The KRW conjecture Results and Open problems

Or Meir

Proof strategy

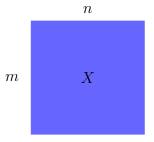
- Let $f: \{0,1\}^n \to \{0,1\}$.
- The depth complexity D(f) is the depth of the shallowest circuit for f.
- Captures the complexity of parallel computation.

- Let $f: \{0,1\}^n \to \{0,1\}$.
- The depth complexity D(f) is the depth of the shallowest circuit for f.
- Captures the complexity of parallel computation.
- We only consider circuits with fan-in 2.

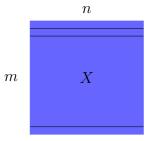
- Let $f: \{0,1\}^n \to \{0,1\}$.
- The depth complexity D(f) is the depth of the shallowest circuit for f.
- Captures the complexity of parallel computation.
- We only consider circuits with fan-in 2.
- Major frontier: Explicit f with $D(f) = \omega(\log n)$.
- a.k.a. $\mathbf{P} \neq \mathbf{NC}^1$.

• [Karchmer-Raz-Wigderson-91]: We need to understand composition.

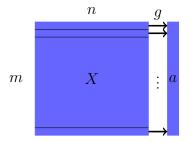
- [Karchmer-Raz-Wigderson-91]: We need to understand composition.
- Let $f: \{0,1\}^m \to \{0,1\}, g: \{0,1\}^n \to \{0,1\}.$
- The composition $f \diamond g : \{0,1\}^{m \times n} \to \{0,1\}$ is



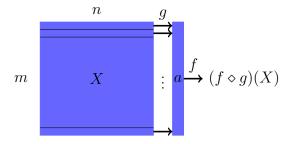
- [Karchmer-Raz-Wigderson-91]: We need to understand composition.
- Let $f: \{0,1\}^m \to \{0,1\}, g: \{0,1\}^n \to \{0,1\}.$
- The composition $f \diamond g : \{0,1\}^{m \times n} \to \{0,1\}$ is



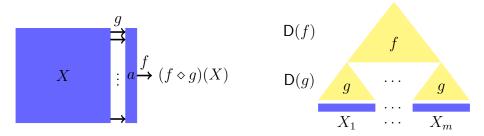
- [Karchmer-Raz-Wigderson-91]: We need to understand composition.
- Let $f: \{0,1\}^m \to \{0,1\}, g: \{0,1\}^n \to \{0,1\}.$
- The composition $f\diamond g: \{0,1\}^{m\times n} \to \{0,1\}$ is



- [Karchmer-Raz-Wigderson-91]: We need to understand composition.
- Let $f: \{0,1\}^m \to \{0,1\}, g: \{0,1\}^n \to \{0,1\}.$
- The composition $f\diamond g: \{0,1\}^{m\times n} \to \{0,1\}$ is

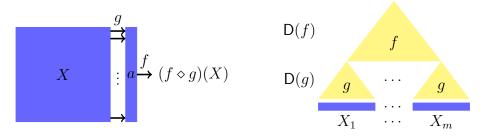


The KRW conjecture



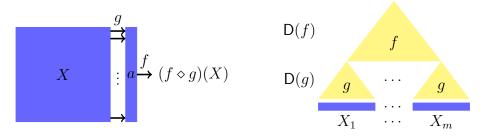
• Clearly, $D(f \diamond g) \leq D(f) + D(g)$.

The KRW conjecture



- Clearly, $D(f \diamond g) \leq D(f) + D(g)$.
- KRW conjecture: $\forall f, g : D(f \diamond g) \approx D(f) + D(g)$.

The KRW conjecture



- Clearly, $D(f \diamond g) \leq D(f) + D(g)$.
- KRW conjecture: $\forall f, g : D(f \diamond g) \approx D(f) + D(g)$.

• Theorem [KRW91]: the conjecture implies that $P \neq NC^1$.

Outline

1 Introduction

Proof strategy

• Relate D(f) to complexity of a communication problem KW_f .

