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What Is Data Science?

Source: https://towardsdatascience.com/introduction-to-statistics-e9d72d818745

https://towardsdatascience.com/introduction-to-statistics-e9d72d818745
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Randomized Algorithms vs. Randomized Analysis

To analyze data, one often (implicitly) works with models....

Randomized Methods:

How to efficiently compute with models

Randomized Analysis:

Why models work or not
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Randomized Analysis...

How randomized analysis helps answer “data sciency” questions?

Examples:

Deep Learning

Graph Analysis
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Deep Learning...

Invariance of Weight Distributions in Rectified MLPs
(ICML, 2018)

Russell Tsuchida
(UQ)

Marcus Gallagher
(UQ)
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Graph Analysis...

Out-of-sample extension of graph adjacency spectral embedding
(ICML, 2018)

Keith Levin
(Michigan)

Michael Mahoney
(Berkeley)

Carey E. Priebe
(Johns Hopkins)
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Randomized Analysis...

How randomized analysis helps answer “data sciency” questions?

Examples:

Deep Learning

Graph Analysis
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Randomized Analysis: Deep Learning

Source: https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/
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Neural Nets

Neural Nets: Composition of Nonlinear Functions

=⇒ ŷ = σ
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Neural Nets: Deep Learning Revolution

Source: https://medium.com/@Lidinwise/the-revolution-of-depth-facf174924f5

https://medium.com/@Lidinwise/the-revolution-of-depth-facf174924f5
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Neural Nets: Deep Learning Revolution

Source: https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
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Neural Nets: Deep Learning Revolution

“Neural networks are the second best way to do almost anything! ”

JS Denker
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Deep Learning: Depth is good..but

Is it all rosy?
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Deep Learning: Problems with Depth

Beyond many computational constraints, there are other inherent
issues with increasing depth...
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Deep Learning: Problems with Depth

Vanishing and Exploding Gradient Problem: Algebraic
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Deep Learning: Problems with Depth

Vanishing and Exploding Gradient Problem: Geometric
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Deep Learning: Problems with Depth

Vanishing and Exploding Gradient Problem

The problem has largely been overcome via

Rectified Linear Units (ReLU)

Careful Initialization

Small Learning Rates (step-size)

Batch Normalization

Skip Connections, e.g., ResNet, Highway Networks

etc...
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Deep Learning: Problems with Depth

Most of these aim at mitigating the issues with depth from an
algebraic and/or geometric point of view.

Are these all the view points that there is?

No: statistical/randomized point of view.
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Deep Learning: Problems with Depth

Shattered Gradients Problem [Balduzzi et al., 2017]

Depth ↑ =⇒ Gradientsa≈ White Noise

aGradients w.r.t the inputs...also, only at initialization
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Deep Learning: Problems with Depth

Shattered Gradients Problem [Balduzzi et al., 2017]

Correlations between gradients decrease as

Feedforward Rectifier Networks: (1/2)L

Resnet (No Batch Normalization): (3/4)L

Resnet (With Batch Normalization): 1/
√
L
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Deep Learning: Problems with Depth

Algebraic/Geometric:

Exploding/Vanishing Gradient Problem

Randomized/Statistical:

Shattered Gradient Problem

Kernelized Reducing Angle Problem (KRAP)
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Deep Learning: Problems with Depth

Deep (rectified) feedforward nets are “KRAPY”!
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Deep Learning: Problems with Depth

Kernelized Reducing Angle Problem (KRAP) [Tsuchida et al.,
2018]

Depth ↑ =⇒ Kernelized anglea between inputs ↓

aOnly at initialization
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Deep Learning: Problems with Depth

Suppose σ(t) = t, i.e., linear activation function...

Recall: Power Iteration or Krylov Subspace Methods

Start with any x0, y0

xk+1 ← Axk , yk+1 ← Ayk

lim
k→∞

cos(xk , yk) ∈ {±1}
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Neural Nets: Universal Kernel

σn(x) ,


σ (〈x,w1〉)
σ (〈x,w2〉)

...
σ (〈x,wn〉)

 =⇒ 〈σn(x),σn(y)〉︸ ︷︷ ︸
“angle” at output

=
n∑

i=1

σ (〈x,wi 〉)σ (〈y,wi 〉)
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Neural Nets: Universal Kernel

lim
n→∞

1

n
〈σn(x),σn(y)〉 LLN=

∫
W⊆Rm

σ(〈x,w〉)σ(〈y,w〉)f (w)dw︸ ︷︷ ︸
inner product in feature space

, κ(x, y)︸ ︷︷ ︸
the unique kernel of
the unique RKHS

E.g.,

φ(x) , σ(〈x, .〉)
√
f (.) ∈ Hκ = {h :W → R}

φ(x): a mapping from the input space into a Hilbert Space, i.e.,
we can think of an MLP as a member of Hκ
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Neural Nets: Universal Kernel

