Distribution-free junta testing

Xi Chen Columbia University Zhengyang Liu Shangahi Jiao Tong University

Rocco Servedio Columbia University

Ying Sheng Columbia University → Stanford University Jinyu Xie Columbia University

Simons Institute Workshop: Boolean Devices September 2018 Boolean Deviction Property Testing

Boolean function property testing

"Property" of Boolean functions: a class **C** of Boolean functions (= all n-variable functions that have the property)

- Examples: C = linear functions over GF(2) (parities)
 - **C** = degree-d GF(2) polynomials
 - **C** = halfspaces
 - **C** = monotone functions
 - **C** = s-term DNF formulas

etc.

Testing algorithm (randomized): Makes black-box queries to arbitrary f: $\{0,1\}^n \rightarrow \{0,1\}$

And eventually outputs "yes" or "no"

"Standard" (uniform-distribution) property testing

Tester for class **C** must (whp) output

- "yes" if f is in C
- "no" if f is ε-far from every function g in C

Standard model: Measure distance between f and g w.r.t. uniform distribution over {0,1}ⁿ, i.e.

 $Pr_{x \text{ uniform}}[f(x) \neq g(x)]$

Main concern: information-theoretic # of queries required

Gold Standard: # queries required is *independent of n*

Much is known about testing various well-studied classes of Boolean functions in the standard (uniform) model:

- linear functions over GF(2) (parities) [BLR93, many others]
- degree-d GF(2) polynomials [AKKLR05]
- halfspaces [MORS09, MORS10, BBBY12, RS15]
- small-width OBDDs [G10, BMW11, RT12]
- monotone functions [DGLRRS99, GGLRS00, CST14, CDST15, KMS15, BB16, CWX17]
- dictators, conjunctions, monotone s-term DNF [PRS01]
- s-term DNF formulas, size-s decision trees, size-s Boolean formulas and circuits, s-sparse polynomials and algebraic circuits over GF(2), etc. [DLMORSW07]

This work:

• k-juntas: functions with ≤ k relevant variables [FKRSS04, CG04, AS07, B08, B09, RT11, BBR12, STW15, ABRW16, CSTWX17, BCEL18, LW18]

The class for this talk: **C** = k-juntas

A function f: $\{0,1\}^n \rightarrow \{0,1\}$ is a k-junta if it only depends on k of the n input variables. (Think of k<<n.)

Example:

 $f(x_1,...,x_n) = MAJ(x_6, x_{10}, x_{19})$ is a 3-junta

k-junta testing: well-understood! (...in the standard model...)

Adaptive algorithms:

- $\tilde{O}(k)/\epsilon$ -query testing algorithm [Blais09]
- $\Omega(k)$ -query lower bound for testing to constant accuracy [CG04]

Nonadaptive algorithms:

- $\widetilde{O}(k^{3/2}) / \varepsilon$ -query algorithm [Blais08]
- $\widetilde{\Omega}(k^{3/2}) / \epsilon$ -query lower bound for testing to accuracy ϵ [CSTWX17]

So what is this talk about?

1-slide motivation for distribution-free testing model

Juntas capture "this phenomenon depends on few causes"

Junta testing could conceivably be useful for real-world data analysis...

...but are your real-world data points really distributed according to uniform over $\{0,1\}^n$?

This work: Junta testing in the **distribution-free** model

Distribution-free property testing: same as before, but now

 There is an unknown and arbitrary distribution D over {0,1}ⁿ used to measure distance between f and g:

 $\Pr_{x \sim D} [f(x) \neq g(x)]$

 Tester can make black-box queries

 $\overbrace{f(x)}^{x} \xrightarrow{\text{oracle for f}}$

and can draw independent samples from **D**

Some results on distribution-free testing of various classes

Class C	Standard model query complexity	Distribution-free query complexity
Conjunctions	Ο(1/ε) [PRS01]	$\widetilde{\Theta}(n^{1/3})$ [GS09,DR11, CX16]
Monotone functions	poly(n) [gglrs00], [CDS14, KMS15, BB16, CWX17]	2 Θ(n) _[HK05]
Linear threshold functions	Ο(1/ε) [MORS09]	$\widetilde{\Omega}(n^{1/5})$ [GS09]

Distribution-free testing can be a lot harder than standard testing!

Motivating question for this work:

Are k-juntas *easy* or *hard* to test in the distribution-free model?

The answer:

Sort of hard for non-adaptive algorithms...

but *surprisingly easy* for adaptive algorithms!

Non-Adaptive Distribution-Free Junta Testing: sort of hard

Theorem [FKRSSO4, HK07,AW12]: The class of k-juntas is nonadaptively distribution-free testable using $O(2^k)/\epsilon$ queries.

