
Pseudorandom generators
from polarizing random walks

Kaave Hosseini (UC San Diego)

Eshan Chattopadhyay (Cornell)
Pooya Hatami (UT Austin → Ohio State)

Shachar Lovett (UC San Diego)

Outline

Introduce Pseudorandom generators (PRGs)

New approach to construct PRGs

Open problems

Introduce Pseudorandom generators(PRGs)

General formulation:

Introduce Pseudorandom generators(PRGs)

General formulation:
ℱ = #:% ⟶ ℝ family of functions : tests

Introduce Pseudorandom generators(PRGs)

General formulation:
ℱ = #:% ⟶ ℝ family of functions : tests
(: Random variable uniform over % : truly random object

Introduce Pseudorandom generators(PRGs)

General formulation:
ℱ = #:% ⟶ ℝ family of functions : tests
(: Random variable uniform over % : truly random object

A random variable) over %

Introduce Pseudorandom generators(PRGs)

General formulation:
ℱ = #:% ⟶ ℝ family of functions : tests
(: Random variable uniform over % : truly random object

A random variable) over % is *-pseudorandom for ℱ () *-fools ℱ) if
+#) − +# (≤ * ∀# ∈ ℱ

Introduce Pseudorandom generators(PRGs)

General formulation:
ℱ = #:% ⟶ ℝ family of functions : tests
(: Random variable uniform over % : truly random object

A random variable) over % is *-pseudorandom for ℱ () *-fools ℱ) if
+#) − +# (≤ * ∀# ∈ ℱ

Usually dealing with functions #: −1,1 2 → −1,1
So we take % = −1,1 2

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable !:

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable !:
An algorithm to sample random variable ! ∈ −1,1 '

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable !:
An algorithm to sample random variable ! ∈ −1,1 '

Use few coin flips in the construction.
Algorithm should be “explicit”/ ”easy to compute”

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable !:
An algorithm to sample random variable ! ∈ −1,1 '

Use few coin flips in the construction.
Algorithm should be “explicit”/ ”easy to compute”

(: −1,1) ⟶ −1,1 '

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable !:
An algorithm to sample random variable ! ∈ −1,1 '

Use few coin flips in the construction.
Algorithm should be “explicit”/ ”easy to compute”

(: −1,1) ⟶ −1,1 '

! = (,) where ,) is uniform over −1,1)

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable !:
An algorithm to sample random variable ! ∈ −1,1 '

Use few coin flips in the construction.
Algorithm should be “explicit”/ ”easy to compute”

(: −1,1) ⟶ −1,1 '

! = (,) where ,) is uniform over −1,1)

- is called seed length

Example

Example 1: Tests: !"# characters
ℱ = & ' = ∏)∈+ ') ∶ - ⊆ /
0 ∶ 1-bias random variable

• PRGs with optimal seed length 2 log //1 are known.

Some known approaches to construct PRGs

§ Use basic PRGs:
Viola[09]: sum of a ! many "-biased PRGs fools degree-! #$-polynomials.

Some known approaches to construct PRGs

§ Pseudorandom restriction:
Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14,
HT17, ST18, …

Step 1: show ℱ simplifies under random restriction.

Some known approaches to construct PRGs

§ Pseudorandom restriction:
Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14,
HT17, ST18, …

Step 1: show ℱ simplifies under random restriction.
Step 2: derandomize the above statement:

Some known approaches to construct PRGs

§ Pseudorandom restriction:
Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14,
HT17, ST18, …

Step 1: show ℱ simplifies under random restriction.
Step 2: derandomize the above statement:

show ℱ simplifies under pseudorandom restriction as well.

Some known approaches to construct PRGs

§ Pseudorandom restriction:
Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14,
HT17, ST18, …

Step 1: show ℱ simplifies under random restriction.
Step 2: derandomize the above statement:

show ℱ simplifies under pseudorandom restriction as well.
Examples of ℱ: "#$, CNFs, Combinatorial rectangles, Branching programs, …

Some known approaches to construct PRGs

§ Pseudorandom restriction:
Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14,
HT17, ST18, …

Step 1: show ℱ simplifies under random restriction.
Step 2: derandomize the above statement:

show ℱ simplifies under pseudorandom restriction as well.
Examples of ℱ: "#$, CNFs, Combinatorial rectangles, Branching programs, …

§ Consequence of this work:
Generic method to do step 2 for arbitrary ℱ.

