Lower Bounds for Unrestricted Boolean Circuits: Open Problems Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg

Boolean Devices Simons Institute, September 10, 2018

### Unrestricted Boolean Binary Circuits

#### $f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \colon \{0, 1\}^3 \to \{0, 1\}$

### Unrestricted Boolean Binary Circuits

$$f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \colon \{0, 1\}^3 \to \{0, 1\}$$

- $\boldsymbol{g}_1 = \boldsymbol{x}_1 \oplus \boldsymbol{x}_2$
- $g_2 = x_2 \wedge x_3$
- $\boldsymbol{g}_3 = \boldsymbol{g}_1 \vee \boldsymbol{g}_2$
- $\boldsymbol{g}_4 = \boldsymbol{g}_2 \vee 1$
- $\boldsymbol{g}_5 = \boldsymbol{g}_3 \equiv \boldsymbol{g}_4$

### Unrestricted Boolean Binary Circuits

$$f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \colon \{0, 1\}^3 \to \{0, 1\}$$

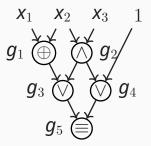
$$\boldsymbol{g}_1 = \boldsymbol{x}_1 \oplus \boldsymbol{x}_2$$

$$\boldsymbol{g}_2 = \boldsymbol{x}_2 \wedge \boldsymbol{x}_3$$

$$\boldsymbol{g}_3 = \boldsymbol{g}_1 \vee \boldsymbol{g}_2$$

$$\boldsymbol{g}_4 = \boldsymbol{g}_2 \vee 1$$

$$\boldsymbol{g}_5 = \boldsymbol{g}_3 \equiv \boldsymbol{g}_4$$



### **Fundamental Question**

# Given a Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ , what is the minimum number of gates needed to compute f?

Given a Boolean function  $f: \{0,1\}^n \rightarrow \{0,1\}$ , what is the minimum number of gates needed to compute f?

Does there exist an infinite sequence of functions  $f_1, f_2, ...$  such that  $f_n$  has ninputs,  $\bigcup_{n=1}^{\infty} f_n^{-1}(1) \in NP$ , and  $f_n$ requires superpoly(n) gates? (This would mean that  $P \neq NP$ )

### **Exponential Bounds**

### Lower Bound

Counting shows that almost all functions of *n* variables have circuit size  $\Omega(2^n/n)$  [S49]

### Upper Bound

Any function can be computed by circuits of size  $(1 + o(1))2^n/n$  [L58]

### **Explicit Lower Bounds**

The lower bound  $\Omega(2^n/n)$  is non-constructive: it does not give an explicit function (i.e., a function from NP) with superpolynomial circuit size. The lower bound  $\Omega(2^n/n)$  is non-constructive: it does not give an explicit function (i.e., a function from NP) with superpolynomial circuit size.

What can we prove for explicit functions?



- 1. Gate Elimination
- 2. Multi-Output Functions
- 3. Non-Gate-Elimination Lower Bounds
- 4. Symmetric Functions
- 5. Satisfiability Algorithms
- 6. Mass Production
- 7. Logarithmic Depth Circuits

### Outline

#### 1. Gate Elimination

*How to prove, say, a* 3*n lower bound for a Boolean function f*?

- 2. Multi-Output Functions
- 3. Non-Gate-Elimination Lower Bounds
- 4. Symmetric Functions
- 5. Satisfiability Algorithms
- 6. Mass Production
- 7. Logarithmic Depth Circuits

### Gate Elimination Method

Show that f is resistant to about n substitutions

Show that one can always find a substitution eliminating at least 3 gates

### Lower Bounds

- The currently best known lower bound  $(3 + \frac{1}{86}) n$  is proved by gate elimination [FGHK16]
- The corresponding function *f* is affine disperser for sublinear dimension: *f* is non-constant on any affine subspace of {0,1}<sup>n</sup> of large enough dimension
- Explicit constructions of such functions were found relatively recently [BK12]

## Linear Size Circuits for Affine Dispersers

All other functions used in lower bounds proofs (2*n*, 2.5*n*, 3*n*) have linear circuit size (at most 6*n*)

### Linear Size Circuits for Affine Dispersers

All other functions used in lower bounds proofs (2*n*, 2.5*n*, 3*n*) have linear circuit size (at most 6*n*)

**Open problem:** Do there exist affine dispersers for sublinear dimension of linear circuit size?

### Quadratic Dispersers

**Open problem:** Construct an explicit "quadratic" disperser *f* (even in NP, even with o(n) outputs) that is not constant on any set  $S \subseteq \{0,1\}^n$  of size at least  $2^{n/100}$  that can be defined as

$$S = \{x \colon \boldsymbol{p}_1(x) = \cdots = \boldsymbol{p}_{2n}(x) = 0\}, \ \operatorname{deg}(\boldsymbol{p}_i) \leq 2.$$

