Sampling lower bounds

Emanuele Viola

Northeastern University

September 2018



The complexity of distributions

* |Leading goal: lower bounds
for computing a function on a given input

» This talk: lower bounds
for sampling distributions, given uniform bits

« Several papers, connections,
still uncharted




The complexity of distributions

e 2-source extractors [Chattopadhyay Zuckerman,
..., Ben-Aroya Doron Ta-Shmal]

@® Data structure lower bounds ?

for samplinC NS, given uniform bits

« Several papers, connections,
still uncharted



Outline

e A couple of problems for decision trees

e ACO
- Upper bounds

- Lower bounds



Sampling Hamming slices
* S = n uniform bits of weight n/2

e X uniform
<P L L

YV aY
L1 LY B Y
« Statistical distance A (f(X), S) = 7?

* £:{0,1} — {0,1}"
depth-d forest
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Sampling Hamming slices
* S = n uniform bits of weight n/2

e X uniform
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* Statistical distance A (f(X), S) = Q(1/29) [V]
< 1/n ford = O(log n)
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* £:{0,1} — {0,1}"
depth-d forest



Sampling Hamming slices
* S = n uniform bits of weight n/2

e X uniform
<P L L

* £:{0,1} — {0,1}" VA 111 i
depth-d forest !!!
* Statistical distance A (f(X), S) = Q(1/29) [V]
< 1/n ford = O(log n)
[CKKL]

* Open: A (f(X), S) ford = O(1)?



Sampling permutations

* []:=uniform permutations of [n]

Aol f f f [ [ |

Yy ey
faffof.f.. [ [T
o Statistical distance A (f(X), []) = 7

* f:[n] — [n]"

depth-2 forest

« A= 1-0(1) =» data structure lower bound



Outline

e A couple of problems for decision trees

o ACY
- Some upper bounds

- Lower bounds



Bounded-depth circuits (ACO)

\/ =or
. bounded /\ = and
depth — = not

» ACY cannot compute parity

[1980's: Furst Saxe Sipser, Ajtai, Yao, Hastad, ....



Sampling (Y, parity(Y) )

 Theorem [Babai '87; Boppana Lagarias '87]

There is f: {0,130 — {0,1}"*1 in AC"
Distribution f(X) = (Y, parity(Y) ) (X, Y e {0,1}" uniform)

x1 x2 x3 xn
Y.= || Y,= || V,= y = parity(y) =

X
x n
x16|9x2 XZEDX3 X DX




ACP can sample

* (Y, Inner-Product(Y)) [Impagliazzo Naor]
* Permutations (error 2°") [Matias Vishkin, Hagerup]
* (Y, f(Y)), any symmetric f (error 2™) [V]

e.g. I=Majority

* Open: (Y, Majority(Y)) with error 0?



ACP can sample

Next
* (Y, Inner-Product(Y)) [Impagliazzo Naor]
* Permutations (error 2°") [Matias Vishkin, Hagerup]
* (Y, f(Y)), any symmetric f (error 2™) [V]

e.g. f=Majority

* Open: (Y, Majority(Y)) with error 0?



Sampling permutations in AC°

» Dart throwing Place i = 1..n in A[1..n] uniformly




Sampling permutations in AC°

» Dart throwing Place i = 1..n in A[1..n] uniformly

e |f no collisions, done




Sampling permutations in AC°

» Dart throwing Place i = 1..n in A[1..n] uniformly

. i i g
There will be collisions




Sampling permutations in AC°

» Dart throwing Place i = 1..n in A[1..m] uniformly

* Enlarge A.
No collisions,
and | just need
to remove the o

IEEEIEEI



Sampling permutations in AC°

» Dart throwing Place i = 1..n in A[1..m] uniformly

* Enlarge A.
No collisions

and | just need

O remove the o

Impossible

IEEEIEEI



Sampling permutations in ACO

» Dart throwing Place i = 1..n in A[1..m] uniformly

e Cycle format.
Each cycle starts with
least element.

Least elements sorted.