Fractional PRGs

!: −1,1 & → −1,1

-1

-11

1

1

11

-1

Fractional PRGs

!: −1,1 & → −1,1 mul1−linear extension !:ℝ& → ℝ

-1

-11

1

1

11

-1

Fractional PRGs

!: −1,1 & → −1,1 mul1−linear extension !:ℝ& → ℝ

Only consider points in [−1,1]& so !: [−1,1]&→ [−1,1]

-1

-11

1

1

11

-1

Fractional PRGs

Equivalent definition of PRG:
! ∈ −1,1 & e-fools ℱ if

() ! −)(0) ≤ ., ∀) ∈ ℱ

-1

-11

1

1

11

-1

Fractional PRGs

Equivalent definition of PRG:
! ∈ −1,1 & e-fools ℱ if

() ! −)(0) ≤ ., ∀) ∈ ℱ
because () 0& =) (0& =) 0

-1

-11

1

1

11

-1

Fractional PRGs

PRG: random variable ! ∈ −1,1 & where '(! − ((0) ≤ -

Fractional PRGs

PRG: random variable ! ∈ −1,1 & where '(! − ((0) ≤ -
Fractional PRG (f-PRG): random variable ! ∈ [−1,1]& where '(! − ((0) ≤ -

Fractional PRGs

PRG: random variable ! ∈ −1,1 & where '(! − ((0) ≤ -
Fractional PRG (f-PRG): random variable ! ∈ [−1,1]& where '(! − ((0) ≤ -

-1

-11

1

1

11

-1

Fractional PRGs

PRG: random variable ! ∈ −1,1 & where '(! − ((0) ≤ -
Fractional PRG (f-PRG): random variable ! ∈ [−1,1]& where '(! − ((0) ≤ -

Trivial f-PRG: ! ≡ 0 ; we will rule it out later.

-1

-11

1

1

11

-1

Fractional PRGs

PRG: random variable ! ∈ −1,1 & where '(! − ((0) ≤ -
Fractional PRG (f-PRG): random variable ! ∈ [−1,1]& where '(! − ((0) ≤ -

Trivial f-PRG: ! ≡ 0 ; we will rule it out later.
Question. Are f-PRGs easier to construct than PRGs?

Can f-PRGs be used to construct PRGs?

-1

-11

1

1

11

-1

Fractional PRGs

How to convert ! ∈ −1,1 & to !' ∈ −1,1 &?

Fractional PRGs

How to convert ! ∈ −1,1 & to !' ∈ −1,1 &?
Main idea: do a random walk that converges to −1,1 &

Fractional PRGs

How to convert ! ∈ −1,1 & to !' ∈ −1,1 &?
Main idea: do a random walk that converges to −1,1 &

the steps of the random walk are from !

Fractional PRGs

How to convert ! ∈ −1,1 & to !' ∈ −1,1 &?
Main idea: do a random walk that converges to −1,1 &

the steps of the random walk are from !

Recall: f-PRG is ! = (!*,⋯ , !&) ∈ [−1,1]& where / 0 ! − 0(0) ≤ 3
Trivial solution: ! ≡ 0

Fractional PRGs

How to convert ! ∈ −1,1 & to !' ∈ −1,1 &?
Main idea: do a random walk that converges to −1,1 &

the steps of the random walk are from !

Recall: f-PRG is ! = (!*,⋯ , !&) ∈ [−1,1]& where / 0 ! − 0(0) ≤ 3
Trivial solution: ! ≡ 0

Need to enforce non-triviality: require / !5 6 ≥ 8 for all 9 = 1,… , ;

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
ℱ: class of "-variate Boolean functions, closed under restrictions

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
ℱ: class of "-variate Boolean functions, closed under restrictions
∈ −1,1 (:)* # − *(0) ≤ / ∀* ∈ ℱ

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
ℱ: class of "-variate Boolean functions, closed under restrictions
∈ −1,1 (:)* # − *(0) ≤ / ∀* ∈ ℱ
) #1 2 ≥ 4 for all 5 = 1,… , "

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
ℱ: class of "-variate Boolean functions, closed under restrictions
∈ −1,1 (:)* # − *(0) ≤ / ∀* ∈ ℱ
) #1 2 ≥ 4 for all 5 = 1,… , "

