
Distribu(on-free	junta	tes(ng	
Xi	Chen	

Columbia	University	

Simons	Ins(tute	Workshop:		Boolean	Devices	
September	2018	

Zhengyang	Liu	
Shangahi	Jiao	Tong	University	

Rocco	Servedio	
Columbia	University	

Ying	Sheng	
Columbia	University	à	
Stanford	University	

Jinyu	Xie	
Columbia	University	

Boolean	Device	Func(on	
Property	 Tes(ng	

Boolean	func(on	property	tes(ng	

“Property”	of	Boolean	func(ons:		a	class	C	of	Boolean	func(ons	
	(=	all	n-variable	func(ons	that	have	the	property)	

	
Examples:								C	=		linear	func(ons	over	GF(2)		(pari(es)]	

															C	=		degree-d		GF(2)	polynomials		
															C	=		halfspaces	
	 	 			C	=	monotone	func(ons	

																										C	=		s-term	DNF	formulas		
																										etc.	
																														
																													

	
Tes(ng	algorithm	(randomized):		Makes	black-box	queries	to		

arbitrary	f:	{0,1}n	à	{0,1}	

oracle	for	f	

x	

f(x)	

	
And	eventually	outputs	“yes”	or	“no”	

“Standard”	(uniform-distribu(on)	property	tes(ng	

Tester	for	class	C	must	(whp)	output		
	
•  “yes” if	f	is	in	C	
•  “no” if	f	is	ε-far	from	every	

func(on	g	in	C	

any	output	OK		

tester	must	output		
“yes” whp	

Tester	must	output	“no” whp		

Standard	model:		Measure	distance	between	f	and	g	w.r.t.	uniform	distribu(on	
over	{0,1}n,	i.e.	

	
	

ε

Prx	uniform[f(x)	=	g(x)]		
	

Main	concern:			informa(on-theore(c		#	of	queries	required	
	
Gold	Standard:		#	queries	required	is	independent	of	n	

Much	is	known	about	tes(ng	various	well-studied	classes	of	Boolean	
func(ons	in	the	standard	(uniform)	model:	

	
	
•  linear	func(ons	over	GF(2)		(pari(es)	[BLR93,	many	others]	
•  degree-d		GF(2)	polynomials	[AKKLR05]	
•  halfspaces	[MORS09,	MORS10,	BBBY12,	RS15]	
•  small-width	OBDDs	[G10,	BMW11,	RT12]	
•  monotone	func(ons	[DGLRRS99,	GGLRS00,	CST14,	CDST15,	KMS15,	

BB16,	CWX17]		
•  dictators,	conjunc(ons,	monotone	s-term	DNF	[PRS01]	
•  s-term	DNF	formulas,	size-s	decision	trees,	size-s	Boolean	formulas	

and	circuits,	s-sparse	polynomials	and	algebraic	circuits	over	GF(2),	
etc.	[DLMORSW07]	

	
This	work:			
	
•  	k-juntas:			func(ons	with	≤	k	relevant	variables	[FKRSS04,	CG04,	AS07,	

B08,	B09,	RT11,	BBR12,	STW15,	ABRW16,	CSTWX17,	BCEL18,	LW18]	
	

A	func(on	f:	{0,1}n	à	{0,1}	is	a	k-junta	if	it	only	depends	on	k	of	the	n	
input	variables.		(Think	of	k<<n.)	

	

Example:	

The	class	for	this	talk:	
C	=	k-juntas	

f(1	0	0	1	1	0	1	1	1	0	0	1	1	0	0	0	0	1	1	1	0	1	1	0	0	1	0	0	1	0	1	1)	=	0	
	
f(0	1	1	0	0	0	1	0	1	0	0	1	1	0	1	1	0	1	0	1	0	1	1	0	0	1	0	0	1	0	1	1)	=	0	
	
f(1	0	0	1	1	0	1	1	1	1	0	1	0	0	1	1	0	1	1	0	1	1	0	0	1	0	0	1	0	0	0	0)	=	1	
	

f(x1,…,xn)	=	MAJ(x6,	x10,x19)		is	a	3-junta		

Nonadap;ve	algorithms:			

•  O(k3/2)	/ε-query	algorithm	[Blais08]	

•  Ω(k3/2)	/ε-query	lower	bound	for	tes(ng	to	accuracy	ε	[CSTWX17]

	

k-junta	tes(ng:		well-understood!	