Arc-Cosine Kernel: Gaussian, ReLU [Cho and Saul, 2009]

κ(x, y) =
σ2 ‖x‖ ‖y‖

2π
(sin θ0 + (π − θ0) cos θ0) ,

where

σ2 = E[W 2], θ0 = cos−1
(
〈x, y〉
‖x‖ ‖y‖

)

Examples of rotationally-invariant: Gaussian, multivariate t,
symmetric multivariate Laplace, symmetric multivariate stable
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Neural Nets: Universal Kernel

Arc-Cosine Kernel: Rotationally-Inv, ReLU [Tsuchida et al., 2018]

κ(x, y) =
σ2 ‖x‖ ‖y‖

2π
(sin θ0 + (π − θ0) cos θ0) ,

where

σ2 = E[W 2], θ0 = cos−1
(
〈x, y〉
‖x‖ ‖y‖

)

Examples of rotationally-invariant: Gaussian, multivariate t,
symmetric multivariate Laplace, symmetric multivariate stable
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Neural Nets: Universal Kernel

Arc-Cosine Kernel: Rotationally-Inv [Tsuchida et al., 2018]

Equivalent formulation for (L)ReLU:

κ(x, y) = E (σ(Z1)σ(Z2)) ,

where

Z =

[
Z1

Z2

]
∼ N (0,Σ),

Σ = E(W 2
i )

[
‖x‖2 ‖x‖ ‖y‖ cos θ0

‖x‖ ‖y‖ cos θ0 ‖x‖2
]
.
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Neural Nets: Universal Kernel

Arc-Cosine Kernel: More general weights [Tsuchida et al., 2018]

Convergence in distribution:

For any a.e continuous σ, under certain assumptions, with
W(m) ∈ Rm, iid, E(Wi ) = 0, and E |W 3

i | <∞, we have

σ
(〈

W(m), x(m)
〉)

σ
(〈

W(m), y(m)
〉)

d−−−−→
m→∞

σ(Z1)σ(Z2),

where Z1,Z2 and Σ are as the non-asymptotic case.
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Neural Nets: Universal Kernel

Arc-Cosine Kernel: More general weights [Tsuchida et al., 2018]

Convergence in expectation:

For ReLU/LReLU/ELU, under certain assumptions, with
W(m) ∈ Rm, iid, E(Wi ) = 0, and E |W 3

i | <∞, we have

E
[
σ
(〈

W(m), x(m)
〉)

σ
(〈

W(m), y(m)
〉)]
−−−−→
m→∞

E (σ(Z1)σ(Z2)) ,

where Z1,Z2 and Σ are as the non-asymptotic case.
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Deep Learning: Problems with Depth

LReLU: σ(z) = (a + (1− a)1z≥0) z , a ∈ [0, 1]

Kernel: κ(x, y) = E[W 2] ‖x‖ ‖y‖
[

(1− a)2

2π
(sin θ0 + (π − θ0) cos θ0) + a cos θ0

]

Normalized Kernel: cos θ1 =
κ(x, y)√

κ(x, x)κ(y, y)
= f (θ0)

Recursively applied:

cos θj =
1

1 + a2

[
(1− a)2

2π
(sin θj−1 + (π − θj−1) cos θj−1) + a cos θj−1

]
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Deep Learning: KRAP

Kernelized Reducing Angle Problem (KRAP) [Tsuchida et al.,
2018]

The normalized kernel corresponding to LReLU activations
converges to a fixed point at θ? = 0a.

a
Theoretically holds for rotationally-invariant weights and empirically holds for more general weights.
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Deep Learning: KRAP

σ: ReLU, w: Multivariate t-distribution
ν: Degrees of freedom, j : Depth
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Deep Learning: KRAP

Randomly initialized deep feedforward networks

map all inputs to “similar” points in the Hilbert space

erase all information in the input signal

are hard to train (at least initially)
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Deep Learning: Initialization

1

n
〈σn(x),σn(y)〉 ≈ κ(x, y) =⇒ ‖σn(x)‖ ≈

√
nκ(x, x)

=⇒ ‖ σn(x)︸ ︷︷ ︸
≈mapping

from
x→Hk

‖ ≈ ‖x‖
√

nE[W 2](1 + a2)

2

Initialization [Tsuchida et al., 2018]

Initialize from any rotationally-invariant weights with

E[W 2] =
2

(1 + a2)n
.