- Relate D(f) to complexity of a communication problem KW_f .
- The KW relation KW_f is defined as follows:
 - Alice gets $x \in f^{-1}(0)$.
 - Bob gets $y \in f^{-1}(1)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.
 - Want to find such *i*.

- Relate D(f) to complexity of a communication problem KW_f .
- The KW relation KW_f is defined as follows:
 - Alice gets $x \in f^{-1}(0)$.
 - Bob gets $y \in f^{-1}(1)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.
 - Want to find such *i*.
- Theorem [KW88]: $D(f) = C(KW_f)$.

- Relate D(f) to complexity of a communication problem KW_f .
- The KW relation KW_f is defined as follows:
 - Alice gets $x \in f^{-1}(0)$.
 - Bob gets $y \in f^{-1}(1)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.
 - Want to find such *i*.
- Theorem [KW88]: $D(f) = C(KW_f)$.
- Only deterministic protocols!

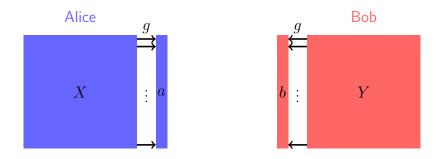
- Relate D(f) to complexity of a communication problem KW_f .
- The KW relation KW_f is defined as follows:
 - Alice gets $x \in f^{-1}(0)$.
 - Bob gets $y \in f^{-1}(1)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.
 - Want to find such *i*.
- Theorem [KW88]: $D(f) = C(KW_f)$.
- Only deterministic protocols!
- KRW conjecture: $C(KW_{f\diamond g}) \approx C(KW_f) + C(KW_g)$

- Can we use KW games to attack the KRW conjecture?
- What does $KW_{f\diamond g}$ look like?
- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

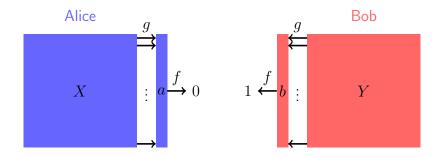
Alice

Bob

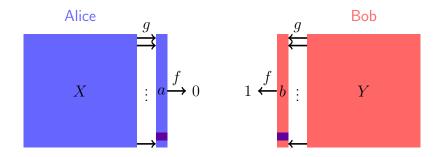
- Can we use KW games to attack the KRW conjecture?
- What does $KW_{f \diamond g}$ look like?
- Recall: $f \diamond g$ maps $\{0, 1\}^{m \times n}$ to $\{0, 1\}$.



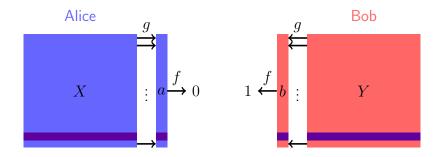
- Can we use KW games to attack the KRW conjecture?
- What does $KW_{f \diamond g}$ look like?
- Recall: $f \diamond g$ maps $\{0, 1\}^{m \times n}$ to $\{0, 1\}$.



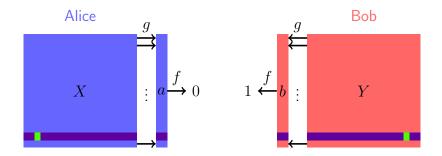
- Can we use KW games to attack the KRW conjecture?
- What does $KW_{f \diamond g}$ look like?
- Recall: $f \diamond g$ maps $\{0, 1\}^{m \times n}$ to $\{0, 1\}$.



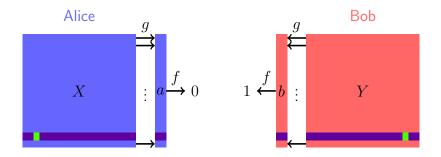
- Can we use KW games to attack the KRW conjecture?
- What does $KW_{f \diamond g}$ look like?
- Recall: $f \diamond g$ maps $\{0, 1\}^{m \times n}$ to $\{0, 1\}$.



