reduction via Gradient Sketching
Adobe

NIPS 2018
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an Unbiased Gradient
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Gradient Estimate

Bias-correcting Average of the Average of the
random variable: columns of columns of
ESkND [eskﬂske] =€ Jk Jk_I_l

1
g* = (1-96s, + fs, EJk“e

1
= —JFe+ —(VF(z") —J")0g, Ig, e

n n

1
Unbiased estimator of the gradient * 7T c
]ESkND [gk] = Vf(:l?k) li; Le Roux, Schmidt and Bach

A Stochastic Gradient Method with an Exponential
. Convergence Rate for Finite Training Sets
NIPS 2012
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Simple Stochastic

Reformulation




Bias-correcting
random variable:

P@=|""er" Reformulation Es.p [fsTIge] = e

1 1 1
n;f(x) —{F(z),¢) —(F(2), Es~p [fsIlse])
1
Linearity of expectation = Es-p [n<F(x)aHSHS€>]
=:fs ()

Z 95H56 fz )

1=1

Original problem Simple stochastic reformulation
p min Es~ T
min f(z) Zf » xERdf( r) = Es~p [fs(z)]

We are minimizing the expectation over random
linear combinations of the original functions




SGD Applied to Simple Stochastic

Reformulation s

" =" —aVfs, (z)

Gradient descent

S=1 Os =1 » el = gk — oV f(z")

o Non- unlform SGD
P(S=e)=pi b = » gl = ok &sz'(fﬁk)

np;
P<S Z) g — _1 Non-uniform minibatch SGD
TETHT) T Tes T aps k+1 _ k a E : (K
. — ncips,, sz (ZB
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Controlled Stochastic

Reformulation




Adding Control Variate to
Reduce Variance

min f(x) =Esp|fs.a(x)
relR




JacSketch = SGD Applied Controlled
Stochastic Reformulation

zGm

2"t =2b —aVifs, g (a")

Sketch and project i




Variance of the
Stochastic Gradient

Theorem  Es.p [|Vfs () ——||J VF(z)|3

]ESND ’Usvs

IIA

ESND vs’Us

Es~p ||US||

Ad -
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Algorithm 1 JacSketch: Variance Reduced Gradient Method via Jacobian Sketching
: Iny p ut: (D W 0s)
. Initializ € R?, Jacobian estimate JO € R?*", stepsize v > 0

: for k=0,1,2,... do

Sample a fresh copy S ~ D
orithm: JacSketc Clis T,
JE+l = JF 4 (VF( k) —IMIs, = J*(1-Is,) + VF(2*)IIs, > Update Jacobian estimate

g = J -+ (VF( k) — I91I 77.1 +0%Jk“a > Update gradient estimate

zhtl = gk n_q" > Take a step

Initialize: 20 € R, J° € R3x"
Iterate:

Draw S ~ D s, s, (s7s:) ST

Update the Jacobian estimate:
Jitl = 3k 4 (VF(2") — I TIg,

Update the gradlent estlmate

g° = 5J‘“e + n(VF( "y — J)0g, Ig, e
Take a gradient step:

xk—|—1 — a:.]{i _ agk Esk,\,p [stﬂske]ze



SAGA as JacSketch

&

A. Defazio, F. Bach and S. Lacoste-Julien

SAGA: A Fast Incremental Gradient Method with Support for
Non-strongly Convex Composite Objectives

NIPS 2014




Minibatch SAGA

n —
S =A1,3,4}
0l|o
o/|o]|o
Sk — I:,Sk — 0 0
0|0
ollollo
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General Theorem




First Main Result (Theorem 3.6)




Special Cases

1. Gradient Descent

4L (1)
log | =

2. SAGA with uniform sampling

(e 5= ) s (2)
n log | —
L4 €




Special Cases

3. Minibatch SAGA with uniform sampling

L S »Cl S Lmax
n n—17 4L.x 4L1 1
max | : log | —
T (n—17 pu 1 €
Minibatch size
S = random subset of {1,2,...,n} of size 7 chosen uniformly of random

In this version of JacSketch we sample gradients V, f(x) for 7 € S

This is better than the best known bound for minibatch SAGA
due to Hofmann, Lucchi, Lacoste-Julien and McWilliams (NIPS 2015)



Specialized Theorem
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Minibatch Partition Sketch

Partition

|C| =7 for all j

m = =
—

{1,2,...,n} =CLUCyU---UCy,

S = C; with probability pc, > 0

Sketch matrix Bias-correcting random variable

S:I:,S HS:L



Second Main Result (Theorem 5.2)




Special Cases

4. SAGA with importance sampling

1 .
. 15 2. Li 1
n log | —
v €
This resolves a conjecture of
Schmidt, Babanezhad, Ahmed, Defazio, Clifton and Sarkar (AISTATS 2015)
5. Minibatch SAGA with importance sampling

