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Approximate degree

f : X ! R, X ✓ {0, 1}n

Definition (Nisan-Szegedy 1992) 
The  -approximate degree of    is the minimum 
degree of a polynomial     such that

f
f̃

|f (x)� f̃ (x)|  ✏ 8x.

✏
deg✏(f )}
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Motivation
● Circuit complexity
   [PS94, SRK94, BRS95, ABFR94, KP97, KP98, S09, BH12]

● Quantum query complexity
   [BBC+01, BCWZ99, AS04, A05, A05, KŠW07, BKT17]

● Communication complexity
   [BW01, R02, BVW07, S09, S11, RS10, LS09, CA08, S08, BH12, S14, S16]

● Learning theory
   [TT99, KS04, KOS04, KKMS08, OS10, ACR+10]
● Algorithm design
   [LN90, KLS96, S09]

● Differential privacy
   [TUV12, CTUW14]
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Beals, Buhrman, 
Cleve, Mosca, de 
Wolf (1998):
A quantum query 
algorithm for f with T 
queries gives an 
approximating 
polynomial for f of 
degree 2T.

Virtually all known upper bounds on approximate 
degree come from quantum algorithms!



Beyond quantum?
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“Quantum” polynomials are in general:
● nonconstructive
● more complicated 
● less efficient

We construct first-principles approximating 
polynomials for key functions, matching or 
improving on quantum.



Our results:  Symmetric fns
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Theorem 1.  Let                               be 
symmetric and constant for inputs of 
Hamming weight in (k, n – k).  Then

f : {0, 1}n ! {0, 1}

deg✏(f ) = O

 r
nk + n log

1

✏

!

● Complete characterization
● Reproves quantum bound (de Wolf 2008)
● Explicit, first-principles proof 

basic building 
block in the 
area

— three of them



Our results:  Element distinctness
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Element Distinctness
Given n integers from a range of size r, 
are they distinct?

key problem in 
quantum query 
complexity
[BDH+05, AS04, 
A07, A05, K05, B12]

Input representation:
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1

n

r



Our results:  Element distinctness
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EDn,r : {0, 1}n⇥rn ! {0, 1}

EDn,r (x) =

(
1 if x1,j + x2,j + · · ·+ xn,j < 2 8j ,
0 otherwise



Our results:  Element distinctness
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EDn,r,k(x) =

(
1 if x1,j + x2,j + · · ·+ xn,j < k 8j ,
0 otherwise

EDn,r,k : {0, 1}n⇥rn ! {0, 1}

Theorem 2. 
deg1/3(EDn,r,k) = O

⇣p
nmin{n, r}

1
2
� 1

4(1�2�k )

⌘
.

● Re-proves and generalizes best quantum bound (Belovs 2012,   r = ∞)
● Explicit, first-principles construction



Our results:  k-DNFs, k-CNFs
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● No dependence on N
● Re-proves and generalizes best quantum bound 
   (Ambainis 2003, Childs & Eisenberg 2005)
● Explicit, first-principles construction

most general 
class of fns in 
quantum query 
complexityTheorem 3.  Let                                  be 

representable by a k-DNF or k-CNF formula.  Then
f : {0, 1}Nn ! {0, 1}

deg1/3(f ) = O(n
k
k+1 ).



Surjectivity
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● Beats quantum query complexity:  Θ(n)  (Beame & Machmouchi 2012)
● First natural separation of approx. degree & quantum query complexity
● Disproves conjecture on SURJ

SURJn,r : {0, 1}n⇥rn ! {0, 1}

SURJn,r (x) =
r̂

j=1

n_

i=1

xi ,j

deg1/3(SURJn,r ) =

(
O(
p
n r1/4) r  n,

0 otherwise

= O(n3/4).

Theorem 4.



OUR  TOOLS
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Chebyshev polynomials
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Td(x) = 2
d�1

dY

i=1

✓
x � cos

✓
2i � 1
2d

⇡

◆◆

● Bounded by ±1 on [–1,+1]

● Extremal growth on (1,∞)



Extension theorem
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f : {0, 1}Nm ! [0, 1]

Fn : {0, 1}Nn ! [0, 1]

Fn(x) =

(
f (x) if |x |  m,
0 otherwise

Extension:

Efficiently transform approximants for  f  into 
approximants for  Fn Impossible!

Use F2m

n

N

m

0

f

Fn



Extension theorem
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f : {0, 1}Nm ! [0, 1]

Fn : {0, 1}Nn ! [0, 1]

Fn(x) =

(
f (x) if |x |  m,
0 otherwise

Extension:

n

N

m

0

f

Fn

Theorem (This work).

deg✏+�(Fn)  O
✓r

n

m

◆
·
✓
deg✏(F2m) + log

1

�

◆
✔ Optimal



Theorem (This work).

deg✏(F ) 
r
nb log

1

✏
+ max

|S|
p
nb log 1

✏

deg✏ exp(� n
b
log

1

✏
)

 
_

i2S
fi

!