Then there is #′ = 9 #:, … , #; such that #:,… , #; are independent copies of #,

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
ℱ: class of "-variate Boolean functions, closed under restrictions
∈ −1,1 (:)* # − *(0) ≤ / ∀* ∈ ℱ
) #1 2 ≥ 4 for all 5 = 1,… , "

Then there is #′ = 9 #:, … , #; such that #:,… , #; are independent copies of #,

#′ ∈ −1,1 (:)* #′ − *(0) ≤ /< ∀* ∈ ℱ

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
ℱ: class of "-variate Boolean functions, closed under restrictions
∈ −1,1 (:)* # − *(0) ≤ / ∀* ∈ ℱ
) #1 2 ≥ 4 for all 5 = 1,… , "

Then there is #′ = 9 #:, … , #; such that #:,… , #; are independent copies of #,

#′ ∈ −1,1 (:)* #′ − *(0) ≤ /< ∀* ∈ ℱ
< = = :

> log
(
B

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
ℱ: class of "-variate Boolean functions, closed under restrictions
∈ −1,1 (:)* # − *(0) ≤ / ∀* ∈ ℱ
) #1 2 ≥ 4 for all 5 = 1,… , "

Then there is #′ = 9 #:, … , #; such that #:,… , #; are independent copies of #,

#′ ∈ −1,1 (:)* #′ − *(0) ≤ /< ∀* ∈ ℱ
< = = :

> log
(
B

• If # has seed length C then #′ has seed length <C

Random walk PRG: First step

Goal: use the f-PRG to define a random walk

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

We have to assume the class is closed under restriction.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk

f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still ≤ /: because function in scaled cube is in the
convex hull of restrictions of *.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk

f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still ≤ /: because function in scaled cube is in the
convex hull of restrictions of *.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk

f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still ≤ /: because function in scaled cube is in the
convex hull of restrictions of *.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk

f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still ≤ /: because function in scaled cube is in the
convex hull of restrictions of *.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk

f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still ≤ /: because function in scaled cube is in the
convex hull of restrictions of *.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk

f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still ≤ /: because function in scaled cube is in the
convex hull of restrictions of *.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk

f-PRG: ! ∈ [−1,1](where)* ! − *(0) ≤ /
Equivalently: 1st step from 0

Question: what about the 2nd step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still ≤ /: because function in scaled cube is in the
convex hull of restrictions of *.

It’s enough to prove it for one dimension: so let ! be a r.v. on [−1,1]

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let ! be a r.v. on [−1,1]
Lemma: Let '(= 0 , '+ = '+,- + 1 − '+,- !+ be a random walk with /!0 = 0.

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let ! be a r.v. on [−1,1]
Lemma: Let '(= 0 , '+ = '+,- + 1 − '+,- !+ be a random walk with /!0 = 0.

Then after 1 -
/ 2 3 log

-
7 steps, w.h.p 1 − '+ ≤ 9

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let ! be a r.v. on [−1,1]
Lemma: Let '(= 0 , '+ = '+,- + 1 − '+,- !+ be a random walk with /!0 = 0.

Then after 1 -
/ 2 3 log

-
7 steps, w.h.p 1 − '+ ≤ 9

Proof: always we have 1 − |'0| < 1 − '0,- 1 − !0

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let ! be a r.v. on [−1,1]
Lemma: Let '(= 0 , '+ = '+,- + 1 − '+,- !+ be a random walk with /!0 = 0.

Then after 1 -
/ 2 3 log

-
7 steps, w.h.p 1 − '+ ≤ 9

Proof: always we have 1 − |'0| < 1 − '0,- 1 − !0
/ 1 − '0 < / 1 − '0,- / 1 − !0

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let ! be a r.v. on [−1,1]
Lemma: Let '(= 0 , '+ = '+,- + 1 − '+,- !+ be a random walk with /!0 = 0.

Then after 1 -
/ 2 3 log

-
7 steps, w.h.p 1 − '+ ≤ 9

Proof: always we have 1 − |'0| < 1 − '0,- 1 − !0
/ 1 − '0 < / 1 − '0,- / 1 − !0

/ 1 − !0 = 1, however, / 1 − !0 < 1 − /2<3
= = 1 − >

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let ! be a r.v. on [−1,1]
Lemma: Let '(= 0 , '+ = '+,- + 1 − '+,- !+ be a random walk with /!0 = 0.

