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● Leading goal: lower bounds
for computing a function on a given input

● This talk: lower bounds
for sampling distributions, given uniform bits

● Several papers, connections,
still uncharted

The complexity of distributions



  

● Leading goal: lower bounds
for computing a function on a given input

● This talk: lower bounds
for sampling distributions, given uniform bits

● Several papers, connections,
still uncharted

The complexity of distributions

●  2-source extractors [Chattopadhyay Zuckerman,
                                                      …, Ben-Aroya Doron Ta-Shma]

●  Data structure lower bounds  ?



  

Outline

● A couple of problems for decision trees

● AC0 

   - Upper bounds

   - Lower bounds



  

● S = n uniform bits of weight n/2
● X uniform

● f : {0,1}* → {0,1}n

depth-d forest

● Statistical distance Δ (f(X), S) ≥ ?

Sampling Hamming slices

...X1 X2
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● S = n uniform bits of weight n/2
● X uniform

● f : {0,1}* → {0,1}n

depth-d forest

● Statistical distance Δ (f(X), S) ≥ Ω(1/2d)               [V]
                                                ≤ 1/n  for d = O(log n)  

                                                                    [CKKL]
● Open: Δ (f(X), S) for d = O(1)?

Sampling Hamming slices

f1 f2 ... ... ... fn 

...X1 X2



  

● ∏ := uniform permutations of [n]

● f : [n]* → [n]n

depth-2 forest

● Statistical distance Δ (f(X), ∏) ≥ ?

● Δ ≥ 1-o(1)  data structure lower bound

Sampling permutations

f1 f2 ... ... ... fn 

...X1 X2
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● A couple of problems for decision trees

● AC0 

   - Some upper bounds

   - Lower bounds



  

● AC0 cannot compute parity
[1980's: Furst Saxe Sipser, Ajtai, Yao, Hastad, ….]

Bounded-depth circuits (AC0) 


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
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Input x
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 = not

 y



  

● Theorem [Babai '87; Boppana Lagarias '87]

There is f : {0,1}n  {0,1}n+1 , in AC0 

Distribution f(X)  ( Y, parity(Y) )     (X, Y  {0,1}n  uniform)

Sampling ( Y, parity(Y) )
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● (Y, Inner-Product(Y))             [Impagliazzo Naor]

● Permutations                    (error 2-n)  [Matias Vishkin, Hagerup]

● (Y, f(Y)), any symmetric f  (error 2-n)                                [V]

              e.g. f=Majority

● Open: (Y, Majority(Y)) with error 0?

AC0 can sample
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● Dart throwing Place i = 1..n in A[1..n] uniformly

Sampling permutations in AC0 
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Sampling permutations in AC0 
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● Dart throwing Place i = 1..n in A[1..n] uniformly

● If no collisions, done

There will be collisions

Sampling permutations in AC0 

1 2 3 4 5

□ 2,4,5 3 1 □



  

● Dart throwing Place i = 1..n in A[1..m] uniformly

● Enlarge A.

No collisions,

and I just need

to remove the □

Sampling permutations in AC0 

1 2 3 4 5

2 □ 3 1 □ □ 5 □ □ 4



  

● Dart throwing Place i = 1..n in A[1..m] uniformly

● Enlarge A.

No collisions,

and I just need

to remove the □

impossible

Sampling permutations in AC0 

1 2 3 4 5

2 □ 3 1 □ □ 5 □ □ 4



  

● Dart throwing Place i = 1..n in A[1..m] uniformly

● Cycle format.

Each cycle starts with

least element.

Least elements sorted.

● Next element in cycle computable in AC0                      Qed

Sampling permutations in AC0 

1 2 3 4 5

(2      3) (1           5            4)
2 □ 3 1 □ □ 5 □ □ 4
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● Error-correcting codes  [Lovett V 2011, Beck Impagliazzo Lovett]

Z = uniform on good binary code  {0,1}⊆ n 

AC0 circuit C : {0,1}* → {0,1}n 

  Statistical-Distance( Z, C(X) ) ≥ 1 - exp(-n0.1)

AC0 cannot sample
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“Cannot compute f better than tossing a coin,
   even if you can sample the input yourself”
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“Cannot compute f better than tossing a coin,
   even if you can sample the input yourself”

● Error-correcting codes  [Lovett V 2011, Beck Impagliazzo Lovett]

Z = uniform on good binary code  {0,1}⊆ n 

AC0 circuit C : {0,1}* → {0,1}n 

  Statistical-Distance( Z, C(X) ) ≥ 1 - exp(-n0.1)

● (Y, f(Y)) for bit-block extractor f : {0,1}n → {0,1}

Statistical-Distance( (Y, f(Y) ,C(X)) > 0                     [V 2011]

