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The Landscape of Complexity Classes

PSPACE

BQP?




Where does BQP fit in the landscape?

BQP: Bounded Error Quantum Polynomial Time
We know: BPP < BQP < PSPACE

Oracle Separations:

» Joracle A: NP4 ¢ BQP4 [BBBV’97]

» Joracle A: BQP# ¢ BPP# [BV’93]

» Joracle A: BQP? ¢ MA? [Watrous’00]

Could it be possible that BQP € PH ?
BQP € AM?



Our Main Result: BQP vs. PH

Recall: a language L in PH iff there exists a constant k,
and a poly-time computable relation R s.t.

x€L < 3Ay;Vy,Ays ... Q1 Vi: R(X, V1, v, Vi)
il + [y2l + ... + |yl < poly(|x])

Our Main Result:
3 oracle A: BQP4 ¢ PH“



The Black-Box/Query Model

Complexity measure: number of queries to the black box.
Deterministic Query Complexity = Decision Tree Complexity
Quantum Query Complexity = Queries are made in superposition
PH analog = ACP circuits

Known reductions: Black-box separations imply oracle separations



The Pseudorandomness Setting
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Def’n: a distribution D is pseudorandom against a class
of functions C if

Vi€C: E,plf()]=Eeylf(x)]



The Pseudorandomness Setting
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[Aaronson’10, Fefferman-Shaltiel-Umans-Viola’12]

Can you find a distribution which is pseudorandom for
AC° but not pseudorandom for poly-log-time quantum

algorithms?

=>» an oracle separation between BQP from PH
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Let D be a distribution over {—1,1}4".

We say that an algorithm A distinguishes between D and U
with advantage a if a« = |E,.p[A(x)] — E,.-y[A(x)]].

Main Result: We present a distribution D such that:
1. Ja log(N) time quantum algorithm distinguishing
between D and U with advantage 2 (1/log N)

2. Any quasipoly(N)-size constant-depth circuit

)

Standard techniques =» amplify advantage of quantum
algorithm to be 0.99 or even 1-1/poly(N).

distinguishes between D and U with advantage O (L



The Separating Distribution D

(Based on Aaronson’s Forrelation distribution)
* Let N be a power of 2. Lete = 1/0(logN).

e Let G to be a multi-variate gaussian (MVG) distribution
on R?Y with zero-means and covariance matrix

Iy H
o (H IN)
where H is the NXN I-iadamard matrix with
H:. . = —. (_1)<i,j>
i \/N
Sampling z'~D:
1. Sample z~G, truncate each z; to be within [—1,1]

2. Fori=1,...,2N, sample independently
z; € {—1,1} with E[z]] = z;.



Quantum Algorithm Distinguishing D

[Aaronson’10, Aaronson-Ambainis’15]:
1-query O(log N)-time quantum algorithm Q s.t.

14+ d(x,
Pr[Q accepts input (x,y)] = 2( ¥)
where
N N
O(x,y) = N3/ 22 (—1)<I> . x, y,
. )

E(x,y)~U[CD(x; y)] =0
Egey-ol®Co )] = € = 0

. logN)




D is Pseudorandom for AC°

We are left to prove:

D is pseudorandom for AC°.

Main Ingredients & Techniques:

Fourier Analysis

ACP circuits are well-approximated by sparse
low-degree polynomials.

Fractional PRG approach of [CHHL18].
Sum of independent Gaussians is a Gaussian.



Bounded Depth Circuits

BOY

ACO[s, d]:
e s gates (size of the circuit) We focus on
+ depth d ACP|NPolylostV) 0(1)]

e alternating gates



What do we know about AC??

[Ajtai’83, Furst-Saxe-Sipser’84, Yao’85,Hastad '86]:
* Parity not in ACO[Np"lylog(N), 0(1)].

» Parity requires exp(N /(1)) size for depth d.
=>» 3 oracle A: PSPACE? ¢ PH4

Fourier-analytical proof technique:

* ACO circuits can be well-approximated (in £,) by
low-degree polynomials (over R). [Hastad '86,LMN’93]

* Parity cannot.

Potential problem with the approach:

O(log N) time quantum algorithms (BQLogTime) are
also well-approximated by low-degree polys.



The Difference between BQLogTime and AC°

Both BQLogtime & AC? are approximated by low-degree
polynomials, but these polynomials are different!

BQLogtime can have dense Iow -degree polynomials, e.g.