Then after 1 -
/ 2 3 log

-
7 steps, w.h.p 1 − '+ ≤ 9

Proof: always we have 1 − |'0| < 1 − '0,- 1 − !0
/ 1 − '0 < / 1 − '0,- / 1 − !0

/ 1 − !0 = 1, however, / 1 − !0 < 1 − /2<3
= = 1 − >

/ 1 − |'0| < / (1 − |'0,-|) 1 − > < 1 − > 0 ∎

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let ! be a r.v. on [−1,1]
Lemma: Let '(= 0 , '+ = '+,- + 1 − '+,- !+ be a random walk with /!0 = 0.

Then after 1 -
/ 2 3 log

-
7 steps, w.h.p 1 − '+ ≤ 9

Proof: always we have 1 − |'0| < 1 − '0,- 1 − !0
/ 1 − '0 < / 1 − '0,- / 1 − !0

/ 1 − !0 = 1, however, / 1 − !0 < 1 − /2<3
= = 1 − >

/ 1 − |'0| < / (1 − |'0,-|) 1 − > < 1 − > 0 ∎
Round to sign{'+} once the random walk is close enough to the boundary

Proof of main theorem: fast convergence

Construction of fractional PRGs

!: −1,1 & → {−1,1}

Fourier coefficients: *! + = - ! . ∏0∈2 .0 , + ⊆ [5]

Construction of fractional PRGs

!: −1,1 & → {−1,1}

Fourier coefficients: *! + = - ! . ∏0∈2 .0 , + ⊆ [5]

! has bounded Fourier growth if

7
2: 2 89

| *! + | ≤ <9 ∀> ≥ 1

c = 5 is a trivial bound.

• !: −1,1 & → {−1,1} with ∑+: + ,- | /! 0 | ≤ 2- ∀4 ≥ 1

Construction of fractional PRGs

• !: −1,1 & → {−1,1} with ∑+: + ,- | /! 0 | ≤ 2- ∀4 ≥ 1

• Let 6 ∈ −1,1 & be a 8-bias r.v. : 9∏;∈+ 6; < 8 , ∀0 ⊆ > , 0 ≠ @

Construction of fractional PRGs

• !: −1,1 & → {−1,1} with ∑+: + ,- | /! 0 | ≤ 2- ∀4 ≥ 1

• Let 6 ∈ −1,1 & be a 8-bias r.v. : 9∏;∈+ 6; < 8 , ∀0 ⊆ > , 0 ≠ @

• Construction: A = C
DE 6 , note: A ∈ − C

DE ,
C
DE

&

Construction of fractional PRGs

Proof :

!: −1,1 & → {−1,1} with ∑+: + ,- | /! 0 | ≤ 2- ∀4 ≥ 1
Construction: 6 = 8

9: ; , ; ∈ −1,1 & is =-bias r.v: |>∏@∈+ ;@ | < = , ∀0 ⊆ [D] ,

Construction of fractional PRGs

Proof :

!: −1,1 & → {−1,1} with ∑+: + ,- | /! 0 | ≤ 2- ∀4 ≥ 1

Construction: 6 = 8
9: ; , ; ∈ −1,1 & is =-bias r.v: |>∏@∈+ ;@ | < = , ∀0 ⊆ [D] ,

>! 6 − ! 0 = ∑+G∅ /! 0 ⋅ >∏@∈+ 6@

Construction of fractional PRGs

Proof :

!: −1,1 & → {−1,1} with ∑+: + ,- | /! 0 | ≤ 2- ∀4 ≥ 1

Construction: 6 = 8
9: ; , ; ∈ −1,1 & is =-bias r.v: |>∏@∈+ ;@ | < = , ∀0 ⊆ [D] ,

>! 6 − ! 0 = ∑+G∅ /! 0 ⋅ >∏@∈+ 6@
≤ ∑+G∅ /! 0 >∏@∈+ 6@

Construction of fractional PRGs

Proof :

!: −1,1 & → {−1,1} with ∑+: + ,- | /! 0 | ≤ 2- ∀4 ≥ 1

Construction: 6 = 8
9: ; , ; ∈ −1,1 & is =-bias r.v: |>∏@∈+ ;@ | < = , ∀0 ⊆ [D] ,