Adap;ve	algorithms:	

•  O(k)/ε-query	tes(ng	algorithm	[Blais09]	

•  Ω(k)-query	lower	bound	for	tes(ng	to	constant	accuracy	[CG04]

(…in	the	standard	model…)	

So	what	is	this	talk	about?	

~	

~	

~	

Juntas	capture	“this	phenomenon	depends	on	few	causes”	

	

	

Junta	tes(ng	could	conceivably	be	useful	for	real-world	data	
analysis…	

	

	

...but	are	your	real-world	data	points	really	distributed	according	to	
uniform	over	{0,1}n?	

	

	

1-slide	mo(va(on	for		
distribu(on-free	tes(ng	model	

Distribu;on-free	property	tes(ng:			
same	as	before,	but	now	

	

•  There	is	an	unknown	and	arbitrary	distribu(on	D	over	{0,1}n	used	
to	measure	distance	between	f	and	g:	

																																																																											Prx	~	D	[f(x)	=	g(x)]	
	

•  Tester	can	make	black-box		
queries	

This	work:		Junta	tes(ng	in	the	
distribu;on-free	model	

any	output	OK		

tester	must	output		
“yes” whp	

ε

oracle	for	f	
f(x)	

and	can	draw	independent		
samples	from	D	
	

oracle	for	f	x	~	D	

x	

tester	must	output		
“no” whp	

Some	results	on	distribu(on-free	tes(ng	
of	various	classes	

Standard	model	
query	complexity	

Distribu(on-free		
query	complexity	

Class	C	

	

Conjunc(ons	

Monotone	
func(ons	

Linear	threshold	
func(ons	

Distribu(on-free	tes(ng		
can	be	a	lot	harder	

	than	standard	tes(ng!	

	

	

O(1/ε)	[PRS01]	

	

	

Θ(n1/3)	[GS09,DR11,	CX16]	

poly(n)	[GGLRS00],	[CDS14,	
KMS15,	BB16,	CWX17]	 2Θ(n)	[HK05]	

Ω(n1/5)	[GS09]		O(1/ε)	[MORS09]	

~	

~	

Mo(va(ng	ques(on	for	this	work:	

Are	k-juntas	easy	or	hard	to	test	in	the	distribu(on-free	model?	

The	answer:	

Sort	of	hard	for	non-adap(ve	algorithms…	

but	surprisingly	easy	for	adap(ve	algorithms!	

Non-Adap(ve	Distribu(on-Free	Junta	Tes(ng:	
sort	of	hard	

Theorem	[FKRSS04,	HK07,AW12]:		The	class	of	k-juntas	is	non-
adap(vely	distribu(on-free	testable	using	O(2k)/ε	queries.	

	

•  Uniform	distribu(on	tester	+	“self-corrector”	à	distribu(on-free	tester	

	

	

Theorem	[this	work]:		Any	non-adap(ve	algorithm	that	distribu(on-
free ε-tests	k-juntas,	for	ε=0.49,	must	use	Ω(2k/3)	queries.	

Adap(ve	Distribu(on-Free	Junta	Tes(ng:	
surprisingly	easy!	

Theorem	[this	work]:		There	is	an	(adap(ve)	one-sided	distribu(on-
free		ε-tes(ng	algorithm	for	the	class	of	k-juntas	that	makes	O(k2)/ε	
queries.	

~	

Sharp	contrast	with	other	classes	(conjunc(ons,	LTFs,	monotone	
func(ons)	where	distribu(on-free	tes(ng	much	harder	than	
standard	tes(ng	

Rest	of	this	talk	

A	few	slides	on	the	lower	bound:	

Mostly	about	the	upper	bound:	

Theorem:		Any	non-adap(ve	algorithm	that	distribu(on-free ε-tests	
k-juntas,	for	ε=0.49,	must	use	Ω(2k/3)	queries.	