IEEEIEEI

* Next element in cycle Computable in ACO Qed
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e A couple of problems for decision trees

o ACY
- Some upper bounds

- Lower bounds



ACP cannot sample



ACC cannot sample

* Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
Z = uniform on good binary code < {0,1}"

ACY circuit C : {0,1}* — {0,1}"
= Statistical-Distance( Z, C(X) ) = 1 - exp(-n%-1)
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ACP cannot sample

* Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
Z = uniform on good binary code < {0,1}"
ACY circuit C : {0,1}* — {0,1}"
= Statistical-Distance( Z, C(X) )= 1 - exp(-n®-1)
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“Cannot compute f better than tossing a coin,
even if you can sample the input yourself”
< 5




ACP cannot sample

* Error-correcting codes [Lovett V 2011, Beck Impagliazzo Lovett]
Z = uniform on good binary code < {0,1}"
ACY circuit C : {0,1}* — {0,1}"
= Statistical-Distance( Z, C(X) )= 1 - exp(-n®-1)

Next

* (Y, f(Y)) for bit-block extractor f : {0,1}" — {0,1}
Statistical-Distance( (Y, f(Y) ,C(X)) >0 [V 2011]
> 1/2 - 1/n®() | [now]

-~

“Cannot compute f better than tossing a coin,
even if you can sample the input yourself” T
- -5




Theorem: ACY circuit C
min-entropy C(X) =k (V a, Pr[C(X) = a] < 27K
= C(X) close to convex combination of bit-block sources

with min-entropy = k2/n1-0

e Bit-block source: each bit is either constant or literal
Example: (0, 1, Zs,1-24,25,25,0, 2, )

» Corollary: f bit-block extractor = C(X) # (Y, f(Y) )

e Proof:



Theorem: ACY circuit C
min-entropy C(X) =k (V a, Pr[C(X) = a] < 27K
= C(X) close to convex combination of bit-block sources

with min-entropy = k2/n1-0

Bit-block source: each bit is either constant or literal
Example: (0, 1, Zs,1-24,25,25,0, 2, )

Corollary: f bit-block extractor = C(X) # (Y, f(Y) )

Proof: C(X) = (Y, f(Y)) = min-entropy C(X) = |Y| =n

=» convex combination high min-entropy bit-block sources
can fix “f(Y)" bit leaving high min-entropy

contradicts extractor property QED



Theorem: ACP circuit C

min-entropy
= C(X) close

with min-el§ Rules out Statistical-Distance 0,
N but not 0.1

Heads up: SOUrces

Bit-#Ock sour eral

Exg@mple: (O,

Example later

Cdiollary: f bit-block extractor = C(X) # (Y, f(Y) )

Prodg C(X) = (Y, f(Y)) = min-entropy C(X) = |Y| =n

=» convex combination high min-entropy bit-block sources
can fix “f(Y)" bit leaving high min-entropy

contradicts extractor property QED




* Theorem: ACO circuit C
min-entropy C(X) =k (V a, Pr[C(X) = a] < 27K
= C(X) close to convex combination of bit-block sources

with min-entropy = k2/n1-0

 Proof:

(1) Prove when C is d-local (each output bit depends on d
input bits)

(2) For ACY use random restrictions
- switching lemma collapses ACP to d-local

- New: entropy Is preserved



Proof

» d-local n-bit source min-entropy k: convex combo bit-block

X1 X2 X3 X4 X5 X6 X7

w.l.o.g. —/2nd/k \C/

Yol I Y, [ Ys ]| Ys]|Ys n output bits

- Output entropy > (k) = 3y with variance > ()(k/n)

+ Isoperimetry = 3 x, with influence > Q(k/nd)

« Set uniformly N(N(xj)) \ {xj} (N(v) = neighbors of v)
with prob. > Q(k/nd), N(x ) non-constant block of size 2nd/k

« Repeat Q(k)/ IN(N(x))| times > expect Q(k3/n2d3) blocks
¢



Proof
Open problem:

e d-localigebit s

Y
n : Do this for depth-d trees

w.l.0.g. —/ Would give better error bounds

- Output entropy > (k) = 3y with variance > ()(k/n)

+ Isoperimetry = 3 x, with influence > Q(k/nd)

« Set uniformly N(N(xj)) \ {xj} (N(v) = neighbors of v)
with prob. > Q(k/nd), N(x ) non-constant block of size 2nd/k

« Repeat Q(k)/ IN(N(x))| times > expect Q(k3/n2d3) blocks
¢



* Theorem: ACO circuit C
min-entropy C(X) =k (V a, Pr[C(X) = a] < 27)
= C(X) close to convex combination of bit-block sources

with min-entropy = k2/n1-0

4 y
y

N (1) Prove when C is d-local (each output bit depends on d
input bits)

(2) For ACY use random restrictions
- switching lemma collapses ACP to d-local

- New: entropy is preserved



The effect of restrictions on entropy

Theorem f: {0,1} — {0,1}": (X) has min-entropy k
Let R be random restriction with Pr[*] = p

W.h.p. f |R (X) has min-entropy Q(pk)

Proof:
Bound collision probability Pr]| f|R(X) = f|R(X) ]

Isoperimetric inequality for noise [Lovett V]

