Pseudorandom generators
from polarizing random walks

Kaave Hosseini (UC San Diego)

Eshan Chattopadhyay (Cornell)
Pooya Hatami (UT Austin = Ohio State)
Shachar Lovett (UC San Diego)

Outline

Introduce Pseudorandom generators (PRGs)

New approach to construct PRGs

Open problems

Introduce Pseudorandom generators(PRGs)

General formulation:

Introduce Pseudorandom generators(PRGs)

General formulation:
F = {f:D — R} family of functions : tests

Introduce Pseudorandom generators(PRGs)

General formulation:
F = {f:D — R} family of functions : tests

U : Random variable uniform over D : truly random object

Introduce Pseudorandom generators(PRGs)

General formulation:
F = {f:D — R} family of functions : tests

U : Random variable uniform over D : truly random object

A random variable X over D

Introduce Pseudorandom generators(PRGs)

General formulation:
F = {f:D — R} family of functions : tests

U : Random variable uniform over D : truly random object

A random variable X over D is e-pseudorandom for F (X e-fools F) if
Ef(X) —Ef(U)|<e VfEF

Introduce Pseudorandom generators(PRGs)

General formulation:
F = {f:D — R} family of functions : tests

U : Random variable uniform over D : truly random object

A random variable X over D is e-pseudorandom for F (X e-fools F) if
Ef(X) —Ef(U)|<e VfEF

Usually dealing with functions f: {—1,1}"* - {—1,1}
So we take D = {—1,1}"

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X:

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X:

An algorithm to sample random variable X € {—1,1}"

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X:
An algorithm to sample random variable X € {—1,1}"
Use few coin flips in the construction.

Algorithm should be “explicit”/ “easy to compute”

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X:
An algorithm to sample random variable X € {—1,1}"
Use few coin flips in the construction.

Algorithm should be “explicit”/ “easy to compute”

G:{—1,1} — {—1,1}"

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X:
An algorithm to sample random variable X € {—1,1}"
Use few coin flips in the construction.

Algorithm should be “explicit”/ “easy to compute”

G:{—1,1}° — {-1,1}"
X = G(Us) where Ug is uniform over {—1,1}°

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X:
An algorithm to sample random variable X € {—1,1}"
Use few coin flips in the construction.

Algorithm should be “explicit”/ “easy to compute”

G:{—1,1}° — {-1,1}"
X = G(Us) where Ug is uniform over {—1,1}°

s is called seed length

Example

Example 1: Tests: [F} characters

F={(x)=Iliesxi : Sc|(nl}

X : £-bias random variable

* PRGs with optimal seed length O(log(n/¢g)) are known.

Some known approaches to construct PRGs

= Jse basic PRGs:

Viola[09]: sum of a d many &-biased PRGs fools degree-d IF,-polynomials.

Some known approaches to construct PRGs

m Pseudorandom restriction:

Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14,
HT17,ST18, ..

Step 1: show F simplifies under random restriction.

Some known approaches to construct PRGs

m Pseudorandom restriction:

Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14,
HT17,ST18, ..

Step 1: show F simplifies under random restriction.

Step 2: derandomize the above statement:

Some known approaches to construct PRGs

m Pseudorandom restriction:

Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14,
HT17,ST18, ..

Step 1: show F simplifies under random restriction.
Step 2: derandomize the above statement:

show F simplifies under pseudorandom restriction as well.

Some known approaches to construct PRGs

m Pseudorandom restriction:

Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14,
HT17,ST18, ..

Step 1: show F simplifies under random restriction.
Step 2: derandomize the above statement:
show F simplifies under pseudorandom restriction as well.

Examples of F: AC®, CNFs, Combinatorial rectangles, Branching programs, ...

Some known approaches to construct PRGs

m Pseudorandom restriction:

Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14,
HT17,ST18, ..

Step 1: show F simplifies under random restriction.
Step 2: derandomize the above statement:
show F simplifies under pseudorandom restriction as well.

Examples of F: AC®, CNFs, Combinatorial rectangles, Branching programs, ...

= Consequence of this work:

Generic method to do step 2 for arbitrary F.