- Can we use KW games to attack the KRW conjecture?
- What does $KW_{f \diamond g}$ look like?
- Recall: $f \diamond g$ maps $\{0, 1\}^{m \times n}$ to $\{0, 1\}$.



- Can we use KW games to attack the KRW conjecture?
- What does $KW_{f \diamond g}$ look like?
- Recall: $f \diamond g$ maps $\{0, 1\}^{m \times n}$ to $\{0, 1\}$.



- Hence, $C(KW_{f \diamond g}) \leq C(KW_f) + C(KW_g)$.
- KRW conjecture: the obvious protocol is essentially optimal.

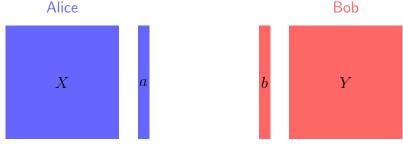
- The KRW conjecture is hard.
- [KRW91] suggested a starting point.

- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The universal relation U_n is:
 - Alice gets $x \in \{0,1\}^n$.
 - Bob gets $y \in \{0, 1\}^n$.
 - $x \neq y$.
 - Wish to find i s.t. $x_i \neq y_i$.

- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The universal relation U_n is:
 - Alice gets $x \in \{0,1\}^n$.
 - Bob gets $y \in \{0, 1\}^n$.
 - $x \neq y$.
 - Wish to find i s.t. $x_i \neq y_i$.
- Easy to prove: $C(U_n) \ge n$.

- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The universal relation U_n is:
 - Alice gets $x \in \{0,1\}^n$.
 - Bob gets $y \in \{0,1\}^n$.
 - $x \neq y$.
 - Wish to find i s.t. $x_i \neq y_i$.
- Easy to prove: $C(U_n) \ge n$.
- [KRW91] suggested to study $U_m \diamond U_n$.

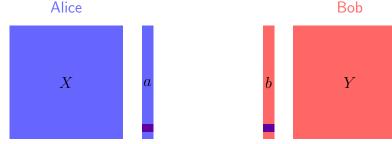
• [KRW91] suggested to study the composition $U_m \diamond U_n$.



Bob

- $a \neq b$.
- If $a_i \neq b_i$ then $X_i \neq Y_i$.

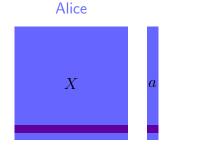
• [KRW91] suggested to study the composition $U_m \diamond U_n$.

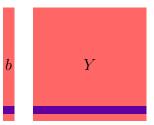


Bob

- $a \neq b$.
- If $a_i \neq b_i$ then $X_i \neq Y_i$.

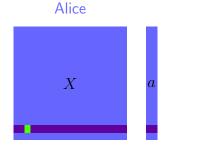
• [KRW91] suggested to study the composition $U_m \diamond U_n$.

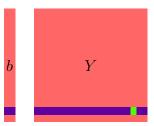




- $a \neq b$.
- If $a_i \neq b_i$ then $X_i \neq Y_i$.

• [KRW91] suggested to study the composition $U_m \diamond U_n$.



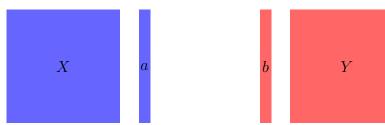


Bob

- $a \neq b$.
- If $a_i \neq b_i$ then $X_i \neq Y_i$.

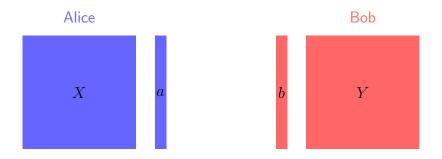
• Goal: $C(U_m \diamond U_n) = C(U_m) + C(U_n) \ge m + n.$

Alice



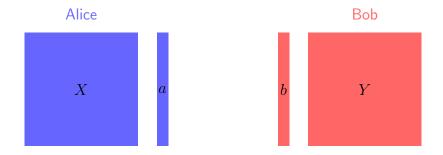
Bob

- Goal: $C(U_m \diamond U_n) = C(U_m) + C(U_n) \ge m + n.$
- Challenge was met by [Edmonds-Impagliazzo-Rudich-S'gall-91].



