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Symmetric A € R"" is positive semidefinite if it has all
non-negative eigenvalues.

Ai(A) >0,Vi <= x'Ax > 0,¥x € R".

- Include graph Laplacians, Gram matrices and kernel
matrices, covariance matrices, Hessians for convex
functions, etc.
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POSITIVE SEMIDEFINITE MATRICES

+ Massive, dense positive semidefinite matrices are often generated
from much less massive datasets.

- E.g. for kernel methods like kernel SVM, kernel ridge regression
(Gaussian process regresssion, kriging), kernel distance measures
(maximum mean discrepancy).

d feat
22U non-linear kernel
inner product
(x;,x;) = k(x X;)

- Even writing down K or performing a single iteration of an iterative
solver takes Q(n?) time.

+ For n =100, 000, K has 10 billion entries. Takes 80 GB of storage if
each is a double.

n data points
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HANDLING LARGE PSD MATRICES

Option 1: Massive computation/parallelization.

Option 2: Develop effective approximation methods.

- E.g, exploit low-rank structure.

nxn nxk
. I
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- Traditional low-rank approximation methods (full SVD, Krylov
subspace methods, random projection) run in (nnz(A))
time (Q(n?) for dense matrices).

- Many o(n?) (i.e. sublinear) time methods have been studied:
- Incomplete Cholesky factorization (Fine & Scheinberg ‘02, Bach
& Jordan ‘02).
- Entrywise sampling (Achlioptas, McSherry, & Scholkopf ‘01).
- Nystrom approximation (Williams & Seeger ‘01, Drineas &
Mahoney ‘05, Gittens & Mahoney “13).
Random Fourier features (Rahimi & Recht ‘07).

- Avariety of approximation bounds, some under assumptions.
Nothing as strong as e.g, ||A — NNT||2 < (1+ ¢)[|A — Ag||
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PSD MATRIX APPROXIMATION

Our Goal: Give strong worst case approximation bounds for
sublinear time (i.e., o(n?)) methods. Build a new toolkit for PSD
matrix algebra in the process.

nxd n xk

N

' direct feature extraction '

NT
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SUBLINEAR TIME BARRIER FOR GENERAL MATRICES

For general matrices, Q(nnz(A)) time is required for any non-trivial
matrix approximation.

- Randomly place a single entry that dominates A’'s Frobenius norm.

- Finding it with constant probability requires reading at least a
constant fraction of the non-zero entries in A (i.e., Q(nnz(A)) time ).

/ single large entry a;

]
A

* Rules out, e.g, for any A < 1, approximation of the form:

IA = NNl < AJlAJ7.
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WHAT ABOUT FOR PSD MATRICES?

Observation: For PSD A, we have for any entry aj;:
aj < max(ajj, a,-)-)
since otherwise (e; — €;)"A(e; — €)) < 0.

- So we can find any ‘hidden’ heavy entry by looking at its
corresponding diagonal entries.

Question: How can we use additional structure arising from
PSD-ness to achieve non-trivial approximation in sublinear time?
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Very Simple Fact: Every PSD matrix A € R™" can be written as
B'B for some B € R"*".

- B can be any matrix square root of A, e.g. if we let VEV' be
the eigendecomposition of A, we can set B = £/2VT.

- Letting by, ..., b, be the columns of B, the entries of A
contain every pairwise dot product aj; = b/b;.

3
BT B = A




EVERY PSD MATRIX IS A GRAM MATRIX

The fact that A is @ Gram matrix places a variety of seometric
constraints on its entries.



EVERY PSD MATRIX IS A GRAM MATRIX

The fact that A is @ Gram matrix places a variety of seometric
constraints on its entries.

- The heavy diagonal observation is just one example. By
Cauchy-Schwarz:

a,j = blTb} < 1/(blTb,') . (bij} = \/Tau < max(a”,ajj).



EVERY PSD MATRIX IS A GRAM MATRIX

The fact that A is @ Gram matrix places a variety of seometric
constraints on its entries.

- The heavy diagonal observation is just one example. By
Cauchy-Schwarz:

a,j = blTb} < 1/(blTb,') . (bij} = \/Tau < max(a”,ajj).