S ()

T v €

First result on minibatch SAGA with importance sampling




Summary of

.Complexity Results

r .
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Sketch S € R %7

ID Method W s 0 Iteration complexity (x log %) Reference
iased
1 JacSketch any unbiase max{&, L % Thm 3.6
any n K Kpun
JacSketch I
2 (with any probabilities is maxc csupp(S) (% + % %C—) Thm 5.2
for T—partition)
I Thm 3.6
3 Gradient descent 4L m>-9]
I K (101)
I Thm 5.2
4 Gradient descent 4L m
I p (130)
5 SAGA Is ot AL Thm 3.6
(with uniform sampling) ? ® (102)
6 SAGA Is n 4 ALmax Thm 5.2
(with uniform sampling) I ® (131)
7 L SAGA . Is no improvement on uniform sampling Thm 3.6
(with importance sampling) — e
8 SAGA Is o AL Thm 5.2
(with importance sampling) I H (133)
9 Minibatch SAGA Is i { aLs. . LAp pane (h)} Thm 3.6
7—uniform sampling iag(w; i
if l Di S 100
ini I g Thm 3.
10 Minibatch SA.GA s —_— { LA ;L,,m} m 3.6
(7—nice sampling) I H o n=bT ow (103)
iy Minibatch SAGA Is - { Loe n o nos uz—L,,m)} Thm 3.6
(7—nice sampling) Diag(L;) ‘ woooT " s (104)
" Minibatch SAGA Is n AL Thm @
(7—partition sampling) I T " (105)
13 Minibatch SAGA IS n + 4maxC€supp(S) %Ziec L.,‘_ Thm 36
(7—partition sampling) Diag(L;) T ® (]106)
. Minibatch SAGA IS ’ \.u)l)‘\‘] Z('ésupp(b’l Le Thm 52
14 (importance T—partition o4 =epL -
I H (135)

sampling)







Ridge Regression




Uniform vs Optimal Probabilities

100.0 _

8
%, )
LN === SAGA-Li
L
10725 - *eu - == = SAGA-opt
o, === SAGA-unI
S 10750 - ke % mdm nkE A mAE %
-
v @,
ORI N
.2 10 7.5 __ R
© | .‘k. Data: synthetic
v T n = 1,000
10—10.0 _ ‘ “
l....
o
_ @3,
10-125 _ ‘ ‘

1l0 2'0 3IO 4I0 50
epochs



Data: australian
LIB-SVM

Minibatch SAGA

125 -

== OUr total complex
== = OUr iter complex
1004 === Hofmann et al iter complex

Previous best bound
(Hofmann et al)
75

ol
\ *"*'I*ll*lI*l-#--*ll*ll*l-*ll*-l*ll*

50 A \

\
m, Our bound

o

g
2:5 5?0 7:5 10.0 12.5
batchsize




Logistic Regression




relative error

100 -

1071

10—2 .

10—3 -

1074

107> A

JacSketch vs Other Methods

e SAGA-100-opt
== = SAG-100-opt
=== AMprev-5

=== SVRG

e grad

I 1
5 10

epochs

Data: a9a
LIB-SVM
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relative error

relative error
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10-10 4

10-15 4

10-20 4
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10-30 4

1000 -

10-95 4

10-10 4

10-15 4
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10-30 4

1074 4

107° 1

100
‘ e SAGA-100-opt
* == = SAG-100-opt 10-0%
\ === AMprev-5
. w=  SVRG L 10701
\ - grad g
$ 10715 -
2
% 10-20 |
10-25 -
&.‘ t. 10-30
. - v O ay
5 10 15 20 25 30
epochs

(a) mushrooms

o 10*10 <
e
@
O o ]
2
= SAGA-100-opt Bl
— - SAG-100-opt £
=== AMprev-5 \- .
—— SVRG b
— grad = BN o g - 10-30 4
5 10 15 20 25 30
epochs

10°

1000 -

1005 4

e SAGA-100-0pt
== = SAG-100-opt
AMprev-5
=== SVRG

= grad

k]

T
03

T
0.0

.. L—q...h."-.*

0.9 12

e SAGA-100-0pt
== = SAG-100-opt

=== AMprev-5
== SVVRG
— grad
0 ; 1‘0 1'5 ZIO 2‘5 3‘0
time

‘é 102
@
(]
] = 107
e SAGA-100-opt ©
(O]
== = SAG-100-opt = 10
=== AMprev-5 \\
=== SVRG
— grad \\ "
5 10 15 20 25 30
epochs

(c) a%a

e SAGA-100-0pt
== = SAG-100-opt

=== AMprev-5
== SVVRG
— grad
0 1 2 3 4 5 6 7
time







