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Minimum Circuit 
Size Problem 
(MCSP): 

MCSP (def)

Given: truth table T of 𝑓𝑓: {0,1}𝑛𝑛 → {0,1} , and  0 < s < 2𝑛𝑛

Decide: is there a Boolean circuit C, of size  s,  computing  f ?

MCSP ∈ NP,  but not known to be  NP- complete.



Circuit Lower Bounds 
from 
an MCSP Algorithm



Generating Hard Functions

• As in   BPTIME ( 2n )    for    s(n)  =  2n / n      [Shannon 1949]

• As in   DTIME( poly(2n) )                    ⟺ EXP  ⊈ SIZE (s) 

• As in   pseudo-DTIME ( poly(2n) )     ⟺ BPEXP  ⊈ SIZE (s)

Algorithm  
As

n Truth Table of   f : {0,1}n ⟶ {0,1}  with   SIZE(f) > s(n)

weakly 
explicit



Generating Hard Functions

• As in   DTIME ( poly(n) )                     ⟺ P  ⊈ SIZE (s)

• As in   NTIME ( poly(n) )                     ⟺ NP  ⊈ SIZE (s)

Algorithm  
As𝑥𝑥 ∈ 0,1 𝑛𝑛 𝑓𝑓(𝑥𝑥) for some   f : {0,1}n ⟶ {0,1}  with   SIZE(f) > s(n)

strongly 
explicit



Generating Hard Functions  if  MCSP  Were  Easy

• As in   ZPTIME ( 2n )    for    s(n)  =  2n / n      if MCSP ∈ P.                ( MCSP ∈ P  ⇒ BPP = ZPP  )

• BPEXP  ⊈ SIZE (poly)   if MCSP ∈ BPP    [Impagliazzo, K, Volkovich 2018].

Open Question:  EXP  ⊈ SIZE (poly)   if MCSP ∈ P  ?             

Algorithm  
As

n Truth Table of   f : {0,1}n ⟶ {0,1}  with   SIZE(f) > s(n)



Interlude:

Explicit 
Constructions of 
Pseudorandom 
Objects

Pseudorandom Object Property Decision Complexity
Linear Error-Correcting 
Codes (Binary)

Min-Distance NP-complete    [Vardy 1997]

Expander Graphs Expansion coNP-complete  
[Blum, Karp, Vornberger, 
Papadimitriou, Yannakakis 1981]

1. There are explicit constructions of good Codes and 
Expanders despite the NP-hardness of testing Min-Distance 
and (Non-) Expansion. 

2. The NP-hardness proofs for Min-Distance and (Non-) 
Expansion use explicit constructions of good Codes and 
Expanders. 



Why Proving Hardness of MCSP is Hard 

• SAT <𝑝𝑝
𝑚𝑚 MCSP (via ``standard’’ reductions)  ⇒ EXP  ⊈ P/poly  [K. & Cai 2000]

• SAT <𝑝𝑝
𝑚𝑚 MCSP  ⇒ EXP ≠ ZPP  [Murray, Williams 2015; Hitchcock, Pavan 2015]

• SAT ≮𝑝𝑝
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 MCSP  [Murray, Williams 2015] (local reduction: each output bit in time  < 𝑛𝑛0.49 )

• SAT ≮𝑝𝑝
𝑙𝑙𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜−𝑖𝑖𝑛𝑛𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜𝑛𝑛𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖 MCSP,  unless  P = NP  [Hirahara, Watanabe 2016]                   

(oracle-independent reduction from L to MCSP:  L  ∈ 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴 for every oracle A, where 𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝐴𝐴 asks about the  A-
oracle circuit size).



MCSP Algorithms 
from 
Constructive Proofs of
Circuit Lower Bounds



Natural Properties

Most known proofs of  s(n) circuit lower bounds for weak circuit classes  C yield 
efficient   ( poly(2n)-time )  algorithms for “Average-Case  s(n)-MCSP”  (aka 
Natural Property with usefulness  s(n) ) :                                       [Razborov, Rudich 1997]

Given: Truth table T of 𝑓𝑓: {0,1}𝑛𝑛 → {0,1}

Output: “Easy” if  C-SIZE(f) ≤ s(n), 

“Hard” for at least  ½  of  functions  f  with C-SIZE(f) > s(n).



Natural Properties Yield MCSP Algorithms
Average-Case  s(n)-MCSP (aka Natural Property with usefulness  s(n) ) :

Given: Truth table T of 𝑓𝑓: {0,1}𝑛𝑛 → {0,1}

Output: “Easy” if  SIZE(f) ≤ s(n),    “Hard” for at least  ½  of  functions  f  with SIZE(f) > s(n).

( easy, hard ) - GapMCSP :

Given: Truth table T of 𝑓𝑓: {0,1}𝑛𝑛 → {0,1}

Output: “Easy” if  SIZE(f) ≤ easy(n),   “Hard” if SIZE(f) ≥ hard(n).