**Open problem:** Construct an explicit "quadratic" disperser *f* (even in NP, even with o(n) outputs) that is not constant on any set  $S \subseteq \{0,1\}^n$  of size at least  $2^{n/100}$  that can be defined as

$$S = \{x : p_1(x) = \cdots = p_{2n}(x) = 0\}, \operatorname{deg}(p_i) \leq 2.$$

This will give an improved lower bound (about 3.1*n*) [GK16]

### Limitations of Gate Elimination

Informally: Gate elimination proofs are tedious and usually consist of a long case analysis. It is difficult to imagine a relatively short gate elimination proof of, say, 4n lower bound

### Limitations of Gate Elimination

- Informally: Gate elimination proofs are tedious and usually consist of a long case analysis. It is difficult to imagine a relatively short gate elimination proof of, say, 4n lower bound
- Formally, there exist circuits such that any substitution of the form *x* ← *g*, where *g* is an arbitrary function, removes no more than five gates from the circuit [GHKK16]. Therefore, one definitely needs new ideas to get something stronger than 5*n*

### Outline

### Gate Elimination Multi-Output Functions

### Can one prove stronger lower bounds for functions with multiple outputs?

- 3. Non-Gate-Elimination Lower Bounds
- 4. Symmetric Functions
- 5. Satisfiability Algorithms
- 6. Mass Production
- 7. Logarithmic Depth Circuits

Computing several functions simultaneously is definitely not easier than computing any one of them

- Computing several functions simultaneously is definitely not easier than computing any one of them
- We do not know how to exploit this fact in lower bounds proofs: the strongest lower bound for functions with o(n) outputs is the same as for functions with a single output

- Computing several functions simultaneously is definitely not easier than computing any one of them
- We do not know how to exploit this fact in lower bounds proofs: the strongest lower bound for functions with o(n) outputs is the same as for functions with a single output
- For n outputs, the strongest lower bound is about 4n and follows from 3n lower bounds for single output functions

- Computing several functions simultaneously is definitely not easier than computing any one of them
- We do not know how to exploit this fact in lower bounds proofs: the strongest lower bound for functions with o(n) outputs is the same as for functions with a single output
- For n outputs, the strongest lower bound is about 4n and follows from 3n lower bounds for single output functions

**Open problem:** How to prove a 5*n* lower bound for an *n*-to-*n* function?

### Outline

- 1. Gate Elimination
- 2. Multi-Output Functions
- 3. Non-Gate-Elimination Lower Bounds

Are there approaches other than gate elimination for proving lower bounds for unrestricted circuits?

- 4. Symmetric Functions
- 5. Satisfiability Algorithms
- 6. Mass Production
- 7. Logarithmic Depth Circuits

Essentially, just a few and, alas, none of them is currently known to give a stronger than 2n lower bound

- Essentially, just a few and, alas, none of them is currently known to give a stronger than 2n lower bound
- C(AND, OR) = 2n 2, idea: circuit reconstruction [BS84]

- Essentially, just a few and, alas, none of them is currently known to give a stronger than 2n lower bound
- C(AND, OR) = 2n 2, idea: circuit reconstruction [BS84]
- C(Ax) = 2n o(n), idea: locating branching gates, wire counting [C94]

- Essentially, just a few and, alas, none of them is currently known to give a stronger than 2n lower bound
- C(AND, OR) = 2*n* − 2, idea: circuit reconstruction [BS84]
- C(Ax) = 2n o(n), idea: locating branching gates, wire counting [C94]

**Open problem:** Can any of these non-gate-elimination methods be extended to get stronger than 2*n* lower bounds?

### Outline

- 1. Gate Elimination
- 2. Multi-Output Functions
- 3. Non-Gate-Elimination Lower Bounds
- 4. Symmetric Functions

*Can one prove a superlinear lower bound for a symmetric function?* 

- 5. Satisfiability Algorithms
- 6. Mass Production
- 7. Logarithmic Depth Circuits

### Symmetric Functions

While basic symmetric functions like parity, MOD<sub>3</sub>, and majority are used to prove superpolynomial lower bounds in, e.g., constant depth circuit model, any symmetric function can be computed by a circuit of size 4.5n + o(n) [DKKY10]

