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What Is Data Science?
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Source: https://towardsdatascience.com/introduction-to-statistics-e9d72d818745


https://towardsdatascience.com/introduction-to-statistics-e9d72d818745
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Randomized Algorithms vs. Randomized Analysis

To analyze data, one often (implicitly) works with models....

@ Randomized Methods:

How to efficiently compute with models

o Randomized Analysis:

Why models work or not
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Randomized Analysis...

How randomized analysis helps answer “data sciency” questions?

Examples:

@ Deep Learning

@ Graph Analysis



Intro

0000e0

Deep Learning...

Invariance of Weight Distributions in Rectified MLPs
(ICML, 2018)

L

Russell Tsuchida Marcus Gallagher
(UQ) (UQ)
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Graph Analysis...

Out-of-sample extension of graph adjacency spectral embedding
(ICML, 2018)

Keith Levin Michael Mahoney Carey E. Priebe
(Michigan) (Berkeley) (Johns Hopkins)



Deep Learning
©00000000000000000000000000000000

Randomized Analysis...

How randomized analysis helps answer “data sciency” questions?

Examples:

@ Deep Learning

o Graph Analysis
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Randomized Analysis: Deep Learning
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Source: https://isaacchanghau.github.io/post/activation_functions/


https://isaacchanghau.github.io/post/activation_functions/
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Neural Nets

Neural Nets:
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Neural Nets: Deep Learning Revolution

Revolution of Depth

152 layers
A
| 22 layers 19Iayers
' 67

3.57 I ) I 8 layers Slaversl shallow

ILSVRC'1S  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Source: https://medium.com/@Lidinwise/the-revolution-of-depth-facf174924f5


https://medium.com/@Lidinwise/the-revolution-of-depth-facf174924f5
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Neural Nets: Deep Learning Revolution

NIPS Growth

Total Registrations 3755

3,200
2,400
1,600
800
il -
Tutorials Conference Workshops
(2,584) (3,262) (3,006)

Source: https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_partl.html


https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
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Neural Nets: Deep Learning Revolution

“Neural networks are the second best way to do almost anything! "

JS Denker
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Deep Learning: Depth is good..but

Daniel |

Is it all rosy?
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Deep Learning: Problems with Depth

Beyond many computational constraints, there are other inherent
issues with increasing depth...
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Deep Learning: Problems with Depth

and Gradient Problem:

y=o <W3U (W2U(W1X))> , L(W) = %(y - 9)?

OLW) _ s+ 9 NG
4 i
errors at £ + 1 layer activation output of at ¢ layer
(e+1) (E+1)) T | (64+1) 1 (6+2)
+1) s (041 +1) (4
6 =03 ) ) Wiy o %

k=1
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Deep Learning: Problems with Depth

Gradient Problem:

\
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Deep Learning: Problems with Depth

and Gradient Problem

The problem has largely been overcome via

Rectified Linear Units (ReLU)

@ Careful Initialization
@ Small Learning Rates (step-size)
@ Batch Normalization

Skip Connections, e.g., ResNet, Highway Networks

@ etc...
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Deep Learning: Problems with Depth

Most of these aim at mitigating the issues with depth from an
algebraic and/or geometric point of view.

Are these all the view points that there is?

No: statistical /randomized point of view.
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Deep Learning: Problems with Depth

Gradients Problem

Depth T = Gradients? =~ White Noise

Gradients

Covariance matrices

(a) 1-layer feedforward. (b) 24-layer feedforward. (c) 50-layer resnet.

?Gradients w.r.t the inputs...also, only at initialization
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Deep Learning: Problems with Depth

Gradients Problem

Correlations between gradients decrease as
o Feedforward Rectifier Networks: (1/2)F
o Resnet (No Batch Normalization): (3/4)"
@ Resnet (With Batch Normalization): 1/v/L
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Deep Learning: Problems with Depth

o Algebraic/Geometric:
e Exploding/Vanishing Gradient Problem

e Randomized/Statistical:

o Shattered Gradient Problem
o Kernelized Reducing Angle Problem (KRAP)
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Deep Learning: Problems with Depth

Deep (rectified) feedforward nets are “KRAPY"!
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Deep Learning: Problems with Depth

ernelized educing ngle roblem (KRAP)

Depth T =—> Kernelized angle?® between inputs \L

?Only at initialization
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Deep Learning: Problems with Depth

Suppose o(t) = t, i.e., linear activation function...