Theorem ( [Carmosino, Impagliazzo, K, Kolokolova 2016] , [Hirahara 2018] ): 

If Average-Case  20.1 𝑛𝑛 -MCSP  is in BPP ,  then   ( 20.01 𝑛𝑛, 20.99 𝑛𝑛 ) –GapMCSP is in BPP.



MCSP Algorithms 
Yield
Learning Algorithms



z

• [Razborov, Rudich 1997]:   If  MCSP ∈ BPP,  the every candidate One-Way Function can be 
inverted in BPP (by locality of the GGM PRFG construction).

• [Carmosino, Impagliazzo, K, Kolokolova 2016]:  If  MCSP ∈ BPP,  then every f ∈ SIZE(poly)  can 
be PAC-learned (with membership queries, under uniform distribution) in  BPP (by locality of the NW 
PRG construction).

PRFG  G

G ( z )

Def:  Function Generator  G is s-local if, 
for every seed  z,   MCSP( G(z), s)  is 
True, where s ≪ |G(z)|.

Observation:  MCSP(  , s ) will “break” 
every s-local Function Generator  G.



MCSP Algorithms 
Yield
SAT Algorithms



SAT Algorithm from MCSP, assuming  IO exist

Theorem [Impagliazzo, K, Volkovich 2018]: Suppose Indistinguishability Obfuscators exist. 
Then MCSP ∈ BPP  ⟺ SAT ∈ BPP.

Definition (IO): A randomized polytime transformation of circuits to circuits is an IO if

• correctness: For every circuit C,  IO( C ) ≡ C.

• polynomial slowdown:  |IO( C )| < poly( |C| ).

• indistinguishability:  for all pairs of circuits   C, C’ ,  if  C ≡ C’, and |C| = |C’|, then the 
distributions  IO( C )  and IO( C’ )  are computationally indistinguishable. 



MCSP yields Hard 
Tautologies 



Constructive Circuit Lower Bound Proofs

Most known proofs of  s(n) circuit lower bounds for weak circuit 
classes  C are constructive:    can be formalized in  𝑉𝑉11 (bounded 
arithmetic system with “polytime reasoning”)  [Razborov 1995]

Theorem:  If  𝑉𝑉11 proves Shannon’s counting argument that 

“ there exists a truth table of  𝑓𝑓: 0,1 𝑛𝑛 → 0,1 with  SIZE(f) > s(n) ”,

then  EXPNP ⊈ SIZE (s(n)). 

Proof:  Buss’s Witnessing Theorem.       QED



Candidate Hard Tautologies for Extended Frege

¬ MCSP( 𝑓𝑓𝑛𝑛, s )  = “ function 𝑓𝑓𝑛𝑛 requires  SIZE(𝑓𝑓𝑛𝑛) > s “

Question:      Are there poly(2n)-size Extended Frege proofs of        
¬ MCSP( 𝑓𝑓𝑛𝑛, 2𝑛𝑛𝜀𝜀 )  ?

Lower Bounds for  Res( 𝜀𝜀 log n)   [Razborov 2015]    (uses the “PRGs 
against Proof Systems” approach  [Alekhnovich, Ben-Sasson, Razborov, Wigderson
2004,  Krajicek 2004, … ] )

So far the strongest proof system where the unprovability of   
NP ⊈ P/poly  is known.



MCSP

Circuit Lower 
Bounds

Proof 
Complexity

Learning

Pseudorandomness

More connections ? 

MCSP ∈ BPP  ⇔ SAT ∈ BPP ? MCSP ∉ 𝐴𝐴𝑀𝑀0 2 ?



Thank you !



Proof of Theorem 
Theorem: Suppose Indistinguishability Obfuscators exist. Then  MCSP ∈ BPP  ⟺ SAT ∈ BPP.

Proof: ⇐ is trivial.   For  ⇒, consider      𝑓𝑓𝑠𝑠 ( r ) = IO ( ⊥𝑠𝑠, r ),     where ⊥𝑠𝑠 is a canonical 
unsatisfiable circuit of size   s,  and   r is internal randomness of   IO.   (similar idea in      
[Goldwasser, Rothblum 2007;  Komargodski, Moran, Naor, Pass, Rosen, Yogev 2014] )

MCSP ∈ BPP   ⟹ 𝑓𝑓𝑠𝑠 can be inverted in   BPP             [Allender et al. 2006]

Algorithm for  SAT:   Given a circuit C of size s, let  C’ = IO( C, r ), for random r.

Attempt to invert 𝑓𝑓𝑠𝑠 to find  r’ = 𝑓𝑓𝑠𝑠−1 ( C’ ).   If  IO( ⊥𝑠𝑠, r’ ) = C’ ,  output ``Unsat” else ``Sat”.

Analysis: If C is satisfiable, then so is C’ and IO( ⊥𝑠𝑠, r’ ) ≠ C’  by correctness of IO.

If C is unsatisfiable, IO( C ) and IO( ⊥𝑠𝑠 ) are indistinguishable by the inverting algorithm, and so 
inverting succeeds with high probability.   

Hence, SAT ∈ BPP.  QED
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