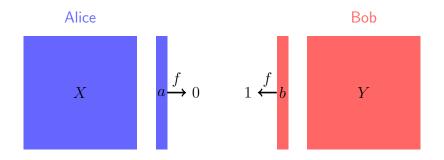
The composition of the universal relation

- Goal: $C(U_m \diamond U_n) = C(U_m) + C(U_n) \ge m + n.$
- Challenge was met by [Edmonds-Impagliazzo-Rudich-S'gall-91].
- Alternative proof obtained by [Håstad-Wigderson-93].



Composing a function and the universal relation

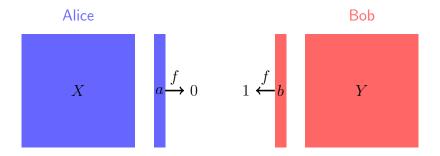
 An analog of KRW conjecture for KW_f ◊ U_n for any f. [Gavinsky-M-Weinstein-Wigderson-14]



- If $a_i \neq b_i$ then $X_j \neq Y_j$.
- The obvious protocol works.

Composing a function and the universal relation

- An analog of KRW conjecture for KW_f ◊ U_n for any f. [Gavinsky-M-Weinstein-Wigderson-14]
- Quantative improvement by [Koroth-M-18].



- If $a_i \neq b_i$ then $X_j \neq Y_j$.
- The obvious protocol works.

Composing any function and parity

• [Dinur-M-16]: (Re-)proved KRW conjecture for $f \diamond \bigoplus_n$

Composing any function and parity

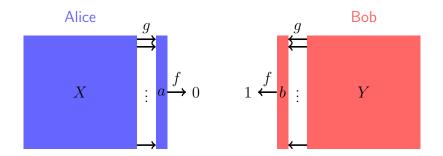
- [Dinur-M-16]: (Re-)proved KRW conjecture for $f \diamond \bigoplus_n$
- Actually, this case was already implicit in [Håstad 98].

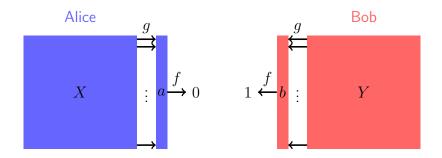
Composing any function and parity

- [Dinur-M-16]: (Re-)proved KRW conjecture for $f \diamond \bigoplus_n$
- Actually, this case was already implicit in [Håstad 98].
- However, our proof was very different, and more in line with the other works on the KRW conjecture.

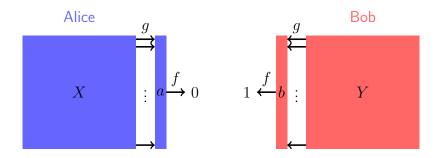
Outline

Introduction

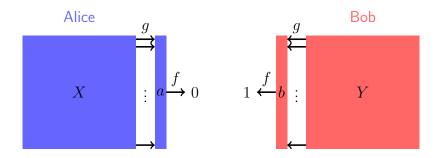




• The players must solve KW_q on some row.



- The players must solve KW_q on some row.
- To do this, they must find a row i such that g(X_i) ≠ g(Y_i) (i.e. a_i ≠ b_i).



- The players must solve KW_q on some row.
- To do this, they must find a row i such that g(X_i) ≠ g(Y_i) (i.e. a_i ≠ b_i).
- To find such a row, they must solve KW_f .

• Implement the foregoing intuition using an adversary argument.

- Implement the foregoing intuition using an adversary argument.
- Measure the progress that Alice and Bob make toward solving KW_q on each row.