Decoupling theorem
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F : {0, 1}Nn ⇥ Y ! {0, 1}

F (x, y) =
N_

i=1

xi ^ fi(y)

x part

y part



PROOF SKETCHES
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Symmetric functions
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Theorem 1.  Let                                be 
symmetric and constant for inputs of 
Hamming weight in (k, n – k).  Then

> k

F : {0, 1}n ! {0, 1}

deg✏(F ) = O

 r
nk + n log

1

✏

!



Proof sketch
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F (x) = 0 for |x | � k

F : {0, 1}n ! [0, 1]

0

Fk+log 1
✏

F
2(k+log 1✏ )

F = Fn

deg

0+✏(F ) = O

 s
n

k + 1✏

!

·
✓
deg

0

⇣
F
2

(

k+log 1
✏ )

⌘
+ log

1

✏

◆
By Extension Thm,

 2
✓
k + log

1

✏

◆



Surjectivity
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SURJn,r : {0, 1}n⇥rn ! {0, 1}

SURJn,r (x) =
r̂

j=1

n_

i=1

xi ,j

deg1/3(SURJn,r ) =

(
O(
p
n r1/4) r  n,

0 otherwise

Theorem 4.



Proof sketch
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SURJn,r (x) =
r̂

j=1

(x1j _ x2j _ · · · _ xnj)

=

T

p
3r

0

@1
r

+ 1�
1

r

rX

j=1

nY

i=1

x i j

1

A

T

p
3r

✓
1

r

+ 1

◆

approximate 
by Chebyshev

multiply 
out

⇡

T

p
3r

0

@1
r

+
1

r

rX

j=1

(x1j _ x2j _ · · · _ xnj)

1

A

T

p
3r

✓
1

r

+ 1

◆



Proof sketch
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) SURJn,r ⇡ linear combination of monomials with 
coefficients that sum in absolute value to
2⇥(

p
r)

approximate 
each to within 
using degree O(

p
n
p
r)

2�⇥(
p
r)



k-DNF formulas
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Theorem 3.  Let                                  be 
representable by a k-DNF or k-CNF formula.  Then

f : {0, 1}Nn ! {0, 1}

deg1/3(f ) = O(n
k
k+1 ).

Note: no dependence on N.
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F : {0, 1}Nn ! {0, 1}

where the maximum is over k-DNFs

where N is unbounded.

Let

Proof sketch

D(n, k, ✏) = max
F
deg✏(F )
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(from first principles)

Proof sketch

D(n, k, ✏)  n

(using decoupling thm)
D(n, k, ✏) 

r
nb log

1

✏
+D

✓
n, k � 1, ✏ · 2

q
n log(1/✏)
b

◆

) D(n, k, ✏) = O
 

n
k
k+1

✓
log

1

✏

◆ 1
k+1

!

.



Element distinctness
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EDn,r,k(x) =

(
1 if x1,j + x2,j + · · ·+ xn,j < k 8j ,
0 otherwise

EDn,r,k : {0, 1}n⇥rn ! {0, 1}

Theorem 2. 
deg1/3(EDn,r,k) = O

⇣p
nmin{n, r}

1
2
� 1

4(1�2�k )

⌘
.
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D(n, r, k, ✏) = max
F
deg✏(F )

F (x) =

r_

i=1

THRk(x |Si )

S1, S2, . . . , Sr

F : {0, 1}Nn ! {0, 1}

where the maximum is over all

such that

for pairwise disjoint

Let

}deg✏(EDn,r,k)

 D(n, r, k, ✏)

Proof sketch
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D(n,1, k, ✏)  n

D(n, r, k, ✏) 
r
n

kr
·O

✓
D
⇣
2kr, r, k,

✏

2

⌘
+ log

1

✏

◆

D(n,1, k, ✏) 
r
nb log

1

✏
+

0

@
1 +

1p
k

 
n

b log 1✏

!
1/4
1

A⇥

⇥

0

@D

 

k

r
nb log

1

✏
,1, k � 1, 2

q
n log(1/✏)
b
+1

!

+

s
n log 1✏
b

1

A

(using extension thm)

(using decoupling + extension thms)

(from first principles)

Proof sketch



Proof sketch
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Solving the recurrence gives:

D(n, r, k, ✏)  O
✓p
nmin{n, kr}

1
2
� 1

4(1�2�k )
log

1

4(1�2�k )
1

✏

+

r
n log

1

✏

!

.



Open problems

• Does depth-d AC0 have approximate degree
               for some           ? 

• Matching lower bound for k-element distinctness

• Matching lower bound for k-DNF formulas

• Matching lower bound for surjectivity

O(n1�✏d ) ✏d > 0

solved by Bun, 
Kothari, & Thaler 
(FOCS 2017)

Yes, for linear-size 
circuits (Bun, 
Kothari, & Thaler, 
ECCC 2018)



Questions?