Recall: Power Iteration or Krylov Subspace Methods

Start with any xg, yo

X1 ¢ Axy, Yiq1 < Ayg
lim cos(xk,yx) € {£1}
k— 00
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Neural Nets: Universal Kernel

= (on(x),0n(y)) = ) o ((x,wi))o({y,w:)

o (<X7 Wn>) “angle” at output i=1
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Neural Nets: Universal Kernel

.1 LLN
im 1 (@a(). o) 2 [ ofixow)aly,w)) F(w)w
n—oo N WCRM
inner product T; feature space
= k(xy)
the unique kernel of
the unique RKHS
Eg.,

3(x) £ o((x, ))VF() € Hy ={h: W = R}

¢(x): a mapping from the input space into a Hilbert Space, i.e.,
we can think of an MLP as a member of H,
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Neural Nets: Universal Kernel

Arc-Cosine Kernel: , ReLU

2
K(x,y) = U“;HrHYH (sinbp + (m — 6p) cos ) ,

where

0 =E[W?], 6y = cos* (||><<)\(|’ |)!3||>
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Neural Nets: Universal Kernel

Arc-Cosine Kernel: , ReLU

2
K(x,y) = ‘7“;||rHYH (sinbp + (m — 6p) cos ) ,

where

7" = EIW, = cos™ (ninﬁﬁn)

@ Examples of rotationally-invariant: Gaussian, multivariate t,
symmetric multivariate Laplace, symmetric multivariate stable
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Neural Nets: Universal Kernel

Arc-Cosine Kernel:

Equivalent formulation for (L)ReLU:

r(x,y) = E(0(Z1)0(22)),

where
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Neural Nets: Universal Kernel

Arc-Cosine Kernel:

Convergence in distribution:

For any a.e continuous o, under certain assumptions, with
W™ € R™ iid, B(W;) = 0, and E|W?| < oo, we have

(W) () 22t

where 71, Z> and ¥ are as the non-asymptotic case.
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Neural Nets: Universal Kernel

Arc-Cosine Kernel:

Convergence in expectation:

For ReLU/LReLU/ELU, under certain assumptions, with
W™ € R™ iid, B(W;) = 0, and E|W?| < oo, we have

[ (W) (W) o Bz,

m—00

where Z1, Z> and ¥ are as the non-asymptotic case.
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Deep Learning: Problems with Depth

LReLU: o(z) = (a+ (1 —a)l,>0) z, a € [0,1]

(1-a)

Kernel: s(x,y) = E[W?] x|l |ly]| ) (sinfp + (7 — 6p) cos By) + acos by

Normalized Kernel: cosfy = o nlxy) = f(6o)

K(x, x)K(y, y)
Recursively applied:

1 (1-a)?

©shi=1r2| 2m

(sinfj_1 + (m — 6j_1)cosBj_1) + acosb;_q
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Deep Learning:

ernelized educing ngle roblem (KRAP)

The normalized kernel corresponding to LRel U activations
converges to a fixed point at 6* = 07.

a . . . . . - .
Theoretically holds for rotationally-invariant weights and empirically holds for more general weights.
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Deep Learning:

1 r
S0 s - e boar -
M@“’%«t{g@ e

o: RelLU, w: Multivariate t-distribution
v: Degrees of freedom, j: Depth
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Deep Learning:

Randomly initialized deep feedforward networks
@ map all inputs to “similar” points in the Hilbert space
@ erase all information in the input signal

@ are hard to train (at least initially)
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Deep Learning: Initialization

%<Un(><)70n(y)> ~ k(% y) = [loa(x)[| = /nr(x, x)

nE[W2] 1+ a2)
= | Un( |~ [ H\/
~mapplng
from
x — Hy

Initialize from any rotationally-invariant weights with

2

E[W?] = (TS

For a=0, i.e., ReLU, this coincides with [He et al., 2015].
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Deep Learning: Initialization...LReLU with a

Frequency

Ul T T T el

(f) [He et al., 2015] (g) [Tsuchida et al., 2018]
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Deep Learning: How about training?