D (x, y)—N3/2 zz( 1)<H> . x; -y,

=1 j=

[T’14]: AC? has sparse low-degree approximations

vk: 2 |7 (S| < (polylog N)*

Scnl,|S|=k



Fourier Analytical Approach — First Attempt

The Fourier expansion of f: {—1,1}*" - {—1,1}:

fe= ) j©-| [x

SC[2N] LES
Goal:  |E,_p[f(z)] = Exey[f (0] = 0 ()

Recall: Sampling z'~D:
1. Sample z~G, truncate each z; to be within [—1,1]
2. Fori=1,..,2N, sample independently

z; € {—1,1} with E[z;] = z

Using multilinearity of f and that whp trunc(z) = z:

EZ'~D [f(Z,)] = EZ~G [f(trunc(z))] ~ EZ~G [f(Z)]

=> Suffices to show |E, ¢ |f(2)] — Ex~ylf (x)]| = 0 (\/iﬁ)



Fourier Analytical Approach — First Attempt
E, clf(2)] — Ex-ylf(x)]

= > f©- <Z~G []_[zi]—ExNU []_[xD

SC[2N] LES LES
- Y @ s[4
Sc[2N],|S|=1 IES
N
- Y 19k | [ ]
=1 |S|=2¢ LES
P

N
< Z Z f($)|-e?-— | Contribution of first O(v/N) terms:
t=1]s|=2¢ VN e - polylog(N)/VN

JN Contribution of larger terms?



Main Technical Lemma

Suppose Z~G is a zero-mean MVG on R?" with

* Vi: var(Z;) <1/0 (log (%)) 2> whpZ € [-1,1]*"

* Vi,J: cov(Zl, ]) <4

Then, for any quasi-poly size constant depth ACP circuit f,
[Ez~[f (2)] = Exeylf ()] < & - polylog(N)

Which properties of AC? circuits are used in the proof?

* The bound Z|S|=2‘f(5)| < polylog(N)
 Closure under restrictions.

(: fools any class of functions with these two properties



Viewing Z~( as a result of a random walk

A Thought Experiment:
Instead of sampling Z~G

at once, we sample t vectors
AORWALRT:

independently, and take

1
7 = ASE SN AL
Vt 3 )

Based on the work of
[Chattopadhyay, Hatami, Hosseini, Lovett’ 18]

Picture from http://en.wikipedia.org/wiki/Random_walk



Viewing Z~( as a result of a random walk

Sample t vectors ZW, ..., 70~

Define t + 1 hybrids: Hy
¢ HO = 6
e Fori=1,..,t Hi;,j
1 .
H; = ZW 4. 4+ 7O
: \/t ( ) H,

Observe: H,~ G.
Taking t — oo yields a Brownian motion.
We take t = poly(N).
Claim:fori =0, ..,t —1,
o)
[E[f (Hi+1))] = E[f (H)]| < = polylog(N).



Claim - Base Case

Base Case:
' 1 ' N
E[f (H,)] — E[f (H)] = E f(ﬁ-zm) - f(0)
53 e |(3) T14
— f(S) Z~ T ) Zj
= 1|S| 24 ’ \/t IES
5t - 0{3
SZ Z HOIE ( :
£=1|S|=27¢



Reducing the General Case to the Base Case

Lemma [CHHL'18]: for all z, € [-1/2,1/2]*"
9(z) = f(z +zy) — f(2)

can be written as E,, [fp (2-2)—f, (6)] where f, is a
random restriction of f (whose marginals depend on z;).

Conditioned on H; € [—1/2,1/2]*" (happens whp):
[E[f (H+n))| — ELF (HD]
< [e[r (14 7000) = e

< ‘E [fp (% : z<l+1>) — fp(ﬁ)” < 475 . polylog(N)



Recap: Proof by Picture

[CHHL'18]: i-th step = first step,

. a -
using closure under restrictions. I-th step

First Step: Simple Fourier Analysis

first step
Only second level matters.



 Defined a distribution D based on MVG G.

* D is not pseudorandom for log(N)-time quantum
algorithms. [Aaronson’09, Aaronson-Ambainis’15]

* D is pseudorandom for AC° (our contribution)
[E,-¢[f (2)] —Ex~ylf(x)]| <6 - polylog(N):

- Thought experiment: Viewing Z~(G as a result of a
random walk with t tiny steps. |

- ACP circuits are well-approximated by sparse
low-degree polynomials [T'14]

=>» first step has advantage (5) polylog(N)

- [Chattopadhyay, Hatami, Hosseini, Lovett '18]:
=>» i-th step has advantage ( ) polylog(N)



Open Problems & New results

Follow-ups:

* [Aaronson, Fortnow]: an oracle A s.t.
BQP# ¢ P4 = NP4

* [Fortnow]: under our oracle PH is infinite.

Open Problems:

* Does the original suggestion of [Aaronson’09]
(without 1/log(N) noise) work?

* [Aaronson]: Find an oracle A s.t.
— NP4 € BQP“
—PH” ¢ BQP“
* [Fortnow]: Does NPBQP ¢ BQPNP?



Open Problems 2: Pseudorandomness

Separate BQLogTime and AC°|P].
Suffices to show for all f in AC°| D]

A VN
z ‘f(S)‘ S polylog(N)

|S|=2

Conjecture [CHLT’18]: for all f in ACO[D]
D |7(s)] < polylog(¥)

|S|=2
Claim [CHLT’18]: Conjecture implies a PRG for AC°| P ]
with polylog(NN) seed length.



Thank You!
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