Another View: A contains a lot of information about the
column span of B in a very compressed form — with every
pairwise dot product stored as aj;.
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Good News: It is possible to find a low-rank approximation of
B using o(n?) column dot products, i.e. o(n?) accesses to Al

What does this buy us? B has the same (right) singular vectors
as A, and its singular values are given by gj(B) = /oj(A).

- The top k singular vectors are the same for the two matrices,

so low-rank approximation of B is closely related to that of A.

- E.g. an optimal low-rank approximation for B gives an
optimal low-rank approximation for A = B'B.
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Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,...,0(k/e)

Let Ps be the projection onto the columnsin S.

Add b; to S with probability %

B




SUBLINEAR TIME ALGORITHM

Theorem (Factor Matrix Low-Rank Approximation)

There is an algorithm using that
computes Z € R"** satisfying with probability 99/100:

1B —ZZ'B|lr < (1+ €)[|B — Byl

13



SUBLINEAR TIME ALGORITHM

Theorem (Factor Matrix Low-Rank Approximation)

There is an algorithm using that
computes Z € R"** satisfying with probability 99/100:

1B —ZZ'B|lr < (1+ €)[|B — Byl

- Can be improved using leverage-score-based Nystrom
approximation [Alaoui, Mahoney “15], [Musco, Musco “17].

13



SUBLINEAR TIME ALGORITHM

Theorem (Factor Matrix Low-Rank Approximation)

There is an algorithm using that
computes Z € R"*k satisfying with high probability:

1B —ZZ'B|lr < (1+ €)[|B — Byl

- Can be improved using leverage-score-based Nystrom
approximation [Alaoui, Mahoney “15], [Musco, Musco “17].

13



SUBLINEAR TIME ALGORITHM

Theorem (Factor Matrix Low-Rank Approximation)

There is an algorithm using that
computes Z € R"*k satisfying with high probability:

1B —ZZ'B|lr < (1+ €)[|B — Byl

- Can be improved using leverage-score-based Nystrom
approximation [Alaoui, Mahoney “15], [Musco, Musco “17].

- How does this translate to low-rank approximation of A?

13



SUBLINEAR TIME ALGORITHM

Theorem (Factor Matrix Low-Rank Approximation)

There is an algorithm using that
computes N € R"*F satisfying with high probability:

1A= NN"[l. < (1+ €)[|A = Al

- Can be improved using leverage-score-based Nystrom
approximation [Alaoui, Mahoney “15], [Musco, Musco “17].

- How does this translate to low-rank approximation of A?

13



SUBLINEAR TIME ALGORITHM

Theorem (Factor Matrix Low-Rank Approximation)

There is an algorithm using that
computes N € R"*F satisfying with high probability:

1A= NN"[l. < (1+ €)[|A = Al

- Can be improved using leverage-score-based Nystrom
approximation [Alaoui, Mahoney “15], [Musco, Musco “17].

- How does this translate to low-rank approximation of A?

- Nystrom algorithm computes N with NN < A < NN + Al
with

13
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NYSTROM ALGORITHM

A

—

AS

STAS

)-1

STA

select k ‘landmark’

indices

- If we think of A as a kernel matrix, this corresponds to
performing column subset selection in kernel space.

approximate Avia
projection onto this set

14



LIMITATIONS OF COLUMN SAMPLING

Stronger Guarantee: ||A — NN'||f < (1+ €)||A — Ag||¢?

15



LIMITATIONS OF COLUMN SAMPLING

Stronger Guarantee: ||A — NN'||r < (1+ €)||A — A][F?

- Our Nystrom algorithm accesses the diagonal of A along with
some carefully chosen subset of its columns.

15



LIMITATIONS OF COLUMN SAMPLING

Stronger Guarantee: |A — NN'|[f < (1+ €)||A — Ag||¢?

- Our Nystrom algorithm accesses the diagonal of A along with
some carefully chosen subset of its columns.

n12
nt2 {

l_‘_\

- If we take < v/n columns, we can miss a v/n x v/n block
which contains a constant fraction of A’s Frobenius norm.