For a = 0, i.e., ReLU, this coincides with [He et al., 2015].
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Deep Learning: Initialization...LReLU with a = 0.2

(f) [He et al., 2015] (g) [Tsuchida et al., 2018]
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Deep Learning: How about training?

How about training? Weights are no longer iid, etc!

Training NNs with ReLU (on arXiv soon):

For certain class of optimization procedures, e.g., SGD

They maintain a certain invariance property, i.e.,

layer-wise kernel remains arc-cosine during training

full network’s kernel remains approximately constant

For others, e.g., Adam, RMSPorp

They exhibit a sharp phase transition as ε changes

related to the “covariance between weights” (i.e., energy in
each layer: the maximum of squared average of the weights
connecting to each neuron)

Relation to [Bartlett et al., 2017] and [Martin et al., 2017]?
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What Is Data Science?

How randomized analysis helps answer “data sciency” questions?

Examples:

Deep Learning

Graph Analysis
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Graph Analysis
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Graph Analysis

How To Analyze Graph Data?

Graphs 6= Data in classical statistics =⇒ Need new tools
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Graph Analysis

Q: How To Analyze Graph Data?

Option 1: Graph-Specific Techniques

Develop statistical/combinatorial/geometric model for graphs

Develop machinery for that model

Appealing, but lots of work!
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Graph Analysis

Q: How To Analyze Graph Data?

Option 1: Classical Techniques

Graph =⇒ Classical Object, e.g., S ⊆ Rd

Apply existing methods for classical, e.g., Euclidean, data

Easier and also faster!
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Graph Embedding

Graph Embedding

Graph =⇒ Classical Object

Graph: G = (V ,E ) on n vertices

Find mapping M : G → S ⊆ Rd

Such that “Geometry” is S reflects the “topology” of G



Intro Deep Learning Graph Analysis

Graph Embedding

Graph embedding using

Laplacian matrix

Adjacency matrix

Both produce low-dimensional representations of V in G

Which embedding to use?...Depends on the downstream task

Vertex Classification in SBM: Adjacency 6≤6≥ Laplacian

Core-Periphery Graphs: Adjacency ≥ Laplacian



Intro Deep Learning Graph Analysis

Adjacency Spectral Embedding [Sussman et al, 2012]

Adjacency Spectral Embedding (ASE)

Adjacency matrix: A ∈ {0, 1}n×n

Eigen-decomposition: A = USUT

Sd ∈ Rd×d : Truncate S ∈ Rn×n by top d eigen-values

Ud ∈ Rd×d : Truncate U ∈ Rn×n by top d eigen-vectors

ASE: vi =⇒ i th rows of UdS
1/2
d ∈ Rn×d
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Graph Embedding

Out-of-sample (OOS) Embedding for a Graph

Suppose we already have M : G =⇒ S ⊆ Rd

How to find an embedding for a new vertex v?
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OOS Graph Embedding

Q: How to find an embedding for a new vertex v?

Option 1: Naive Approach

M : G =⇒ S ⊆ Rd

Discard the old embedding...and restart from stretch

G̃ = (V ∪ v ,E ∪ E v )

M+ : G̃ =⇒ S ⊆ Rd

Expensive when n� 1

Similarity matrix K ∈ Rn×n might no longer be available
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OOS Graph Embedding

Q: How to find an embedding for a new vertex v?

Option 2: Leverage Existing Embedding

M : G =⇒ S ⊆ Rd

Use the old embedding M...

M̃ (v ;M) =⇒ ŵ ∈ S ⊆ Rd

Fast specially when n� 1

But how accurate is this OOS embedding?

M̃ (v ; M )
?
≈M+(v)

Statistics helps us study this question...
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Edge Independent Random Graphs

Random Dot-Product Graphs, [Young and Scheinerman, 2007]

∀v ∈ V =⇒ xi ∈ X ⊆ Rd

X : Latent Space

X : Need not be finite

∀xi , xj ∈ X : 〈xi , xj〉 ∈ [0, 1]

∀vi , vj ∈ V , Pr((vi , vj) ∈ E ) = pij = 〈xi , xj〉
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RDPG [Young and Scheinerman, 2007]

We can consider a distribution on X ...