Theorem:		There	is	an	(adap(ve)	one-sided	distribu(on-free			
ε-tes(ng	algorithm	for	the	class	of	k-juntas	that	makes	O(k2)/ε	
queries.	

~	

The	lower	bound	

Theorem:		Any	non-adap(ve	algorithm	that	distribu(on-free ε-tests	
k-juntas,	for	ε=0.49,	must	use	Ω(2k/3)	queries.	

Proof	is	by	the	usual	technique:		Yao’s	minimax	principle.	

	

Suffices	to	exhibit	two	distribu(ons	Dyes,	Dno,	each	over	
(distribu(on,func(on)	pairs,	such	that	no	2k/3-query	determinis7c	
algorithm	can	dis(nguish	them.	

Dyes	over		
(distribu(on,	func(on)	pairs	

The	func;on:			
•  Pick	k	variables	at	random	(defines		

2k	“sec(ons”)	
•  Pick	random	func(on	over	them	

The	distribu;on:	
•  Puts	equal	weight	on	2k	log(n)		

many	randomly	chosen	points	

The	distribu;on:	
•  Same	as	in	Dyes		

Dno	over		
(distribu(on,func(on)	pairs	

The	func;on:			
•  As	before,	but	toss	new	coin	for	each		

0.4n-radius	Hamming	ball	around	each	
support	point	within	each	sec7on	

Non-adap(ve	algorithm	first		
	(1)	gets	2k/3	samples	from	distribu(on,	then		
	(2)	makes	2k/3	non-adap(ve	queries.	

	
	
(1)	Samples	don’t	help:		whp	see	2k/3	different	points	in	
2k/3	different	sec(ons,	everything	looks	totally	random	in	
both	cases.	
	
	
(2)	Do	non-adap(ve	queries	help?	
	
	
What	can	non-adap(ve	queries	do?	

The	lower	bound:		Determinis(c	2k/3	query		
non-adap;ve	algorithms	can’t	tell	Dyes	from	Dno		

Dyes	

Dno	

Intui;on:		To	dis(nguish	Dno	from	Dyes,	must	find	two	
inputs	in	same	“sec(on”	that	are	labeled	differently.	
	
Given	a	sampled	point	like			,	
	
•  if	tester	flips	“too	many”	(>n/k)	of	its	bits,	whp		it	will	

end	up	in	a	different	sec(on	(like			or)	L	

•  if	tester	flips	“too	few”	(<n/k)	of	its	bits,	it	won’t	
escape	the	ball	(like)	L			

Intui(on	for	the	lower	bound	

Dyes	

Dno	

Rest	of	talk:			
An	O(k2)/ε-query	adap(ve	algorithm	~	

Theorem:		There	is	an	(adap(ve)	one-sided	distribu(on-free			
ε-tes(ng	algorithm	for	the	class	of	k-juntas	that	makes	O(k2)/ε	
queries.	

~	

Let’s	brainstorm:	
How	might	we	take	advantage	of	adap(vity?	

One	of	the	all-(me	great	adap(ve	algorithms:	

	

Binary	Search	

	

The	fastest	known	uniform-distribu(on	tes(ng	algorithm	[Blais09]	
makes	crucial	use	of	binary	search	

	

Let’s	see	(a	simplified	version	of)	this	algorithm…	

A	(k/ε +	k*log(n))-query	uniform-distribu;on	tester	

Query	complexity	of	actual		[Blais09]	algorithm	is	O(k)/ε.		

Simplified	version	that	makes	O(k/ε	+	k*log(n))	queries:		Repeatedly	
try	to	grow	a	set	R	of	known-to-be-relevant	variables	by	1	each	(me.	

-  If	|R|	reaches	k+1,	output	“not	a	k-junta”	

-  If	|R|	<	k+1	a~er	100k/ε tries,	output	“is	a	k-junta”

	
Each	a�empt	to	grow	R:	

•  Draw	uniform	random	x	in	{0,1}n,	rerandomize	coordinates	in		
[n]\R	to	get	y	

•  Query	f	at	x	and	at	y.		If	f(x)	=	f(y),	do	binary	search	on	coordinates	
in	[n]\R	to	find	a	new	relevant	variable.	