>! 6 − ! 0 = ∑+G∅ /! 0 ⋅ >∏@∈+ 6@
≤ ∑+G∅ /! 0 >∏@∈+ 6@

≤ ∑+G∅ /! 0 8
9:

+
>∏@∈+ ;@

Construction of fractional PRGs

Proof :

!: −1,1 & → {−1,1} with ∑+: + ,- | /! 0 | ≤ 2- ∀4 ≥ 1

Construction: 6 = 8
9: ; , ; ∈ −1,1 & is =-bias r.v: |>∏@∈+ ;@ | < = , ∀0 ⊆ [D] ,

>! 6 − ! 0 = ∑+G∅ /! 0 ⋅ >∏@∈+ 6@
≤ ∑+G∅ /! 0 >∏@∈+ 6@

≤ ∑+G∅ /! 0 8
9:

+
>∏@∈+ ;@

≤ ∑+G∅ /! 0 8
9:

+
=

Construction of fractional PRGs

Proof :

!: −1,1 & → {−1,1} with ∑+: + ,- | /! 0 | ≤ 2- ∀4 ≥ 1

Construction: 6 = 8
9: ; , ; ∈ −1,1 & is =-bias r.v: |>∏@∈+ ;@ | < = , ∀0 ⊆ [D] ,

>! 6 − ! 0 = ∑+G∅ /! 0 ⋅ >∏@∈+ 6@
≤ ∑+G∅ /! 0 >∏@∈+ 6@

≤ ∑+G∅ /! 0 8
9:

+
>∏@∈+ ;@

≤ ∑+G∅ /! 0 8
9:

+
=

≤ ∑-J8 2-
8
9:

-
=

Construction of fractional PRGs

∑": " $% | '() | ≤ +% ∀- ≥ 1, seed length = +0 log 4
5 log log 6 + log 8

5

Functions with sensitivity 9: Prev. seed-length:

Gopalan-Servedio-Wigderson’16: + = 9 2 < log 6 [Hatami-Tal 17]

Construction of fractional PRGs

∑": " $% | '() | ≤ +% ∀- ≥ 1, seed length = +0 log 4
5 log log 6 + log 8

5

Functions with sensitivity 9: Prev. seed-length:

Gopalan-Servedio-Wigderson’16: + = 9 2 < log 6 [Hatami-Tal 17]

Permutation branching programs of width =:
Reingold-Steinke-Vadhan’13: + = =0

Construction of fractional PRGs

∑": " $% | '() | ≤ +% ∀- ≥ 1, seed length = +0 log 4
5 log log 6 + log 8

5

Functions with sensitivity 9: Prev. seed-length:

Gopalan-Servedio-Wigderson’16: + = 9 2 < log 6 [Hatami-Tal 17]

Permutation branching programs of width =:
Reingold-Steinke-Vadhan’13: + = =0

Read once branching programs of width =:
Chattopadhyay-Hatami-Reingold-Tal’18: + = log> 6

Construction of fractional PRGs

∑": " $% | '() | ≤ +% ∀- ≥ 1, seed length = +0 log 4
5 log log 6 + log 8

5

Functions with sensitivity 9: Prev. seed-length:
Gopalan-Servedio-Wigderson’16: + = 9 2 < log 6 [Hatami-Tal 17]

Permutation branching programs of width =:
Reingold-Steinke-Vadhan’13: + = =0

Read once branching programs of width =:
Chattopadhyay-Hatami-Reingold-Tal’18: + = log> 6
Circuits of depth ?:
Tal’17: + = log@ 9

Construction of fractional PRGs

• One way to view our construction is as follows

• Put the f-PRGs as rows of a !×# matrix

$%

⋮

$'

Questions

• One way to view our construction is as follows

• Put the f-PRGs as rows of a !×# matrix
• Apply a “random walk gadget” $ on each column: $: −1,1) → {−1,1}

-.

⋮

-)

0 0 0

Questions

• One way to view our construction is as follows

• Put the f-PRGs as rows of a !×# matrix
• Apply a “random walk gadget” $ on each column: $: −1,1) → {−1,1}

- ./,… , .) = $./,/, … , .),/ , … , $./,2, … , .),2

./

⋮

.)

4 4 4

Questions

• If function class ℱ is “simple”, can we terminate the random walk earlier?

Questions

• If function class ℱ is “simple”, can we terminate the random walk earlier?

• Can we construct hitting sets this way?

Questions

Thank you!