15



LIMITATIONS OF COLUMN SAMPLING

Stronger Guarantee: |A — NN'|[f < (1+ €)||A — Ag||¢?

- Our Nystrom algorithm accesses the diagonal of A along with
some carefully chosen subset of its columns.

n12
nt2 {

l_‘_\

- If we take < v/n columns, we can miss a v/n x v/n block
which contains a constant fraction of A’s Frobenius norm.

- Column sampling cannot give o(n*/?) runtime. .



COLUMN AND ROW SAMPLING

Solution: Sample both rows and columns of A, using leverage
score approximations for A'/2.

16



COLUMN AND ROW SAMPLING

Solution: Sample both rows and columns of A, using leverage
score approximations for A'/2.

- A randomly sampled O(v/nk) x O(v/nk) submatrix contains
enough information to identify a near optimal low-rank
approximation of A.

16



COLUMN AND ROW SAMPLING

Solution: Sample both rows and columns of A, using leverage
score approximations for A'/2.

- A randomly sampled O(v/nk) x O(v/nk) submatrix contains
enough information to identify a near optimal low-rank
approximation of A.

- Sample AS is a projection-cost-preserving sketch for A
[Cohen et al "15,17]. For any rank-k projection P

|AS — PAS|2 = (1+ €)[|A - PAJ1Z
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FINAL ALGORITHM

Recover low-rank approximation using two-sided sampling
and projection-cost-preserving sketch property.

Vnk /€2

A/ 2
ridge leverage ridge leverage nk / €
sample sample
A ) AS1 ) Vnk/€?

input sparsity time
low-rank approximation

approximate approximate
regression Z regression Vnk / €2
2

< a7 |k
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Theorem (Main Result - Musco, Woodruff “17)

There is an algorithm that, given PSD A, accesses

entries of A and outputs N, M e R"™<k satisfying with probability
99/100:

1A — NMT[|F < (14 €)l|A — Ag]r.

- Compare to [Clarkson Woodruff “13] which takes
O(nnz(A)) + time.
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OPEN QUESTIONS

- What else can be done for PSD matrices? We give
applications to ridge regression, but what other linear
algebraic problems require a second look?

- Are there other natural classes of matrices that admit
sublinear time low-rank approximation?

- E.g. distance matrices [Bakshi, Woodruff “17]

- Can we do even better for PSD matrices with additional
structure? E.g. kernel matrices.

19
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When A € R™" is the kernel matrix corresponding to given X € R"<¢:

+ Our methods access O(nk) entries of A. Require Q(nnz(X)k)
runtime, since computing A; = R(x;, ;) requires reading x;, X;.

- We show that Q(nnz(X)R) is required to compute N satisfying
|A— NN"||f < AJ|A — A¢||z for any A, unless the algorithm
significantly advances the state of the art in fast rectangular
matrix multiplication [Woodruff, Musco "17].

* Obtaining O(nnz(X)) time is open when approximation can be in
terms of ||A — A]|. or for computing NN' satisfying

(1—€e)NN" <A< (14 e)NN" 4 Al
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random Gaussians

i

X Xy o Xy
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% @
P(x,) &7
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leverage-score-based random Fourier feature sampling [Avron et
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EXPLOITING ADDITIONAL STRUCTURE

Finding input sparsity time algorithms might require developing
ideas on oblivious kernel embeddings.

aaaaaaaaaaaaaa

T -~ XX X
- R @ - ()] = f X Random
Gaussians

- Some initial progress in [Woodruff, Musco “17] combining
leverage-score-based random Fourier feature sampling [Avron et
al. “17] with fast approximate Gaussian matrix multiplication
[Kapralov, Potluru, Woodruff “16].

- Further progress possible with better understanding of fourier
leverage scores.
21
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REMEMBERING MICHAEL COHEN
(1992-2017)




MICHAEL B. COHEN

N I§ ”

“Michael was more than just inclusive: he actively engaged with
everyone around him, on any topic, and generously shared his
knowledge and observations with others. He loved teaching, and it
was a joy to watch him do it”
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MICHAEL'S RESEARCH

- 20+ papers, with 30+ coauthors.

- Faster algorithms in many fundamental areas - graph
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