Distribution-free junta testing

Xi Chen Zhengyang Liu
Columbia University Shangahi Jiao Tong University

Rocco Servedio
Columbia University

Ying Sheng Jinyu Xie

Columbia University 2 Columbia University
Stanford University

Simons Institute Workshop: Boolean Devices
September 2018

Boolean P@wateon
Property Testing

Boolean function property testing

“Property” of Boolean functions: a class C of Boolean functions
(= all n-variable functions that have the property)

Examples: C = linear functions over GF(2) (parities)
C = degree-d GF(2) polynomials
C = halfspaces
C = monotone functions

C = s-term DNF formulas
etc.

Testing algorithm (randomized): Makes black-box queries to
arbitrary f: {0,1}" = {0,1}

oracle for f

|
f(x)

And eventually outputs “yes” or “no”

“Standard” (uniform-distribution) property testing

Tester for class C must (whp) output

———~

- 7 >~
-~ any output OK ~
09 N

. “yes” if fisin C g™, \
o 113 ” -ff . _f f / @
NO ITTIS E-Tar Trom every | tester must output /
function gin C W\ Yes whp P
N -
Ciineieeo

Tester must output “no” whp

Standard model: Measure distance between f and g w.r.t. uniform distribution
over {0,1}", i.e.
I:)rx uniform[f(x) # g(x)]

Main concern: information-theoretic # of queries required

Gold Standard: # queries required is independent of n

Much is known about testing various well-studied classes of Boolean
functions in the standard (uniform) model:

. linear functions over GF(2) (parities) [BLR93, many others]

. degree-d GF(2) polynomials [AKKLRO5]

. halfspaces [MIORS09, MIORS10, BBBY12, RS15]

. small-width OBDDs [G10, BMW11, RT12]

. monotone functions [DGLRRS99, GGLRSO0, CST14, CDST15, KMS15,
BB16, CWX17]

. dictators, conjunctions, monotone s-term DNF [PRSO1]

. s-term DNF formulas, size-s decision trees, size-s Boolean formulas
and circuits, s-sparse polynomials and algebraic circuits over GF(2),
etc. [DLMORSWO07]

This work:

. k-juntas: functions with < k relevant variables [FKRSS04, CG04, ASO7,
BOS8, BO9, RT11, BBR12, STW15, ABRW16, CSTWX17, BCEL18, LW18]

The class for this talk:
C = k-juntas

A function f: {0,1}" = {0,1} is a k-junta if it only depends on k of the n
input variables. (Think of k<<n.)

Example:
f(10011011100110000111011001001011)=0

f01100010100110110101011001001011)=0

f(10011011110100110110110010010000)=1

(X1, X,) = MAJ(Xg, X10,X19) IS @ 3-junta

k-junta testing: well-understood!
(...in the standard model...)

Adaptive algorithms:
. CN)(k)/e-query testing algorithm [Blais09]

e Q(k)-query lower bound for testing to constant accuracy [CG04]

Nonadaptive algorithms:
« O(k37) /e-query algorithm [Blais08]
. ﬁ(k3/2) /e-query lower bound for testing to accuracy € [CSTWX17]

So what is this talk about?

1-slide motivation for
distribution-free testing model

Juntas capture “this phenomenon depends on few causes”

Junta testing could conceivably be useful for real-world data
analysis...

...but are your real-world data points really distributed according to
uniform over {0,1}"?

This work: Junta testing in the
distribution-free model

- tester must output

,@ ® any output OK™ N “no” whp

8) © \
tester must output /
“yes” whp s

-

~ -

- am ==

Distribution-free property testing:
same as before, but now

e There is an unknown and arbitrary distribution D over {0,1}" used
to measure distance between f and g:

Pr. ~p [f(x) # g(x)]

 Tester can make black-box and can draw independent
qgueries samples from D

; [oracle for f]
f(X)

" x~D

Some results on distribution-free testing
of various classes

Class C Standard model Distribution-free
query complexity query complexity
Conjunctions O(1/€) [Prso1] (:j(nl/3) [GS09,DR11, CX16]
Monotone
_ poly(n) [GGLRs00], [CDS14,
functions KMS15, BB16, CWX17] 250 [hKos]
Linear threshold ~
O(1/¢) (MORs09] Q(n1/3) [Gso09]

functions

Distribution-free testing
can be a lot harder
than standard testing!

Motivating question for this work:

Are k-juntas easy or hard to test in the distribution-free model?

The answer:

Sort of hard for non-adaptive algorithms...

but surprisingly easy for adaptive algorithms!