• Uniform distribution tester + "self-corrector" \rightarrow distribution-free tester

Theorem [this work]: Any non-adaptive algorithm that distributionfree ε -tests k-juntas, for ε =0.49, must use $\Omega(2^{k/3})$ queries.

Adaptive Distribution-Free Junta Testing: surprisingly easy!

Theorem [this work]: There is an (adaptive) one-sided distributionfree ε -testing algorithm for the class of k-juntas that makes $\tilde{O}(k^2)/\varepsilon$ queries.

Sharp contrast with other classes (conjunctions, LTFs, monotone functions) where distribution-free testing *much harder* than standard testing

Rest of this talk

A few slides on the lower bound:

Theorem: Any non-adaptive algorithm that distribution-free ε -tests k-juntas, for ε =0.49, must use $\Omega(2^{k/3})$ queries.

Mostly about the upper bound:

Theorem: There is an (adaptive) one-sided distribution-free ϵ -testing algorithm for the class of k-juntas that makes $\widetilde{O}(k^2)/\epsilon$ queries.

The lower bound

Theorem: Any non-adaptive algorithm that distribution-free ε -tests k-juntas, for ε =0.49, must use $\Omega(2^{k/3})$ queries.

Proof is by the usual technique: Yao's minimax principle.

Suffices to exhibit two distributions D_{yes} , D_{no} , each over (distribution,function) pairs, such that no $2^{k/3}$ -query *deterministic* algorithm can distinguish them.

D_{yes} over D_{no} over (distribution, function) pairs (distribution, function) pairs

The distribution:

 Puts equal weight on 2^k log(n) many randomly chosen points

The function:

- Pick k variables at random (defines 2^k "sections")
- Pick random function over them

The distribution:

• Same as in D_{ves}

The function:

• As before, but toss new coin for each 0.4n-radius Hamming ball around each support point within each section

The lower bound: Deterministic 2^{k/3} query **non-adaptive** algorithms can't tell D_{ves} from D_{no}

Non-adaptive algorithm first (1) as to $2^{k/3}$ as usual as from dia

(1) gets $2^{k/3}$ samples from distribution, then

(2) makes $2^{k/3}$ non-adaptive queries.

(1) Samples don't help: whp see 2^{k/3} different points in 2^{k/3} different sections, everything looks totally random in both cases.

(2) Do non-adaptive queries help?

What can non-adaptive queries do?

 D_{no}

Intuition for the lower bound

Intuition: To distinguish D_{no} from D_{yes} , must find two inputs in same "section" that are labeled differently.

Given a sampled point like •,

- if tester flips "too many" (>n/k) of its bits, whp it will end up in a different section (like • or •) ☺
- if tester flips "too few" (<n/k) of its bits, it won't escape the ball (like •) ☺

Rest of talk: An $\widetilde{O}(k^2)/\epsilon$ -query adaptive algorithm

Theorem: There is an (adaptive) one-sided distribution-free ϵ -testing algorithm for the class of k-juntas that makes $\tilde{O}(k^2)/\epsilon$ queries.

Let's brainstorm: How might we take advantage of adaptivity?

One of the all-time great adaptive algorithms:

Binary Search

The fastest known uniform-distribution testing algorithm [Blais09] makes crucial use of *binary search*

Let's see (a simplified version of) this algorithm...

A ($k/\epsilon + k*\log(n)$)-query **uniform-distribution** tester

Query complexity of actual [Blais09] algorithm is $\tilde{O}(k)/\epsilon$.

Simplified version that makes $O(k/\epsilon + k*\log(n))$ queries: Repeatedly try to grow a set R of *known-to-be-relevant* variables by 1 each time.

- If |R| reaches k+1, output "not a k-junta"
- If |R| < k+1 after 100k/ε tries, output "is a k-junta"

Each attempt to grow R:

- Draw uniform random x in {0,1}ⁿ, rerandomize coordinates in [n]\R to get y
- Query f at x and at y. If f(x) ≠ f(y), do binary search on coordinates in [n]\R to find a new relevant variable.

One attempt

R = known-to-be-relevant variables = {1,2,3}

Query x, y: f(x)=1, f(y)=0

Binary search to find a new relevant variable:

form $z^1 = 110100101000110100$ Query z^1 : $f(z^1)=1$: form $z^2 = 110100101000110111$

etc.

This simplified algorithm: $\log(n)$ queries to do one binary search \rightarrow overall query complexity k/ ϵ + k*log(n).

Blais's actual algorithm: at beginning forms $poly(k/\epsilon)$ many **randomly chosen blocks of variables.** Binary search over *relevant blocks*, not relevant variables \rightarrow overall query complexity $\tilde{O}(k/\epsilon)$.

Blais's (intricate) analysis heavily relies on *uniform distribution* (Efron-Stein / Fourier decomposition of functions over product spaces).

