
Oracle Separation of BQP and PH
Avishay Tal (Stanford University)

joint with Ran Raz (Princeton University)

© Kevin Hong for Quanta Magazine

The Landscape of Complexity Classes

P

BPP

coNP

BQP?

PSPACE

PH

NP

Where does BQP fit in the landscape?
BQP: Bounded Error Quantum Polynomial Time
We know: BPP ⊆ BQP ⊆ PSPACE

Oracle Separations:
• ∃oracle): +,- ⊈ /0,- [BBBV’97]
• ∃oracle): /0,- ⊈ /,,- [BV’93]
• ∃oracle): /0,- ⊈ 12- [Watrous’00]

Could it be possible that BQP ⊆ PH ?
Could it be possible that BQP ⊆ AM ?

Recall: a language ! in PH iff there exists a constant ",
and a poly-time computable relation # s.t.

$ ∈ ! ⟺ ∃()∀(+∃(, … ./(/: # $, (), … , (/
() + (+ + … + (/ ≤ poly $

Our Main Result: BQP vs. PH

Our Main Result:
∃ oracle <: =>?@ ⊈ ?B@

The Black-Box/Query Model

! "#" ∈ ±1 '

Complexity measure: number of queries to the black box.
Deterministic Query Complexity = Decision Tree Complexity
Quantum Query Complexity = Queries are made in superposition
PH analog = AC0 circuits

Known reductions: Black-box separations imply oracle separations

(
#)*

'
+#| ⟩! (

#)*

'
+#"#| ⟩!

The Pseudorandomness Setting

f f

Def’n: a distribution ! is pseudorandom against a class
of functions " if

∀$ ∈ ": '(~* $ + ≈ '(∼.[$ +]

The Pseudorandomness Setting

[Aaronson’10, Fefferman-Shaltiel-Umans-Viola’12]
Can you find a distribution which is pseudorandom for
AC0 but not pseudorandom for poly-log-time quantum
algorithms?

f f

è an oracle separation between BQP from PH

Let ! be a distribution over −1,1 %&.
We say that an algorithm ' distinguishes between ! and (
with advantage) if) = +,~. ' / − +,∼1 ' / .

F F

Main Result: We present a distribution ! such that:
1. ∃a log(N) time quantum algorithm distinguishing

between ! and (with advantage Ω 1/ log8
2. Any quasipoly(N)-size constant-depth circuit

distinguishes between ! and (with advantage 9: ;
&

Standard techniques è amplify advantage of quantum
algorithm to be 0.99 or even 1-1/poly(N).

The Separating Distribution D

• Let ! be a power of 2. Let " = 1/& log! .
• Let * to be a multi-variate gaussian (MVG) distribution

on ℝ,- with zero-means and covariance matrix

" ⋅ /- 0
0 /-

where 0 is the !×! Hadamard matrix with
02,4 =

1
! ⋅ −1 62,47

Sampling 8′~;:
1. Sample 8~*, truncate each 82 to be within [−1,1]
2. For > = 1,… , 2!, sample independently

82A ∈ −1,1 with C 82A = 82.

(Based on Aaronson’s Forrelation distribution)

Quantum Algorithm Distinguishing D
[Aaronson’10, Aaronson-Ambainis’15]:
1-query O(log N)-time quantum algorithm ! s.t.

Pr ! accepts input -, / =
1 + Φ -, /

2
where

Φ -, / =
1

56/8 ⋅:
;<=

>

:
?<=

>

−1 A;,?B ⋅ -; ⋅ /?

C D,E ~G Φ -, / = 0

C D,E ~I Φ -, / ≈ K = Ω
1

log5

D is Pseudorandom for AC0

We are left to prove:
! is pseudorandom for AC0.

Main Ingredients & Techniques:
- Fourier Analysis
- AC0 circuits are well-approximated by sparse

low-degree polynomials.
- Fractional PRG approach of [CHHL18].
- Sum of independent Gaussians is a Gaussian.

Bounded Depth Circuits

AC#[%, ']:
• % gates (size of the circuit)
• depth '
• alternating gates

We	focus	on
AC# 34567658 9 , : 1

What do we know about AC0?
[Ajtai’83, Furst-Saxe-Sipser’84, Yao’85,Håstad ’86]:

• Parity not in AC# $%&'('&) * , , 1 .
• Parity requires exp $1/(451) size for depth 7.
è ∃ oracle >: @A@BCDE ⊈ @GE

Fourier-analytical proof technique:

• AC0 circuits can be well-approximated (in ℓI) by
low-degree polynomials (over ℝ). [Håstad ’86,LMN’93]

• Parity cannot.

Potential problem with the approach:

, log$ time quantum algorithms (BQLogTime) are
also well-approximated by low-degree polys.

The Difference between BQLogTime and AC0

Both BQLogtime & AC0 are approximated by low-degree
polynomials, but these polynomials are different!

BQLogtime can have dense low-degree polynomials, e.g.

Φ ", $ = 1
'(/* ⋅,

-./

0
,
1./

0
−1 3-,14 ⋅ "- ⋅ $1

[T’14]: AC0 has sparse low-degree approximations

∀6: ,
8⊆ : , 8 .;

<= > ≤ polylog ' ;

Fourier Analytical Approach – First Attempt
The Fourier expansion of !: −1,1 &'

→ {−1,1}:

! + = -

.⊆ &'

0! 1 ⋅3

4∈.