- Implement the foregoing intuition using an adversary argument.
- Measure the progress that Alice and Bob make toward solving KW_q on each row.
- Whenever they make too much progress on a row:
 - the adversary "kills" the row by forcing $a_i = b_i$,
 - thereby preventing the players from solving KW_g on that row.

- Implement the foregoing intuition using an adversary argument.
- Measure the progress that Alice and Bob make toward solving KW_q on each row.
- Whenever they make too much progress on a row:
 - the adversary "kills" the row by forcing $a_i = b_i$,
 - thereby preventing the players from solving KW_g on that row.
- Adversary can do this until players solve KW_f .

- Implement the foregoing intuition using an adversary argument.
- Measure the progress that Alice and Bob make toward solving KW_g on each row.
- Whenever they make too much progress on a row:
 - the adversary "kills" the row by forcing $a_i = b_i$,
 - thereby preventing the players from solving KW_g on that row.
- Adversary can do this until players solve KW_f .
- Therefore, the players must first solve KW_f and then solve KW_g .

• How do we measure the progress the players make on each row?

- How do we measure the progress the players make on each row?
- Possible solution:

- How do we measure the progress the players make on each row?
- Possible solution:
 - Suppose the lower bound for KW_g itself is proved using an adversary argument.

- How do we measure the progress the players make on each row?
- Possible solution:
 - Suppose the lower bound for KW_g itself is proved using an adversary argument.
 - Suppose there is a nice measure for the progress of this adversary argument.
 - (say, the amount of information transmitted by the players)

- How do we measure the progress the players make on each row?
- Possible solution:
 - Suppose the lower bound for KW_g itself is proved using an adversary argument.
 - Suppose there is a nice measure for the progress of this adversary argument.
 - (say, the amount of information transmitted by the players)
 - Then we can use this measure in the composition adversary argument.

- How do we measure the progress the players make on each row?
- Possible solution:
 - Suppose the lower bound for KW_g itself is proved using an adversary argument.
 - Suppose there is a nice measure for the progress of this adversary argument.
 - (say, the amount of information transmitted by the players)
 - Then we can use this measure in the composition adversary argument.
- This is how the proofs for universal relation and parity work.

- How do we measure the progress the players make on each row?
- Possible solution:
 - Suppose the lower bound for KW_g itself is proved using an adversary argument.
 - Suppose there is a nice measure for the progress of this adversary argument.
 - (say, the amount of information transmitted by the players)
 - Then we can use this measure in the composition adversary argument.
- This is how the proofs for universal relation and parity work.
- Call the adversary of KW_g an "information-theoretic adversary".

Outline

Introduction

- 2 Known results
- 3 Proof strategy

• KRW conjecture: need $f \diamond g$ for arbitrary f, g.

- KRW conjecture: need $f \diamond g$ for arbitrary f, g.
- Can deal with arbitrary f.
- Arbitrary g seems much harder.

- KRW conjecture: need $f \diamond g$ for arbitrary f, g.
- Can deal with arbitrary f.
- Arbitrary g seems much harder.
- Arbitrary g may not have an information-theoretic adversary.

- KRW conjecture: need $f \diamond g$ for arbitrary f, g.
- Can deal with arbitrary f.
- Arbitrary g seems much harder.
- Arbitrary g may not have an information-theoretic adversary.
- Maybe we do not need to deal with an arbitrary g to prove lower bounds?

- KRW conjecture: need $f \diamond g$ for arbitrary f, g.
- Can deal with arbitrary f.
- Arbitrary g seems much harder.
- Arbitrary g may not have an information-theoretic adversary.
- Maybe we do not need to deal with an arbitrary g to prove lower bounds?
- Maybe we can find a "complete" relation R, such that it suffices to prove the KRW conjecture for $KW_f \diamond R$?

- KRW conjecture: need $f \diamond g$ for arbitrary f, g.
- Can deal with arbitrary f.
- Arbitrary g seems much harder.
- Arbitrary g may not have an information-theoretic adversary.
- Maybe we do not need to deal with an arbitrary g to prove lower bounds?
- Maybe we can find a "complete" relation *R*, such that it suffices to prove the KRW conjecture for *KW_f* ◊ *R*?
- We have a candidate: the multiplexor relation.