~	

Draw	uniform	x:																								x			=	1	1	0	1	0	0	1	0	1	0	1	1	0	0	0	1	0	0	

Rerandomize	non-R	coords:			y			=	1	1	0	1	0	0	1	0	1	0	0	0	1	1	1	0	1	1	

	

Query	x,	y:		f(x)=1,	f(y)=0	

	

Binary	search	to	find	a	new	relevant	variable:	

	 	 	 	 	form 			z1		=	1	1	0	1	0	0	1	0	1	0	0	0	1	1	0	1	0	0		

Query	z1:		f(z1)=1:	

		 		 		 													form							z2		=	1	1	0	1	0	0	1	0	1	0	0	0	1	1	0	1	1	1	

etc.	

R	=	known-to-be-relevant	variables	=	{1,2,3}	

One	a�empt	

This	simplified	algorithm:		log(n)	queries	to	do	one	binary	search	
	à	overall	query	complexity	k/ε	+	k*log(n).	

	

Blais’s	actual	algorithm:		at	beginning	forms	poly(k/ε)	many	randomly	
chosen	blocks	of	variables.		Binary	search	over	relevant	blocks,	not	
relevant	variables	à	overall	query	complexity	O(k/ε).	

	

Blais’s	(intricate)	analysis	heavily	relies	on	uniform	distribu7on		
(Efron-Stein	/	Fourier	decomposi(on	of	func(ons	over	product	spaces).	

	

What	to	do	in	distribu(on-independent	se�ng?	

~	

A	(k/ε +	k*log(n))-query	distribu;on-free	tester	

Turns	out	that	a	simple	tweak	of	the	naïve	binary-search-based	
uniform-distribu(on	tester	works	in	the	distribu(on-free	se�ng!	

Everything	is	exactly	as	in	uniform-distribu(on	(k/ε	+	k*log(n))-query	
algorithm,	but	now	each	a�empt	to	grow	R	works	as	follows:	

•  Draw	x	in	{0,1}n	from	distribu;on	D;	uniformly	rerandomize	
coordinates	in	[n]\R	to	get	y	

Key	to	(simple)	analysis:	

If	f:	{0,1}n	à	{0,1}	is	ε-far	from	every	k-junta	with		
respect	to	D,	and	|R|<=	k,	then	

																																														Prx,y[f(x)	=	f(y)]	>	ε/2.	

From	(k*log(n)	+	k/ε)	queries	to	O(k2/ε)	queries?	

Like	[Blais09],	we	need	to	do	binary	search	over	blocks,	not	single	
variables.	

	

Key	to	simple	algorithm:		ability	to		
uniformly	rerandomize	coordinates	
	in	[n]\R	(R	=	set	of	relevant	variables)	

	

	

	

But	seems	we	can’t	iden(fy	R	without	log(n)	queries…	

•  Draw	x	in	{0,1}n	from	distribu;on	D;		
uniformly	rerandomize	coordinates	in	
[n]\R	to	get	y	

~	

Setup	for	the	real	algorithm,	and	a	crucial	assump(on	

Our	real	algorithm:		

•  Maintains	disjoint	relevant	blocks	B1,	B2,	...	

•  For	each	Bi,	maintains	two	strings	xi,	yi	differing	only	on	Bi	such	that	
f(xi)=f(yi).		Let	wi	=	par(al	string	which	is	common	part	of	xi,	yi.	

Key	assump;on:		for	each	i,	fw			is	close	to	a	1-junta	over	Bi	under	the	
uniform	distribu7on.	

x1			=	1	1	0	1	0	0	1	0	1	0	1	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	1	1	1	

y1			=	1	1	0	1	0	0	1	0	1	1	1	0	1	1	0	0	0	0	0	1	1	0	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	1	1	1	

B1	 B2	

x2			=	0	0	1	0	1	1	0	1	0	0	1	1	1	1	1	0	1	1	0	0	1	0	1	0	0	0	1	1	1	1	0	1	0	0	1	1	0	1	0	0	

y2			=	0	0	1	0	1	1	0	1	0	0	1	1	1	1	1	0	1	1	0	0	1	0	1	0	0	0	1	1	1	1	0	0	0	1	1	0	0	1	0	0	

Etc.	