### Symmetric Functions

- While basic symmetric functions like parity, MOD<sub>3</sub>, and majority are used to prove superpolynomial lower bounds in, e.g., constant depth circuit model, any symmetric function can be computed by a circuit of size 4.5n + o(n) [DKKY10]
- The function SUM<sub>n</sub> is no easier than any symmetric function (with single output). It is known that  $2.5n \le C(SUM_n) \le 4.5n$

### Symmetric Functions

- While basic symmetric functions like parity, MOD<sub>3</sub>, and majority are used to prove superpolynomial lower bounds in, e.g., constant depth circuit model, any symmetric function can be computed by a circuit of size 4.5n + o(n) [DKKY10]
- The function SUM<sub>n</sub> is no easier than any symmetric function (with single output). It is known that  $2.5n \le C(SUM_n) \le 4.5n$

### **Open problem:** What is *C*(SUM<sub>*n*</sub>)?

### Outline

- 1. Gate Elimination
- 2. Multi-Output Functions
- 3. Non-Gate-Elimination Lower Bounds
- 4. Symmetric Functions
- 5. Satisfiability Algorithms

Given a circuit, how hard is it to find an assignment making this circuit to output 1?

6. Mass Production
 7. Logarithmic Depth Circuits

### Satisfiability Algorithms

Faster than brute force search satisfiability algorithms imply circuit lower bounds [W11]

### Satisfiability Algorithms

Faster than brute force search satisfiability algorithms imply circuit lower bounds [W11]
 O(2<sup>n</sup>/n<sup>ω(1)</sup>)-time algorithm for checking satisfiability of circuits of size 2*cn* implies *cn* lower bounds (for a function with two outputs from E<sup>NP</sup>) [JMV15]

#### Satisfiability Algorithms

- Faster than brute force search satisfiability algorithms imply circuit lower bounds [W11]
   O(2<sup>n</sup>/n<sup>ω(1)</sup>)-time algorithm for checking satisfiability of circuits of size 2*cn* implies *cn* lower bounds (for a function with two outputs from E<sup>NP</sup>) [JMV15]
   We only know faster than brute force search
- We only know faster than brute force search algorithms for circuits of size at most 2.99n [GKST16]

#### Satisfiability Algorithms

- Faster than brute force search satisfiability algorithms imply circuit lower bounds [W11]
   O(2<sup>n</sup>/n<sup>ω(1)</sup>)-time algorithm for checking satisfiability of circuits of size 2*cn* implies *cn* lower bounds (for a function with two outputs from E<sup>NP</sup>) [JMV15]
- We only know faster than brute force search algorithms for circuits of size at most 2.99n [GKST16]

**Open problem:** Do non-trivial satisfiability algorithms for circuits of size *cn* imply *cn* circuit lower bounds?

# Outline

- 1. Gate Elimination
- 2. Multi-Output Functions
- 3. Non-Gate-Elimination Lower Bounds
- 4. Symmetric Functions
- 5. Satisfiability Algorithms
- 6. Mass Production

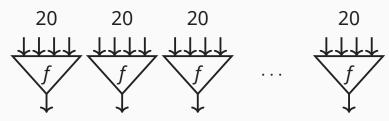
Can one take a function of 20 bits of circuit size 100 and cook out of it a family of functions of circuit size 5n?

7. Logarithmic Depth Circuits

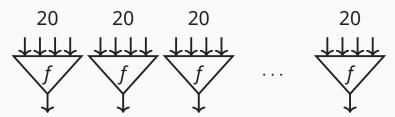
Assume that  $f: \{0, 1\}^{20} \rightarrow \{0, 1\}$  has circuit size 100

- Assume that  $f: \{0,1\}^{20} \rightarrow \{0,1\}$  has circuit size 100
- Cook  $g: \{0,1\}^n \to \{0,1\}^{n/20}$  out of it: g applies f to n/20 blocks of independent variables

- Assume that  $f: \{0,1\}^{20} \rightarrow \{0,1\}$  has circuit size 100
- Cook  $g: \{0,1\}^n \to \{0,1\}^{n/20}$  out of it: g applies f to n/20 blocks of independent variables
- It is natural to expect that an optimal circuit for g looks as follows:



- Assume that  $f: \{0,1\}^{20} \rightarrow \{0,1\}$  has circuit size 100
- Cook  $g: \{0,1\}^n \to \{0,1\}^{n/20}$  out of it: g applies f to n/20 blocks of independent variables
- It is natural to expect that an optimal circuit for g looks as follows:



But we don't know how to prove this!