How about training? Weights are no longer iid, etc!

Training NNs with ReLU (on arXiv soon):
@ For certain class of optimization procedures, e.g., SGD
e They maintain a certain invariance property, i.e.,
o layer-wise kernel remains arc-cosine during training
o full network’s kernel remains approximately constant
@ For others, e.g., Adam, RMSPorp
o They exhibit a sharp phase transition as ¢ changes
o related to the “covariance between weights” (i.e., energy in

each layer: the maximum of squared average of the weights
connecting to each neuron)

o Relation to [Bartlett et al., 2017] and [Martin et al., 2017]?



Graph Analysis
©00000000000000000000000

What Is Data Science?

How randomized analysis helps answer “data sciency” questions?

Examples:

@ Deep Learning

@ Graph Analysis
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Graph Analysis

Which cluster?
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Graph Analysis

How To Analyze Graph Data?

Graphs # Data in classical statistics =—> Need new tools
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Graph Analysis

Q: How To Analyze Graph Data?

Option 1: Techniques

@ Develop statistical/combinatorial /geometric model for graphs

@ Develop machinery for that model

@ Appealing, but lots of work!
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Graph Analysis

Q: How To Analyze Graph Data?

Option 1: Techniques
e Graph ——> Classical Object, e.g., S C Rd

@ Apply existing methods for classical, e.g., Euclidean, data

@ Easier and also faster!
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Graph Embedding

Graph Embedding

Graph =—> Classical Object

@ Graph: G = (V,E) on n vertices
e Find mapping M : G - S C R?
@ Such that “Geometry” is S reflects the “topology” of G
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Graph Embedding

@ Graph embedding using

e Laplacian matrix

e Adjacency matrix

@ Both produce low-dimensional representations of V in G

@ Which embedding to use?...Depends on the downstream task
o Vertex Classification in SBM: Adjacency £ Laplacian
o Core-Periphery Graphs: Adjacency > Laplacian

core periphery

W Complex Networks 1,93 (2013):
M.P Rombach, M.A. Porcer, . H Fowler, nd P Mucha, SIAM J.App. Math 74, 167 (2014).
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Adjacency Spectral Embedding [ |

Adjacency Spectral Embedding ( )

e Adjacency matrix: A € {0,1}"™"

o Eigen-decomposition: A =USU"

o Sy € R Truncate S € R"*" by top d eigen-values
o Uy € R¥*9: Truncate U € R"*" by top d eigen-vectors
ASE: v; = it" rows of UdSi/2 E JRIPXE
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Graph Embedding

Out-of-sample ( ) Embedding for a Graph

@ Suppose we already have .Z : G ——> S C RY

@ How to find an embedding for a new vertex v?

Which cluster?
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OOS Graph Embedding

Q: How to find an embedding for a new vertex v?

Option 1: Approach

o M:G=——SCR

@ Discard the old embedding...and restart from stretch
o G=(VUV,EUE,)

o M":6—=— SCR?

e Expensive when n > 1

e Similarity matrix K € R"*" might no longer be available
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OOS Graph Embedding

Q: How to find an embedding for a new vertex v?

Option 2: Existing Embedding

o M :G—>SCR
@ Use the old embedding M...

o M(viM) —m—> weSCR?
o Fast specially when n> 1
e But how accurate is this OOS embedding?

M(v; M) é//ﬂ'(v)

e Statistics helps us study this question...
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Edge Independent Random Graphs

eVveV—=xeXCR
e X: Latent Space

@ X: Need not be finite

° Vx;,x; € X : (x;,x;) €[0,1]

e Vv, vj € V, PI’((V,‘, V_,) € E) = pjj = <X,‘,Xj>
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RDPG |

We can consider a distribution on X ...