Etc.	

i	

What	the	assump(on	enables	

Our	real	algorithm:		

•  Maintains	disjoint	relevant	blocks	B1,	B2,	...	

•  For	each	Bi,	maintains	two	strings	xi,	yi	differing	only	on	Bi	such	that	
	f(xi)=f(yi).		Let	wi	=	par(al	string	which	is	common	part	of	xi,	yi.	

Key	assump;on:		for	each	i,	fw	close	to	a	1-junta	over	Bi	under	uniform	
distribu7on.	

Key	Fact:		In	the	above	scenario,	we	can	uniformly	rerandomize	
coordinates	in	[n]\R		(even	though	we	don’t	know	what	R	is)!	

Let	R	=	set	of	all	the	1-junta	variables	for	B1,	B2,...		
(R	is	unknown	to	the	algorithm!)	

i	

Rerandomizing	coordinates	in	[n]\R	

For	each	block	Bi,	have	strings	xi,	yi,	differing	only	on	Bi,	f(xi)=f(yi)	and	fw		close	to	1-junta	over	Bi	
under	uniform	distribu7on.		
Let	vi	be	the	1-junta	variable	in	Bi,	so	R	=	{the	1-junta	variables	for	B1,	B2,	…}	=	{v1,	v2,	...}	

•  Randomly	split	each	Bi	into	two	pieces;	check	which	one	vi	is	in	
(easy),	and	let	Qi	=	other	one.	

•  Let	S	=	uniform	random	subset	of	variables	outside	B1,B2,…	

Then	S	U	Q1	U	Q2	U	...	is	a	uniform	random	subset	of	[n]\R		
(equivalent	to	rerandomizing	[n]\R).	

i	

B1	 B2	
v1	 v2

`	

S	=	random	subset	of	white	stuff.	
Randomly	split	B1;	Q1	is	the	piece	not	containing	v1	à	Q1	is	a	random	subset	of	B1\{v1}	
Likewise	for	B2.	

What	about	key	assump(on?	

Recall	Key	assump;on:		for	each	i,	fw		is	close	to	1-junta	over	Bi	under	
uniform	distribu7on.	

	

We	check	this	for	each	Bi	using	[Blais09]	uniform-distribu(on	1-junta	
tester	on	fw		.			

•  If	it	holds,	J	

•  If	it	doesn’t	hold:		[Blais09]	algorithm	will	split	Bi	into	two	relevant	
blocks	à	progress!	J	

i	

i	

Overall	algorithm:	

Algorithm	maintains	relevant	blocks	(B1,	x1,	y1),	(B2,	x2,	y2),	…,	(Bt,	xt,	yt)	

	

•  If	some	block	Bi	not	(uniform-distribu(on)	close	to	1-junta,	split	the	
block	à	progress	([Blais09]	1-junta	tester)	

•  If	each	block	Bi	is	close	to	a	1-junta:		try	to	add	new	relevant	variables	
as	in	naive	algorithm	
(R	=	relevant	variables	in	these	blocks;	draw	x	~	D,	uniformly	
rerandomize	variables	outside	R,	do	binary	search	over	blocks	to	find	
new	relevant	block	as	before)	

•  If	100k/ε tries	didn’t	yield	k+1	relevant	blocks,	output	“junta”	

•  If	find	k+1	relevant	blocks	within	100k/ε tries,	output	“not	a	
junta”

Summary	and	future	work	

Summary	of	our	results:	

	

k-juntas	can	be	(adap(vely)	ε-tested	in	distribu(on-free	model	
with	about	k2/ε	queries.	

	

	

Non-adap(ve	distribu(on-free	testers	need	2Ω(k)	queries.	
	

	

Future	work:	

•  A	k/ε-query	algorithm?		(Matching	uniform	distribu(on	se�ng?)	

•  Tolerant	/	ac(ve	/	sample-based	distribu(on-free	testers?	

	

Thank	you!		