We say that a mass production effect occurs when two copies of g can be computed by a circuit of size (much) smaller than 2C(g)

- We say that a mass production effect occurs when two copies of g can be computed by a circuit of size (much) smaller than 2C(g)
- It is easy to show that it does not occur for very simple functions (say, when C(g) = n − 1)

- We say that a mass production effect occurs when two copies of g can be computed by a circuit of size (much) smaller than 2C(g)
- It is easy to show that it does not occur for very simple functions (say, when C(g) = n 1)
- At the same time, it does occur for very hard functions: if  $C(g) \approx 2^n/n$ , then  $C(g,g) \approx C(g)$  [U74]

- We say that a mass production effect occurs when two copies of g can be computed by a circuit of size (much) smaller than 2C(g)
- It is easy to show that it does not occur for very simple functions (say, when C(g) = n 1)
- At the same time, it does occur for very hard functions: if  $C(g) \approx 2^n/n$ , then  $C(g,g) \approx C(g)$  [U74]

**Open problem:** What are the functions avoiding mass production effect?

# Outline

- 1. Gate Elimination
- 2. Multi-Output Functions
- 3. Non-Gate-Elimination Lower Bounds
- 4. Symmetric Functions
- 5. Satisfiability Algorithms
- 6. Mass Production
- 7. Logarithmic Depth Circuits

Can we at least prove superlinear lower bounds on circuits of logarithmic depth?

Alas, currently, it is not known

- Alas, currently, it is not known
- However, if we further restrict the depth to be constant, then one can prove even superpolynomial lower bounds!

- Alas, currently, it is not known
- However, if we further restrict the depth to be constant, then one can prove even superpolynomial lower bounds!
- If a function can be computed by a circuit of logarithmic depth and linear size, then it can also be computed by an OR of  $\sqrt{n}$ -CNFs of total size  $2^{O(n/\log\log n)}$  [V83]

- Alas, currently, it is not known
- However, if we further restrict the depth to be constant, then one can prove even superpolynomial lower bounds!
- If a function can be computed by a circuit of logarithmic depth and linear size, then it can also be computed by an OR of  $\sqrt{n}$ -CNFs of total size  $2^{O(n/\log\log n)}$  [V83]

**Open problem:** Improve  $2^{\sqrt{n}}$  lower bound for depth three circuits.

### Depth Three Circuits

Lower bounds of the form 2<sup>n/k</sup> are known for OR 
o AND 
o OR<sub>k</sub> circuits (i.e., OR of k-CNFs) [PPZ97]

For k = 2, a lower bound  $2^{n-o(n)}$  is known [PSZ00]

Converting Small Size Circuits into Non-trivial Depth 3 Formulas

# Theorem [V77] For any circuit of size O(n) and depth $O(\log n)$ , there exists an

$$\mathsf{OR}_{2^{\overline{\log \log n}}} \circ \mathsf{AND} \circ \mathsf{OR}_{\sqrt{n}}$$

formula computing the same function.

Converting Small Size Circuits into Non-trivial Depth 3 Formulas

# Theorem [V77] For any circuit of size O(n) and depth $O(\log n)$ , there exists an

#### Theorem

For any circuit of size s and any depth, there exists an

 $\mathsf{OR}_{2^{\frac{n}{\log\log n}}} \circ \mathsf{AND} \circ \mathsf{OR}_{\sqrt{n}} \quad \mathsf{OR}_{2^{\frac{\mathsf{S}}{2.5}}} \circ \mathsf{AND} \circ \mathsf{OR}_{16}$ 

formula computing the formula computing same function.



# **Open problem:** Can one convert a circuit with *s* gates into a, say,

#### $\mathsf{OR}_{2^{\frac{\mathsf{s}}{4}}} \circ \mathsf{AND} \circ \mathsf{OR}_2$

formula?

**Open problem:** Can one convert a circuit with *s* gates into a, say,

#### $\mathsf{OR}_{2^{\frac{\mathsf{s}}{4}}} \circ \mathsf{AND} \circ \mathsf{OR}_{2}$

formula? More generally, is is true that any circuit of size *cn* can be converted into a

$$\mathsf{OR}_{2^{(1-\varepsilon(c))n}} \circ \mathsf{AND} \circ \mathsf{OR}_{\delta(c)}$$

formula?

### Summary of Open Problems

1. Prove that there exists an affine disperser of linear circuit size!

- 2. Construct an explicit quadratic disperser!
- 3. Prove a 5*n* lower bound for an *n*-to-*n* function!
- 4. Prove 3*n* lower bound without gate elimination!
- 5. Find *C*(SUM<sub>*n*</sub>)!
- 6. Prove that faster than brute force SAT algorithm for circuits of size *cn* imply *cn* circuit lower bounds!

7. Construct functions avoiding mass production effect!

8. Convert lower bounds for depth-3 circuits to lower bounds for unrestricted circuits!

#### Thank you!