: General Definition

e X: Latent Space s.t. Vx;,x; € X' : (xj,x;) € [0,1]

e F: distribution on X
o {x1,%y,...,x,} CRY s
o X = [x1,xy,.. .,x,,]T E RIXE
e Adjacency Matrix: A € {0,1}"*"
A; 1-A;
Pralx) = T (Gux)) (1-Gux))

1<i<j<n

o (A,X) ~ RDPG(F,n)
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: Inherent Nonidentifiability

e Xe Rnxd

@ For any orthonormal matrix Q € RY*? — XQ € R"*¢
o XX” = (XQ) (XQ)" =E[A |X]

e Pr(A |X)=Pr(A|XQ)
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ASE on RDGP

Adjacency Spectral Embedding (ASE):

A =USU — X = U;S/? € R"™¢

With probability of at least 1 — c/n?, there exists an orthogonal
matrix Q € R*9 for which

IX — XQl2y00 = max ||X; — Qx| < cn 2 log n.
1<i<n
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Out-of-sample ( ) Embedding

Recall:

Out-of-sample ( ) Embedding for a Graph

@ We only have )A( i.e., no longer have A, etc...
@ We are given a new vertex v with the edges incident on it a,

@ How do we embed v?




Graph Analysis

0000000000000 000e0000000

OOS for ASE: Linear Least Squares Approach

. 2
Xy —a,

X, = arg min
yeRd

o X € R"<9: Estimator of the true latent positions X

e a, € {0,1}": Random vector for the edges incident on v
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OOS for ASE: Maximum Likelihood Approach

25, =81 ey Zav[i] log ((%;,y)) + (1 —a,[i]) log (1 - (%;,y))

e %, € RY: Estimator of the true latent position x;

e a,[i] € {0,1}: Random variable for the edge between (v, v;)

e a,[i] ~ Bernoulli({x;,x,))
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00S for ASE, |

Recall:

Theorem ( )

With probability of at least 1 — c/n?, there exists an orthogonal
matrix Q € RI*? for which

IX — XQoy00 = max ||K; — Qx| < cn V2 logn
1<i<n

Let x,, € Supp(F). For both methods, w.h.p, we have

%, — Qx, || < cn~1/2 log n,

where @ is the same as given in [Lyzinski et al., 2014].
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00S for ASE, |

Theorem (CLT for LLS OOS,

Given the true latent position x,, we have
o d
\/E(Xv - QnXV) ” N(07 va)a
n—o00
where

2T, = AflE {(xl,x‘,) <1 — (x1,X,) )xlxﬂ AL

and A = E(xx]).
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00S for ASE, |

Theorem (CLT for LLS OOS, )

Suppose (A,X) ~ RDPG(F,n) and, independently, the true latent
position x, ~ F, we have

(%, — Qnx,) % / N(0, Z,)dF (x),

where X is as before.
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Experiments: How fast does CLT kick in?

@ n+ 1 latent positions drawn iid
F=04-(02,07)" +0.6-(0.65,0.3)7
@ Embed first n vertices via ASE
Apply LS OOS extension to vertex n+ 1, correct for
non-identifiability
Repeat 100 trials, plot 100 OOS estimates

@ CLT predicts mixture of normals (indicated by isoclines)

Distribution of LLS OOS estimates as function of graph size

n=100 10 n=500

0.8
0.6

,
0.2

X 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2
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Experiments: What about the ML OOSE?

@ n+ 1 latent positions drawn iid
F=04-(02,07)" +0.6-(0.65,0.3)7

@ Embed first n vertices via ASE

@ Apply ML OOS extension to vertex n + 1, correct for
non-identifiability

@ Repeat 100 trials, plot 100 OOS estimates

@ CLT predicts mixture of normals (indicated by isoclines)

Distribution of ML OOS estimates as function of graph size

n=100 10 n=500

0.8

"y

0.4

S,

X 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8
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Should you ask a Question
during Seminar?
B

a question?

L
Do you actually HAVE ] ){ Averyou }'ks

Trying To
00 show of >

Yes

! Go for it

v

Are you sure it’s not a dumb | yaube

question or that the speaker |-
already answered it?

| don’t
think so...

Do you really need fo ask the w T H A N K YO U I
Caution.

question in public or could you
follow up with him/her later?

Doesn’t
matter,

Are you the Seminar organizer Thank God.
asking a question because no one Please ask the
else is and the awkward silence is [~ question and let’s
making everyeone uncomfortable? et out of here!

No |
Ok, you have a legitimate
question. Po you actuall
care about the answer? Not really, |
Just want o
show off.

vest |

FINE, ASK YOUR QUESTIO!
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