+4

Goal: 6
7
8
∼:

! ;′ − 6=∼> ! + = ?@
A

'

Recall: Sampling ;′~C:
1. Sample ;~D, truncate each ;4 to be within [−1,1]
2. For G = 1,… , 2J, sample independently

;
4

K
∈ −1,1 with 6 ;

4

K
= ;4

Using multilinearity of ! and that whp trunc ; = ;:
6
7
8
∼:

! ;′ = 67∼Q ! trunc(;) ≈ 67∼Q ! ;

è Suffices to show 67∼Q ! ; − 6=∼> ! + = ?@
A

'

!"∼$ % & − !(∼) % *

= ,
-⊆ /0

1% 2 ⋅ !"∼$ 4
5∈-

&5 − !(∼) 4
5∈-

*5

= ,
-⊆ /0 , - 89

1% 2 ⋅ !"∼$ 4
5∈-

&5

=,
ℓ;9

0

,
- ;/ℓ

1% 2 ⋅ !"∼$ 4
5∈-

&5

≤,
ℓ;9

0

,
- ;/ℓ

1% 2 ⋅ =ℓ ⋅
ℓ!

?
ℓ

≤,
ℓ;9

0

polylog ? /ℓ ⋅ =ℓ ⋅
ℓ!

?
ℓ

Contribution of first EO(?) terms:
= ⋅ polylog(?)/ ?

Contribution of larger terms?

Fourier Analytical Approach – First Attempt

Main Technical Lemma
Suppose !~# is a zero-mean MVG on ℝ%& with

• ∀(: *+, !- ≤ 1/1 log
&
5

• ∀(, 7: 89* !-, !: ≤ ;

Then, for any quasi-poly size constant depth AC0 circuit <,
=>∼@ < A − =C∼D < E ≤ ; ⋅ polylog I

Which properties of AC0 circuits are used in the proof?
• The bound ∑ K L%

M< N ≤ polylog(I)
• Closure under restrictions.

fools any class of functions with these two properties

è whp ! ∈ −1,1 %&

Viewing !~# as a result of a random walk

A Thought Experiment:
Instead of sampling !~#
at once, we sample $ vectors
!(&), … , ! * ~#
independently, and take

! = 1
√$ ⋅ !

(&) + ⋯ + !(*)

Picture from http://en.wikipedia.org/wiki/Random_walk

Based on the work of
[Chattopadhyay, Hatami, Hosseini, Lovett’18]

Viewing !~# as a result of a random walk
Sample $ vectors !(&), … , ! * ~#
Define + + - hybrids:
• ./ = 0
• For 2 = 1,… , $

.4 =
1
√$ ⋅ !

(&) + ⋯ + !(4)

Observe: .*~ #.
Taking $ → ∞ yields a Brownian motion.
We take $ = poly > .

Claim: for 2 = 0,… , $ − 1,
@ A . 4B& − @ A .4 ≤ D

* ⋅ polylog(>).

./
.&

.4B&

.*

.4

Claim - Base Case
Base Case:
! " #$ − ! " #& = ! " 1

) ⋅ +
$ − " 0

=-
ℓ/$

0
-
1 /2ℓ

3" 4 ⋅ !5∼7
1
√)

2ℓ
⋅9
:∈1

<:

≤-
ℓ/$

0
-
1 /2ℓ

3" 4 ⋅ >
ℓ ⋅ ? ℓ ℓ

)ℓ

≤ >
) ⋅ polylog E + G >

)

Reducing the General Case to the Base Case
Lemma [CHHL’18]: for all !" ∈ −1/2,1/2)*

+ ! = - ! + !" − - !"
can be written as /0 -0 2 ⋅ ! − -0 0 where -0 is a
random restriction of - (whose marginals depend on !").

Conditioned on 34 ∈ −1/2,1/2)* (happens whp):

/ - 3 456 − / - 34
≤ / - 34 +

1
√9 :

(456) − - 34

≤ / -0
2
√9 ⋅ :

(456) − -0 0 ≤ 4>
9 ⋅ polylog(D)

Recap: Proof by Picture

first stepFirst Step: Simple Fourier Analysis
Only second level matters.

[CHHL’18]: i-th step ≈ first step,
using closure under restrictions. i-th step

Recap
• Defined a distribution ! based on MVG ".
• ! is not pseudorandom for log(N)-time quantum

algorithms. [Aaronson’09, Aaronson-Ambainis’15]

• ! is pseudorandom for AC0 (our contribution)
#$∼& ' (− #*∼+ ' , ≤ . ⋅ polylog 5 :

- Thought experiment: Viewing 7~" as a result of a
random walk with 9 tiny steps.

- AC0 circuits are well-approximated by sparse
low-degree polynomials [T’14]

è first step has advantage :
; ⋅ polylog 5

- [Chattopadhyay, Hatami, Hosseini, Lovett ’18]:
è <-th step has advantage :

; ⋅ polylog 5

Open Problems & New results
Follow-ups:
• [Aaronson, Fortnow]: an oracle ! s.t.

"#$% ⊈ $% = ($%
• [Fortnow]: under our oracle PH is infinite.
Open Problems:
• Does the original suggestion of [Aaronson’09]

(without 1/log . noise) work?
• [Aaronson]: Find an oracle ! s.t.
–($% ⊆ "#$%
– $0% ⊈ "#$%

• [Fortnow]: Does ($"#$ ⊈ "#$($?

Open Problems 2: Pseudorandomness
Separate BQLogTime and AC0 ⊕ .
Suffices to show for all " in AC0 ⊕ :

#
$ %&

'" (≤ *
polylog(*)

Conjecture [CHLT’18]: for all " in AC0 ⊕
#
$ %&

'" (≤ polylog(*)

Claim [CHLT’18]: Conjecture implies a PRG for AC0 ⊕
with polylog(*) seed length.

Thank You!

© Kevin Hong for Quanta Magazine