Non-Adaptive Distribution-Free Junta Testing:
sort of hard

Theorem [FKRSS04, HKO7,AW12]: The class of k-juntas is non-

adaptively distribution-free testable using O(2%)/e queries.

 Uniform distribution tester + “self-corrector” = distribution-free tester

Theorem [this work]: Any non-adaptive algorithm that distribution-

free e-tests k-juntas, for €=0.49, must use Q(2%/3) queries.

Adaptive Distribution-Free Junta Testing:
surprisingly easy!

Theorem [this work]: There is an (adaptive) one-sided distribution-

free e-testing algorithm for the class of k-juntas that makes O(k?)/¢
gueries.

Sharp contrast with other classes (conjunctions, LTFs, monotone
functions) where distribution-free testing much harder than
standard testing

Rest of this talk

A few slides on the lower bound:

Theorem: Any non-adaptive algorithm that distribution-free e-tests

k-juntas, for €=0.49, must use Q(2%/3) queries.

Mostly about the upper bound:

Theorem: There is an (adaptive) one-sided distribution-free

e-testing algorithm for the class of k-juntas that makes 5(k2)/8
qgueries.

The lower bound

Theorem: Any non-adaptive algorithm that distribution-free ¢-tests

k-juntas, for €=0.49, must use Q(2%/3) queries.

Proof is by the usual technique: Yao’s minimax principle.

Suffices to exhibit two distributions D, D, each over
(distribution,function) pairs, such that no 2¥3-query deterministic
algorithm can distinguish them.

D, ., Over D, over
(distribution, function) pairs (distribution,function) pairs

The distribution: The distribution:
* Puts equal weight on 2k log(n) * Sameasin D,
many randomly chosen points

0000 0001 0010 0011 1111 0000 0001 0010 0011 1111
° Y ® L
e _//_\ /T BNy
[J ° D B I
o N L
[] ° " N~
| —
I~
The function: The function:
* Pick k variables at random (defines * As before, but toss new coin for each
2k “sections”) 0.4n-radius Hamming ball around each

e Pick random function over them support point within each section

The lower bound: Deterministic 23 query
non-adaptive algorithms can’t tell D, ., from D,

0000 0001 0010 0011 1111

Non-adaptive algorithm first
(1) gets 2X/3 samples from distribution, then
(2) makes 2¥/3 non-adaptive queries. o]

(1) Samples don’t help: whp see 2¥3 different points in D
2%/3 different sections, everything looks totally random in
both cases.

(2) Do non-adaptive queries help? S0 -

What can non-adaptive queries do? =

no

Intuition for the lower bound

Intuition: To distinguish D, , from D, ., must find two
inputs in same “section” that are labeled differently.

Given a sampled point like -,

o if tester flips “too many” (>n/k) of its bits, whp it will
end up in a different section (like -or) ®

» if tester flips “too few” (<n/k) of its bits, it won’t
escape the ball (like -) ®

0000 0001 0010 0011

1111

Rest of talk:
An O(k?)/s-query adaptive algorithm

Theorem: There is an (adaptive) one-sided distribution-free

g-testing algorithm for the class of k-juntas that makes O(k?)/¢
qgueries.

Let’s brainstorm:
How might we take advantage of adaptivity?

One of the all-time great adaptive algorithms:

Binary Search

The fastest known uniform-distribution testing algorithm [Blais09]
makes crucial use of binary search

Let’s see (a simplified version of) this algorithm...

A (k/e + k*log(n))-query uniform-distribution tester

Query complexity of actual [Blais09] algorithm is O(k)/¢.

Simplified version that makes O(k/¢ + k*log(n)) queries: Repeatedly
try to grow a set R of known-to-be-relevant variables by 1 each time.

- If |R| reaches k+1, output “not a k-junta”

- If |R| < k+1 after 100k/¢ tries, output “is a k-junta”

Each attempt to grow R:

e Draw uniform random x in {0,1}", rerandomize coordinates in
[n]\R to gety

e Queryfatxandaty. If f(x)#f(y), do binary search on coordinates
in [n]\R to find a new relevant variable.

One attempt
R = known-to-be-relevant variables = {1,2,3}

Draw uniform x: x =110100101011000100
Rerandomize non-Rcoords: vy =110100101000111011

Query x, y: f(x)=1, f(y)=0

Binary search to find a new relevant variable:

form z1=110100101000110100
Query z1: f(z')=1:

form 22=110100101000110111

etc.

This simplified algorithm: log(n) queries to do one binary search
— overall query complexity k/e + k*log(n).

Blais’s actual algorithm: at beginning forms poly(k/¢) many randomly
chosen blocks of variables. Binary search over relevant blocks, not
relevant variables = overall query complexity O(k/¢).