                                                        > 1/2 - 1/nω(1)    [now]

AC0 cannot sample

Next



  

● Theorem: AC0 circuit C

min-entropy C(X) ≥ k  (  a, Pr[C(X) = a] ≤ 2∀ -k)
  C(X) close to convex combination of bit-block sources  

     with min-entropy ≥ k2/n1.01

● Bit-block source: each bit is either constant or literal
Example: (0, 1, z5 , 1-z3 , z3 , z3 , 0 , z2 )

● Corollary: f bit-block extractor   C(X) ≠ (Y, f(Y) )

● Proof:
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● Corollary: f bit-block extractor   C(X) ≠ (Y, f(Y) )

● Proof: C(X) = (Y, f(Y))  min-entropy C(X)  ≥ |Y| = n
  convex combination high min-entropy bit-block sources

can fix “f(Y)” bit leaving high min-entropy
contradicts extractor property                                     QED



  

● Theorem: AC0 circuit C

min-entropy C(X) ≥ k  (  a, Pr[C(X) = a] ≤ 2∀ -k)
  C(X) close to convex combination of bit-block sources  

     with min-entropy ≥ k2/n1.01

● Bit-block source: each bit is either constant or literal
Example: (0, 1, z5 , 1-z3 , z3 , z3 , 0 , z2 )

● Corollary: f bit-block extractor   C(X) ≠ (Y, f(Y) )

● Proof: C(X) = (Y, f(Y))  min-entropy C(X)  ≥ |Y| = n
  convex combination high min-entropy bit-block sources

can fix “f(Y)” bit leaving high min-entropy
contradicts extractor property                                     QED

Heads up:

Rules out Statistical-Distance 0,
but not 0.1

Example later



  

● Theorem: AC0 circuit C

min-entropy C(X) ≥ k  (  a, Pr[C(X) = a] ≤ 2∀ -k)
  C(X) close to convex combination of bit-block sources  

     with min-entropy ≥ k2/n1.01

● Proof: 

(1) Prove when C is d-local (each output bit depends on d  
                                             input bits) 

(2) For AC0 use random restrictions
- switching lemma collapses AC0 to d-local

- New: entropy is preserved



  

● d-local n-bit source min-entropy k: convex combo bit-block 

● Output entropy > Ω(k)   y
i  
with variance > Ω(k/n)

● Isoperimetry   x
j  
with influence > Ω(k/nd)

● Set uniformly N(N(x
j
)) \ {x

j
}              (N(v) = neighbors of v)

with prob. > Ω(k/nd), N(x
j
) non-constant block of size 2nd/k

● Repeat Ω(k) / |N(N(x
j
))| times  expect  Ω(k3/n2d3) blocks 
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Open problem:

Do this for depth-d trees

Would give better error bounds



  

● Theorem: AC0 circuit C

min-entropy C(X) ≥ k  (  a, Pr[C(X) = a] ≤ 2∀ -k)
  C(X) close to convex combination of bit-block sources  

     with min-entropy ≥ k2/n1.01

● Proof: 

(1) Prove when C is d-local (each output bit depends on d  
                                             input bits) 

(2) For AC0 use random restrictions
- switching lemma collapses AC0 to d-local

- New: entropy is preserved



  

● Theorem f : {0,1}*  {0,1}n :  f(X) has min-entropy k

               Let R be random restriction with  Pr[*] = p

               W.h.p. f |R (X) has min-entropy Ω(pk)

● Proof:

● Bound collision probability Pr[ f|R(X) = f|R(X) ]

● Isoperimetric inequality for noise                           [Lovett V]

 A  {0,1}L of density , uniform X, p-noise vector N :

2  Pr[X  A  Λ (X+N)  A]  1+p

The effect of restrictions on entropy



  

●  A  {0,1}L of density  random X, p-noise vector N :

Pr[X  A  Λ (X+N)  A]  1+p

● Proof:
f := 1A 

EX,N[ f(X) • f(X+N) ]

= EX[ f(X) • EN[f(X+N)] ]

Proof of isoperimetric inequality



  

●  A  {0,1}L of density  random X, p-noise vector N :

Pr[X  A  Λ (X+N)  A]  1+p

● Proof:
f := 1A 

EX,N[ f(X) • f(X+N) ]

= EX[ f(X) • EN[f(X+N)] ]

≤ √ EX[ f2(X) ] • √ EX [EN
2 [f(X+N)] ]      Cauchy-Schwarz

Proof of isoperimetric inequality



  

●  A  {0,1}L of density  random X, p-noise vector N :

Pr[X  A  Λ (X+N)  A]  1+p

● Proof:
f := 1A 

EX,N[ f(X) • f(X+N) ]