RDPG: General Definition

X : Latent Space s.t. ∀xi , xj ∈ X : 〈xi , xj〉 ∈ [0, 1]

F : distribution on X

{x1,x2, . . . ,xn} ⊂ Rd iid∼ F

XXX = [x1,x2, . . . ,xn]T ∈ Rn×d

Adjacency Matrix: AAA ∈ {0, 1}n×n

Pr (AAA | XXX) =
∏

1≤i<j≤n

(
〈xi ,xj〉

)AAAij
(

1− 〈xi ,xj〉
)1−AAAij

(AAA,XXX) ∼ RDPG(F , n)
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RDPG [Young and Scheinerman, 2007]

RDPG: Inherent Nonidentifiability

XXX ∈ Rn×d

For any orthonormal matrix Q ∈ Rd×d =⇒ XXXQ ∈ Rn×d

XXXXXXT = (XXXQ) (XXXQ)T = E[AAA | XXX]

Pr (AAA | XXX) = Pr (AAA | XXXQ)
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ASE on RDGP

Adjacency Spectral Embedding (ASE):

AAA = USUUSUUSU =⇒ X̂XX = UUUdSSS
1/2
d ∈ Rn×d

Theorem (Lyzinski et al., 2014)

With probability of at least 1− c/n2, there exists an orthogonal
matrix Q ∈ Rd×d for which

‖X̂XX−XXXQ‖2→∞ = max
1≤i≤n

‖x̂i −Qxi‖ ≤ cn−1/2 log n.
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Out-of-sample (OOS) Embedding

Recall:

Out-of-sample (OOS) Embedding for a Graph

We only have X̂, i.e., no longer have A, etc...

We are given a new vertex v with the edges incident on it av

How do we embed v?
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OOS for ASE: Linear Least Squares Approach

LS-OOS [Levin et al., 2018]

x̂v = arg min
y∈Rd

∥∥∥X̂XXy − av

∥∥∥2
X̂XX ∈ Rn×d : Estimator of the true latent positions XXX

av ∈ {0, 1}n: Random vector for the edges incident on v
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OOS for ASE: Maximum Likelihood Approach

ML-OOS [Levin et al., 2018]

x̂v = arg max
y∈Rd

n∑
i=1

av [i ] log
(
〈x̂i , y〉

)
+ (1− av [i ]) log

(
1− 〈x̂i , y〉

)

x̂i ∈ Rd : Estimator of the true latent position xi

av [i ] ∈ {0, 1}: Random variable for the edge between (v , vi )

av [i ] ∼ Bernoulli(〈xi ,xv 〉)
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OOS for ASE, [Levin et al., 2018]

Recall:

Theorem (Lyzinski et al., 2014)

With probability of at least 1− c/n2, there exists an orthogonal
matrix Q ∈ Rd×d for which

‖X̂XX−XXXQ‖2→∞ = max
1≤i≤n

‖x̂i −Qxi‖ ≤ cn−1/2 log n

.

Theorem (Levin et al., 2018)

Let xv ∈ Supp(F ). For both methods, w.h.p, we have

‖x̂v −Qxv‖ ≤ cn−1/2 log n,

where Q is the same as given in [Lyzinski et al., 2014].
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OOS for ASE, [Levin et al., 2018]

Theorem (CLT for LLS OOS, Levin et al., 2018)

Given the true latent position xv , we have

√
n (x̂v −Qnxv )

d−−−→
n→∞

N (0,Σxv ),

where

Σxv = ∆−11 E
[
〈x1, xv 〉

(
1− 〈x1, xv 〉

)
x1x

T
1

]
∆−1,

and ∆ = E(xxT
1 ).
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OOS for ASE, [Levin et al., 2018]

Theorem (CLT for LLS OOS, Levin et al., 2018)

Suppose (AAA,XXX) ∼ RDPG(F , n) and, independently, the true latent
position xv ∼ F , we have

√
n (x̂v −Qnxv )

d−−−→
n→∞

∫
N (0,Σx)dF (x),

where Σx is as before.
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Experiments: How fast does CLT kick in?

n + 1 latent positions drawn iid
F = 0.4 · (0.2, 0.7)T + 0.6 · (0.65, 0.3)T

Embed first n vertices via ASE

Apply LS OOS extension to vertex n + 1, correct for
non-identifiability

Repeat 100 trials, plot 100 OOS estimates

CLT predicts mixture of normals (indicated by isoclines)
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Distribution of LLS OOS estimates as function of graph size
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Experiments: What about the ML OOSE?

n + 1 latent positions drawn iid
F = 0.4 · (0.2, 0.7)T + 0.6 · (0.65, 0.3)T

Embed first n vertices via ASE

Apply ML OOS extension to vertex n + 1, correct for
non-identifiability

Repeat 100 trials, plot 100 OOS estimates

CLT predicts mixture of normals (indicated by isoclines)
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1.0 n=500
Distribution of ML OOS estimates as function of graph size
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THANK YOU!
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