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Introduce Pseudorandom generators(PRGs)

General formulation:
F = {f:D — R} family of functions : tests

U : Random variable uniform over D : truly random object

A random variable X over D is e-pseudorandom for F (X e-fools F) if
Ef(X) —Ef(U)|<e VfEF

Usually dealing with functions f: {—1,1}"* - {—1,1}
So we take D = {—1,1}"
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Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X:
An algorithm to sample random variable X € {—1,1}"
Use few coin flips in the construction.

Algorithm should be “explicit”/ “easy to compute”

G:{—1,1}° — {-1,1}"
X = G(Us) where Ug is uniform over {—1,1}°

s is called seed length



Example

Example 1: Tests: [F} characters

F={(x)=Iliesxi : Sc|(nl}

X : £-bias random variable

* PRGs with optimal seed length O(log(n/¢g)) are known.
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Some known approaches to construct PRGs

m Pseudorandom restriction:

Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14,
HT17,ST18, ..

Step 1: show F simplifies under random restriction.
Step 2: derandomize the above statement:
show F simplifies under pseudorandom restriction as well.

Examples of F: AC®, CNFs, Combinatorial rectangles, Branching programs, ...

= Consequence of this work:

Generic method to do step 2 for arbitrary F.
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Fractional PRGs

Equivalent definition of PRG:
X € {—1,1}" g-fools F if
[Ef(X)—f(0)| <e¢ VfEF
because Ef (U,,) = f(EU,) = f(0)
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Fractional PRGs

PRG: random variable X € {—1,1}" where |Ef(X) — f(0)| < ¢
Fractional PRG (f-PRG): random variable X € [—1,1]" where |Ef (X) — f(0)| < ¢

1 -1
1 1
Y
[ ]
®
1 @ 1
1 -1
Trivial f-PRG: X = 0 ; we will rule it out later.
Question. Are f-PRGs easier to construct than PRGs?

Can f-PRGs be used to construct PRGs?
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Fractional PRGs

How to convert X € [—1,1]"to X' € {—1,1}"*?
Main idea:  do arandom walk that converges to {—1,1}"

the steps of the random walk are from X

Recall: f-PRG is X = (Xq1,*,X;) € [-1,1]" where |E f(X) — f(0)| < ¢

Trivial solution: X = 0

Need to enforce non-triviality: require E | X;|* > p foralli = 1, ...,n
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Constructing PRGs from f-PRGs

Main theorem:

Suppose:
F: class of n-variate Boolean functions, closed under restrictions
Xe[-11]" |Ef(X)—f(0)|<e VfEeF
E|X;|?=pforalli=1,..,n

Then thereis X' = G(X?, ..., X)) such that X1, ..., Xt are independent copies of X,

X e{-11}" |[Ef(X)—f(0)| <et VfEF

0= 0 (Glog ()

 If X has seed length s then X' has seed length ts
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Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let X be arv. on [—1,1]
Lemma: LetYy =0,Y; = Y1 + (1 — |Y;—1|)X; be a random walk with EX; = 0.

Then after O (IEI e log( )) steps, wh.p 1 —|Y;| < ¢

Proof: always we have 1— Y] < (1-1Y_1DA- X;)
E(1-1Y;]) <EQ@ - [Y;-1DE( - X;)

2
E(1— X;) = 1, however, E\/(1 — X)<1—E%—1—c

EVT— %] < EJT - [YiaD) (1) < (1 - o)’ .

Round to sign{Y;} once the random walk is close enough to the boundary
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Construction of fractional PRGs

f{=1,1}" > {-1,1}
Fourier coefficients: f(§) = E f(x) [[iesx; , S S [n]
f has bounded Fourier growth if

If(S)<ck vk=>1
S:|S|=k

c = nis a trivial bound.
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Construction of fractional PRGs

Ysisi=k [ <c* vk=1, seed length = ¢? log (g) (loglogn + log (é))

Functions with sensitivity s:
Gopalan-Servedio-Wigderson’16: c=S5

Permutation branching programs of width w:

Reingold-Steinke-Vadhan’13: c=w?

Read once branching programs of width w:
Chattopadhyay-Hatami-Reingold-Tal’18: C = logW n
Circuits of depth d:

Tal'l7: c =log%s

Prev. seed-length:
2‘/§logn [Hatami-Tal 17]



Questions

* One way to view our construction is as follows

X1

Xt

e Put the f-PRGs as rows of a tXn matrix



Questions

* One way to view our construction is as follows

X1

Xt

e Put the f-PRGs as rows of a tXn matrix

* Apply a “random walk gadget” g on each column: g: [—-1,1]¢ - {—1,1}



Questions

* One way to view our construction is as follows

X1

Xt

e Put the f-PRGs as rows of a tXn matrix

* Apply a “random walk gadget” g on each column: g: [—-1,1]¢ - {—1,1}

G(Xy, i X0) = (9(Xa1 s Xe1)s s 9 (Xas s X))
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Questions

* |f function class F is “simple”, can we terminate the random walk earlier?

e Can we construct hitting sets this way?



Thank you!