What to do in distribution-independent setting?

A (k/ε + k*log(n))-query **distribution-free** tester

Turns out that a simple tweak of the naïve binary-search-based uniform-distribution tester works in the distribution-free setting!

Everything is exactly as in uniform-distribution $(k/\epsilon + k*log(n))$ -query algorithm, but now each attempt to grow R works as follows:

Draw x in {0,1}ⁿ from distribution D; uniformly rerandomize coordinates in [n]\R to get y

Key to (simple) analysis:

If f: $\{0,1\}^n \rightarrow \{0,1\}$ is ε -far from every k-junta with respect to **D**, and $|\mathbf{R}| \le k$, then

 $Pr_{x,y}[f(x) \neq f(y)] > \varepsilon/2.$

From $(k^*\log(n) + k/\epsilon)$ queries to $\tilde{O}(k^2/\epsilon)$ queries?

Like [Blais09], we need to do binary search over blocks, not single variables.

Key to simple algorithm: ability to *uniformly rerandomize* coordinates in [n]\R (R = set of relevant variables)

 Draw x in {0,1}ⁿ from distribution D; uniformly rerandomize coordinates in [n]\R to get y

But seems we can't identify R without log(n) queries...

Setup for the real algorithm, and a crucial assumption

Our real algorithm:

- Maintains disjoint relevant blocks B₁, B₂, ...
- For each B_i, maintains two strings xⁱ, yⁱ differing only on B_i such that f(xⁱ)≠f(yⁱ). Let wⁱ = partial string which is common part of xⁱ, yⁱ.

Key assumption: for each i, f_{w^i} is close to a 1-junta over B_i under the uniform distribution.

Etc.

What the assumption enables

Our real algorithm:

- Maintains disjoint relevant blocks B₁, B₂, ...
- For each B_i, maintains two strings xⁱ, yⁱ differing only on B_i such that f(xⁱ)≠f(yⁱ). Let wⁱ = partial string which is common part of xⁱ, yⁱ.

Key assumption: for each i, f_{w^i} close to a 1-junta over B_i under uniform distribution.

Let R = set of all the 1-junta variables for $B_1, B_2,...$ (R is unknown to the algorithm!)

Key Fact: In the above scenario, we can uniformly rerandomize coordinates in [n]\R (even though we don't know what R is)!

Rerandomizing coordinates in [n]\R

For each block B_i , have strings x^i , y^i , differing only on B_i , $f(x^i) \neq f(y^i)$ and f_{w^i} close to 1-junta over B_i under uniform distribution. Let v_i be the 1-junta variable in B_i , so $R = \{$ the 1-junta variables for B_1 , B_2 , ... $\} = \{v_1, v_2, ...\}$

- Randomly split each B_i into two pieces; check which one v_i is in (easy), and let Q_i = other one.
- Let S = uniform random subset of variables outside $B_1, B_2, ...$

Then **S U Q₁ U Q₂ U ... is a uniform random subset of [n]\R** (equivalent to rerandomizing $[n]\R$).

S = random subset of white stuff.

Randomly split B₁; Q₁ is the piece not containing $v_1 \rightarrow Q_1$ is a random subset of B₁\{ v_1 } Likewise for B₂.

What about key assumption?

Recall **Key assumption:** for each i, f_{w^i} is close to 1-junta over B_i under uniform distribution.

We check this for each $B_{\rm i}$ using [Blais09] uniform-distribution 1-junta tester on $f_{w^{\rm i}}.$

- If it holds, 🙂
- If it *doesn't* hold: [Blais09] algorithm will *split B_i* into **two** relevant blocks → progress! ☺

Overall algorithm:

Algorithm maintains relevant blocks (B_1, x^1, y^1) , (B_2, x^2, y^2) , ..., (B_t, x^t, y^t)

- If some block B_i not (uniform-distribution) close to 1-junta, split the block → progress ([Blais09] 1-junta tester)
- If each block B_i is close to a 1-junta: try to add new relevant variables as in naive algorithm
 (R = relevant variables in these blocks; draw x ~ D, uniformly
 rerandomize variables outside R, do binary search over blocks to find
 new relevant block as before)
 - If 100k/ε tries didn't yield k+1 relevant blocks, output "junta"
 - If find k+1 relevant blocks within 100k/ε tries, output "not a junta"

Summary and future work

Summary of our results:

k-juntas can be (adaptively) ϵ -tested in distribution-free model with about k^2/ϵ queries.

Non-adaptive distribution-free testers need $2^{\Omega(k)}$ queries.

Future work:

- A k/ϵ -query algorithm? (Matching uniform distribution setting?)
- Tolerant / active / sample-based distribution-free testers?

Thank you!