The multiplexor relation [EIRS91]

• The function g becomes part of the input.

The multiplexor relation [EIRS91]

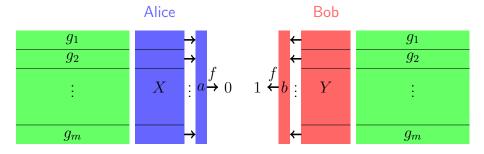
- The function g becomes part of the input.
- Alice gets a function $g: \{0,1\}^n \to \{0,1\}$ and $x \in g^{-1}(0)$.
- Bob gets the same function g and $y \in g^{-1}(1)$.
- Want to find $i \in [n]$ such that $x_i \neq y_i$.

- The function g becomes part of the input.
- Alice gets a function $g: \{0,1\}^n \to \{0,1\}$ and $x \in g^{-1}(0)$.
- Bob gets the same function g and $y \in g^{-1}(1)$.
- Want to find $i \in [n]$ such that $x_i \neq y_i$.
- Like KW relation of the address function, but with promise.

- The function g becomes part of the input.
- Alice gets a function $g: \{0,1\}^n \to \{0,1\}$ and $x \in g^{-1}(0)$.
- Bob gets the same function g and $y \in g^{-1}(1)$.
- Want to find $i \in [n]$ such that $x_i \neq y_i$.
- Like KW relation of the address function, but with promise.
- Easy to prove: $C(MUX_n) = \Omega(n)$.

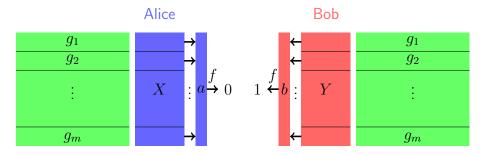
Multiplexor composition

• Given f, define the composition $KW_f \diamond MUX_n$:



Multiplexor composition

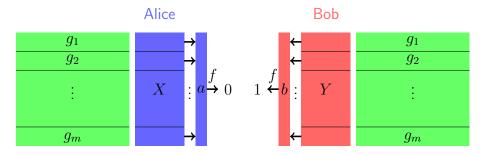
• Given f, define the composition $KW_f \diamond MUX_n$:



• Conjecture 1: $C(KW_f \diamond MUX_n) \gtrsim C(KW_f) + \Omega(n)$.

Multiplexor composition

• Given f, define the composition $KW_f \diamond MUX_n$:



• Conjecture 1: $C(KW_f \diamond MUX_n) \gtrsim C(KW_f) + \Omega(n)$.

• Conjecture 2: Conjecture 1 implies that $\mathbf{P} \neq \mathbf{NC}^1$.

• [EIRS91]: The *MUX* relation has an information-theortetic adversary.

Possible Approach to $\ \mathbf{P} eq \mathbf{N} \mathbf{C}^1$

- [EIRS91]: The *MUX* relation has an information-theortetic adversary.
- Plan:

- [EIRS91]: The *MUX* relation has an information-theortetic adversary.
- Plan:
 - Use that adversary in our strategy.

- [EIRS91]: The *MUX* relation has an information-theortetic adversary.
- Plan:
 - Use that adversary in our strategy.
 - Prove KRW conjecture for $KW_f \diamond MUX$.

- [EIRS91]: The *MUX* relation has an information-theortetic adversary.
- Plan:
 - Use that adversary in our strategy.
 - Prove KRW conjecture for $KW_f \diamond MUX$.
 - Separate **P** from **NC**¹.

- [EIRS91]: The *MUX* relation has an information-theortetic adversary.
- Plan:
 - Use that adversary in our strategy.
 - Prove KRW conjecture for $KW_f \diamond MUX$.
 - Separate **P** from **NC**¹.
- Unfortunately, the adversary of *MUX* is very complicated.
- Very hard to incorporate in our proof strategy.