V AC {O,1}L of density o, uniform X, p-noise vector N :

aZ<PriX e A A(X+N) € A] <o, *P



Proof of isoperimetric inequality

* VAC {O,1}L of density o random X, p-noise vector N :
PrX € A A (X+N) € A]<a P

* Proof:
f'= 1A
N[f( )+ {(X+N) ]
= Ex[ 1(X) « E\[f(X+N)] |



Proof of isoperimetric inequality

* VAC {O,1}L of density o random X, p-noise vector N :
PrX € A A (X+N) € A]<a P
* Proof:
f =1,
Ex I f( )+ f(X+N) ]
= Eyx[ f(X) « Eg[F(X+N)] ]
<V E[fA(X) ] VEy [E\?[f(X*N)]]  Cauchy-Schwarz



Proof of isoperimetric inequality

* VAC {O,1}L of density o random X, p-noise vector N :
PrX € A A (X+N) € A]<a P

e Proof:
f =1,
Ex I f( ) + T(X+N) ]
= Ex[ f(X) « ENIf(X+N)] ]
SVE[fA(X) ]+ VEy [E\?[f(X+N)]]  Cauchy-Schwarz
<V Ey[ 2(X) ] » Ey[f 2O0P) (X)]1(2-0P)) Hypercontractivity
= g « g V(2-O(p)) Qed




Recap

* Showed high-entropy AC® = high-entropy bit-block sources
* Implies sampling lower bounds
e But only Statistical-Distance A > 0, not 0.1

Possible:
A ( C(X), (Y,f(Y)) = 0.1, but min-entropy C(X) = O(1)

Example next



Example

e Circuit C: “On input x:
If first 4 bits are 0 output the all-zero string
Otherwise sample (Y, f(Y)) exactly”

o Statistical-Distance( C(X), (Y, f(Y)) = 0.1,
but min-entropy C(X) = O(1)

* Observation: If you fix first 4 bits,
min-entropy polarizes: either zero or very large

We show this happens for every ACP circuit



Polarizing min-entropy

 Theorem: For every ACP circuit C : {0,1} — {0,1}"
J set S of < 2" restrictions such that:

(1) preserve output distribution
A( C|. (X), C(X) ) s ¢, for uniformr € S, X

(2) polarize min-entropy
V r €S, C| has min-entropy 0 or n%-8

¢ 00777



Polarizing min-entropy

Theorem: For every ACP circuit C : {0,1} — {0,1}"

1 set S of < 2" restrictions such that:
e ————

(1) preserve output distribution
A( C|. (X), C(X) ) s ¢, for uniformr € S, X

(2) polarize min-entropy
V r €S, C| has min-entropy 0 or n%-8

Trivial:
S := one input for each of < 2" outputs, entropy always 0



Polarizing min-entropy

Theorem: For every ACP circuit C : {0,1} — {0,1}"
3 set S of < 2"~ restrictions such that:

(1) preserve output distribution
A( Cl, (X), C(X) ) =g, foruniformr € S, X
(2) polarize min-entropy
V r €S, C|_has min-entropy 0 or n%-8



Polarization lemma

* Lemma: For every f: {0,1} — {0,1}"

3 set S of < 21’ restrictions s.t.
A( f]. (X), f(X) ) s €, foruniformr € S, X

* Proof:
* Pick S randomly with Pr[*] = n0-2; fix A = f1(y) of density a

Show: Prg[ Pr, y[X|,€Al <o —e2" ] <27

Note: Deviation €2 but |S] < 2"
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Polarization lemma

* Lemma: For every f: {0,1} — {0,1}"

3 set S of < 21’ restrictions s.t.
A( f]. (X), f(X) ) s €, foruniformr € S, X

* Proof:
* Pick S randomly with Pr[*] = n0-2; fix A = f1(y) of density a

Show: Prg[ Pr, y[X|,€Al <o —e2" ] <27

Note: Deviation €2 but |S] < 2"
|Isoperimetric inequality =» Prr,X[X|reA] “small variance”

Use specific lower-tail concentration bound Qed



Putting things together

* |In the end, lower bound for sampling (Y, f(Y))
f:{0,1}" — {0,1} bit-block extractor

* Given circuit C, statistical distance 1/2 — 1/n*“(1) witness:
AUB-=

{z:zone of those 2"~ n%? restrictions s.t. C is constant}
U {(y,b) : b #1(y)}

« Proof: Think of C(X) as C|. (X) for uniformr € S
C|, constant = C|_(X) €A, but (Y, f(Y)) notin Aw.h.p.
else Pr[C|. (X) € B] > 1/2 — 1/n®(1), but (Y, f(Y)) never in B



More open problems and conclusion

* Open problem: Statistical distance 1/2 - exp(-n%-1)
 Derandomize entropy polarization

e Much more to chart...