= EX[ f(X) • EN[f(X+N)] ]

≤ √ EX[ f2(X) ] • √ EX [EN
2 [f(X+N)] ]      Cauchy-Schwarz

≤ √ EX[ f2(X) ] • EX[f 2-O(p) (X)]1/(2-O(p))   Hypercontractivity

= √ α  • α 1/(2-O(p))                                                                       Qed

Proof of isoperimetric inequality



  

● Showed high-entropy AC0  high-entropy bit-block sources

● Implies sampling lower bounds

● But only Statistical-Distance Δ > 0, not 0.1

Possible:
     Δ ( C(X), (Y,f(Y)) ≤ 0.1, but min-entropy C(X) = O(1)

    Example next

Recap



  

● Circuit C: “On input x:
                    If first 4 bits are 0 output the all-zero string
                    Otherwise sample (Y, f(Y)) exactly”

● Statistical-Distance( C(X) , (Y, f(Y)) ≤ 0.1,
but min-entropy C(X) = O(1)

● Observation: If you fix first 4 bits,
min-entropy polarizes: either zero or very large

We show this happens for every AC0 circuit

Example



  

● Theorem: For every AC0 circuit C : {0,1}* → {0,1}n  

 ∃ set S of ≤ 2n restrictions such that:

(1) preserve output distribution
     Δ( C|r (X), C(X) ) ≤ ε, for uniform r  S, X∈
(2) polarize min-entropy

       ∀ r  S, C|∈ r has min-entropy 0 or n0.8

●   ? ? ? ? ?

Polarizing min-entropy



  

● Theorem: For every AC0 circuit C : {0,1}* → {0,1}n  

 ∃ set S of ≤ 2n restrictions such that:

(1) preserve output distribution
     Δ( C|r (X), C(X) ) ≤ ε, for uniform r  S, X∈
(2) polarize min-entropy

       ∀ r  S, C|∈ r has min-entropy 0 or n0.8

● Trivial:

S := one input for each of ≤ 2n outputs, entropy always 0

Polarizing min-entropy



  

● Theorem: For every AC0 circuit C : {0,1}* → {0,1}n  

 ∃ set S of ≤ 2n - n0.9
 restrictions such that:

(1) preserve output distribution
     Δ( C|r (X), C(X) ) ≤ ε, for uniform r  S, X∈
(2) polarize min-entropy

       ∀ r  S, C|∈ r has min-entropy 0 or n0.8

Polarizing min-entropy



  

● Lemma: For every f : {0,1}* → {0,1}n 

 ∃ set S of ≤ 2n - n0.9
 restrictions s.t.

Δ( f|r (X), f(X) ) ≤ ε, for uniform r  S, X∈

● Proof:
● Pick S randomly with Pr[*] =  n-0.9; fix A = f-1(y) of density 

Show: PrS[  Prr,X[X|r A∈ ] <  - ε2-n ] < 2-n

Note: Deviation ε2-n but |S| < 2n

Polarization lemma
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● Pick S randomly with Pr[*] =  n-0.9; fix A = f-1(y) of density 

Show: PrS[  Prr,X[X|r A∈ ] <  - ε2-n ] < 2-n

Note: Deviation ε2-n but |S| < 2n

Isoperimetric inequality   Prr,X[X|r A] “small variance”∈

Polarization lemma



  

● Lemma: For every f : {0,1}* → {0,1}n 

 ∃ set S of ≤ 2n - n0.9
 restrictions s.t.

Δ( f|r (X), f(X) ) ≤ ε, for uniform r  S, X∈

● Proof:
● Pick S randomly with Pr[*] =  n-0.9; fix A = f-1(y) of density 

Show: PrS[  Prr,X[X|r A∈ ] <  - ε2-n ] < 2-n

Note: Deviation ε2-n but |S| < 2n

Isoperimetric inequality   Prr,X[X|r A] “small variance”∈
Use specific lower-tail concentration bound                  Qed

Polarization lemma



  

● In the end, lower bound for sampling (Y, f(Y))

                  f : {0,1}n → {0,1}  bit-block extractor

● Given circuit C, statistical distance 1/2 – 1/nω(1) witness:
A U B =

{ z : z one of those 2n – n0.9 
restrictions s.t. C is constant}

 U { (y,b) : b ≠ f(y) }

● Proof: Think of C(X) as C|r (X) for uniform r  S∈
C|r constant  C| r (X)  A, but (Y, f(Y)) not in A w.h.p.∈
else Pr[C|r (X)  B] > 1/2 – 1/n∈ ω(1), but (Y, f(Y)) never in B

Putting things together



  

● Open problem: Statistical distance 1/2 - exp(-n0.1)

● Derandomize entropy polarization

● Much more to chart...

More open problems and conclusion