Blais’s (intricate) analysis heavily relies on uniform distribution
(Efron-Stein / Fourier decomposition of functions over product spaces).

What to do in distribution-independent setting?

A (k/e + k*log(n))-query distribution-free tester

Turns out that a simple tweak of the naive binary-search-based
uniform-distribution tester works in the distribution-free setting!

Everything is exactly as in uniform-distribution (k/¢ + k*log(n))-query
algorithm, but now each attempt to grow R works as follows:

 Draw x in {0,1}" from distribution D; uniformly rerandomize
coordinates in [n]\R to gety

Key to (simple) analysis:

If f: {0,1}" = {0,1} is e-far from every k-junta with
respect to D, and |R|<=k, then

Pr, ,[f(x) # f(y)] > &/2.

From (k*log(n) + k/g) queries to O(k%/¢) queries?

Like [Blais09], we need to do binary search over blocks, not single
variables.

KEY to Slmple algorlt_hm: abll!ty to Draw x in {0,1}" from distribution D;
uniformly rerandomize coordinates uniformly rerandomize coordinates in
in [n]\R (R = set of relevant variables) [n\Rto gety

But seems we can’t identify R without log(n) queries... @
&

NS

Setup for the real algorithm, and a crucial assumption

Our real algorithm:
e Maintains disjoint relevant blocks B,, B,, ...

e For each B, maintains two strings x, y' differing only on B, such that
f(x')#f(y'). Let w'= partial string which is common part of x/, y'.

Key assumption: for eachi, f,,; is close to a 1-junta over B, under the

uniform distribution.
B Etc. B,
| |

x}! =1101001010110001000110010001100001010111

y! =1101001011101100000110010001100001010111
x) =0010110100111110110010100011110100110100
y2 =0010110100111110110010100011110001100100

What the assumption enables

Our real algorithm:
e Maintains disjoint relevant blocks B,, B,, ...

e For each B, maintains two strings x, y' differing only on B, such that
f(x')#f(y'). Let w'= partial string which is common part of x/, y'.

Key assumption: for eachi, f

wiclose to a 1-junta over B, under uniform
distribution.

Let R = set of all the 1-junta variables for B,, B,,...
(R is unknown to the algorithm!)

Key Fact: In the above scenario, we can uniformly rerandomize
coordinates in [n]\R (even though we don’t know what R is)!

Rerandomizing coordinates in [n]\R

For each block B, have strings x|, y', differing only on B,, f(x')#f(y') and f,,; close to 1-junta over B,
under uniform distribution.
Let v, be the 1-junta variable in B, so R = {the 1-junta variables for B, B,, ...} = {v,, v,, ...}

e Randomly split each B, into two pieces; check which one v is in
(easy), and let Q, = other one.

e LetS =uniform random subset of variables outside B,,B,,...

ThenSU Q, U Q,U ... is a uniform random subset of [n]\R
(equivalent to rerandomizing [n]\R).
B B,

Vl V2

| [| [|

S = random subset of white stuff.
Randomly split B;; Q, is the piece not containing v, = Q, is a random subset of B,\{v,}
Likewise for B,.

What about key assumption?

Recall Key assumption: for each i, f i is close to 1-junta over B, under
uniform distribution.

We check this for each B, using [BlaisO9] uniform-distribution 1-junta
testeronf,;.

e Ifitholds, ©

* Ifitdoesn’t hold: [BlaisO9] algorithm will split B; into two relevant
blocks = progress! ©

Overall algorithm:

Algorithm maintains relevant blocks (B, x%, y!), (B,, X2, y?), ..., (B, X}, ')

* If some block B, not (uniform-distribution) close to 1-junta, split the
block = progress ([Blais09] 1-junta tester)

e |f each block B, is close to a 1-junta: try to add new relevant variables

as in naive algorithm
(R = relevant variables in these blocks; draw x ~ D, uniformly
rerandomize variables outside R, do binary search over blocks to find

new relevant block as before)
* |f 100k/¢ tries didn’t yield k+1 relevant blocks, output “junta”

* |f find k+1 relevant blocks within 100k/¢ tries, output “not a
junta”

Summary and future work

Summary of our results:

k-juntas can be (adaptively) e-tested in distribution-free model
with about k?/¢ queries.

Non-adaptive distribution-free testers need 22k queries.

Future work:

* Ak/e-query algorithm? (Matching uniform distribution setting?)

» Tolerant / active / sample-based distribution-free testers?

LA)
i *\\ 2 r é%
N f

-

\d

’\ _?S.y ,

Thank you!