Possible Approach to $~~{f P} eq{f NC}^1$

• We need to extend our techniques to handle more sophisticated adversaries.

- We need to extend our techniques to handle more sophisticated adversaries.
- Suggestion: Implement our strategy with adversaries that are:

- We need to extend our techniques to handle more sophisticated adversaries.
- Suggestion: Implement our strategy with adversaries that are:
 - simpler than the one of MUX,

- We need to extend our techniques to handle more sophisticated adversaries.
- Suggestion: Implement our strategy with adversaries that are:
 - simpler than the one of MUX,
 - and more interesting than those of U_n and \bigoplus_n .

- We need to extend our techniques to handle more sophisticated adversaries.
- Suggestion: Implement our strategy with adversaries that are:
 - simpler than the one of MUX,
 - and more interesting than those of U_n and \bigoplus_n .
- There are several nice communication problems with such adversaries.
- Let's try to prove composition results for them.

- Here are some candidates:
 - $\bullet~$ The Grigni-Sipser ${\rm FORK}$ relation.

- The Grigni-Sipser FORK relation.
- The monotone *st*CONN relation.

- The Grigni-Sipser FORK relation.
- The monotone *st*CONN relation.
- $\bullet\,$ The monotone CLIQUE relation.

- The Grigni-Sipser FORK relation.
- The monotone *st*CONN relation.
- The monotone CLIQUE relation.
- All these problems have a simple information-theoretic adversary.

- The Grigni-Sipser FORK relation.
- The monotone *st*CONN relation.
- The monotone CLIQUE relation.
- All these problems have a simple information-theoretic adversary.
- Can we prove the KRW conjecture for *KW_f* ◊ FORK, *KW_f* ◊ *st*CONN or *KW_f* ◊ CLIQUE?

- The Grigni-Sipser FORK relation.
- The monotone *st*CONN relation.
- The monotone CLIQUE relation.
- All these problems have a simple information-theoretic adversary.
- Can we prove the KRW conjecture for *KW_f* ◊ FORK, *KW_f* ◊ *st*CONN or *KW_f* ◊ CLIQUE?
- How about $U \diamond FORK$, $U \diamond stCONN$ or $U \diamond CLIQUE$?

- The Grigni-Sipser FORK relation.
- The monotone *st*CONN relation.
- The monotone CLIQUE relation.
- All these problems have a simple information-theoretic adversary.
- Can we prove the KRW conjecture for *KW_f* ◊ FORK, *KW_f* ◊ *st*CONN or *KW_f* ◊ CLIQUE?
- How about $U \diamond FORK$, $U \diamond stCONN$ or $U \diamond CLIQUE$?
- Those are clean and (hopefuly) tractable open questions.

 The KRW conjecture is a promising approach for proving P ≠ NC¹.

Summary

- The KRW conjecture is a promising approach for proving P ≠ NC¹.
- We know how to prove it when the inner function is
 - the universal relation,
 - the parity function.

- The KRW conjecture is a promising approach for proving $\mathbf{P} \neq \mathbf{NC}^1$.
- We know how to prove it when the inner function is
 - the universal relation,
 - the parity function.
- Possible approach to $\mathbf{P} \neq \mathbf{NC}^1$:
 - Prove the KRW conjecture when the inner function is the multiplexor relation.

- The KRW conjecture is a promising approach for proving $\mathbf{P} \neq \mathbf{NC}^1$.
- We know how to prove it when the inner function is
 - the universal relation,
 - the parity function.
- Possible approach to $\mathbf{P} \neq \mathbf{NC}^1$:
 - Prove the KRW conjecture when the inner function is the multiplexor relation.
- Open problems: Prove the KRW conjecture when the inner function is
 - \bullet the $\ensuremath{\mathbf{FORK}}$ relation.
 - the monotone $st\mathrm{CONN}$ relation,
 - $\bullet\,$ or the monotone CLIQUE relation.

Thank you!