Fractional PRGs

fi{=1,13" = {-1,1)

Fractional PRGs

multi-linear extension

fi{=1,1}" > {-1,1} fiR" > R

Fractional PRGs

multi-linear extension

fi{=1,1}" > {-1,1} fiR" > R

Only consider pointsin [=1,1]" so f: [—-1,1]"— [—1,1]

Fractional PRGs

Equivalent definition of PRG:
X € {—1,1}" g-fools F if
[Ef(X)—f(0)| <e¢ VfEF

Fractional PRGs

Equivalent definition of PRG:
X € {—1,1}" g-fools F if
[Ef(X)—f(0)| <e¢ VfEF
because Ef (U,,) = f(EU,) = f(0)

Fractional PRGs

PRG: random variable X € {—1,1}" where |Ef(X) — f(0)| < ¢

Fractional PRGs

PRG: random variable X € {—1,1}" where |Ef(X) — f(0)| < ¢
Fractional PRG (f-PRG): random variable X € [—1,1]" where |Ef (X) — f(0)| < ¢

Fractional PRGs

PRG: random variable X € {—1,1}" where |Ef(X) — f(0)| < ¢
Fractional PRG (f-PRG): random variable X € [—1,1]" where |Ef (X) — f(0)| < ¢

1

-1

Fractional PRGs

PRG: random variable X € {—1,1}" where |Ef(X) — f(0)| < ¢
Fractional PRG (f-PRG): random variable X € [—1,1]" where |Ef (X) — f(0)| < ¢

1 1

1 -1
Trivial f-PRG: X = 0 ; we will rule it out later.

Fractional PRGs

PRG: random variable X € {—1,1}" where |Ef(X) — f(0)| < ¢
Fractional PRG (f-PRG): random variable X € [—1,1]" where |Ef (X) — f(0)| < ¢

1 -1
1 1
Y
[]
®
1 @ 1
1 -1
Trivial f-PRG: X = 0 ; we will rule it out later.
Question. Are f-PRGs easier to construct than PRGs?

Can f-PRGs be used to construct PRGs?

Fractional PRGs

How to convert X € [—1,1]"to X' € {—1,1}"*?

Fractional PRGs

How to convert X € [—1,1]"to X' € {—1,1}"*?

Main idea: do arandom walk that converges to {—1,1}"

Fractional PRGs

How to convert X € [—1,1]"to X' € {—1,1}"*?
Main idea: do arandom walk that converges to {—1,1}"

the steps of the random walk are from X

Fractional PRGs

How to convert X € [—1,1]"to X' € {—1,1}"*?
Main idea: do arandom walk that converges to {—1,1}"
the steps of the random walk are from X

Recall: f-PRG is X = (Xq1,*,X;) € [-1,1]" where |E f(X) — f(0)| < ¢

Trivial solution: X = 0

Fractional PRGs

How to convert X € [—1,1]"to X' € {—1,1}"*?
Main idea: do arandom walk that converges to {—1,1}"

the steps of the random walk are from X

Recall: f-PRG is X = (Xq1,*,X;) € [-1,1]" where |E f(X) — f(0)| < ¢

Trivial solution: X = 0

Need to enforce non-triviality: require E | X;|* > p foralli = 1, ...,n

Constructing PRGs from f-PRGs

Main theorem:

Suppose:

F: class of n-variate Boolean functions, closed under restrictions

Constructing PRGs from f-PRGs

Main theorem:

Suppose:

F: class of n-variate Boolean functions, closed under restrictions
Xe[-11]" |Ef(X)—f(0)|<e VfEeF

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
F: class of n-variate Boolean functions, closed under restrictions
Xe[-11]" |Ef(X)—f(0)|<e VfEeF
E|X;|?=pforalli=1,..,n

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
F: class of n-variate Boolean functions, closed under restrictions

Xe[-11]" |Ef(X)—f(0)|<e VfEeF
E|X;|?=pforalli=1,..,n

Then thereis X' = G(X?, ..., X)) such that X1, ..., Xt are independent copies of X,

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
F: class of n-variate Boolean functions, closed under restrictions

Xe[-11]" |Ef(X)—f(0)|<e VfEeF
E|X;|?=pforalli=1,..,n

Then thereis X' = G(X?, ..., X)) such that X1, ..., Xt are independent copies of X,

X e{-11}" |[Ef(X)—f(0)| <et VfEF

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
F: class of n-variate Boolean functions, closed under restrictions

Xe[-11]" |Ef(X)—f(0)|<e VfEeF
E|X;|?=pforalli=1,..,n

Then thereis X' = G(X?, ..., X)) such that X1, ..., Xt are independent copies of X,

X e{-11}" |[Ef(X)—f(0)| <et VfEF

0= 0 (Glog ()

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
F: class of n-variate Boolean functions, closed under restrictions
Xe[-11]" |Ef(X)—f(0)|<e VfEeF
E|X;|?=pforalli=1,..,n

Then thereis X' = G(X?, ..., X)) such that X1, ..., Xt are independent copies of X,

X e{-11}" |[Ef(X)—f(0)| <et VfEF

0= 0 (Glog ()

 If X has seed length s then X' has seed length ts

Random walk PRG: First step

Goal: use the f-PRG to define a random walk

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢
Equivalently: 1%t step from O

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢
Equivalently: 1%t step from O

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢
Equivalently: 1%t step from O

Question: what about the 29 step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢
Equivalently: 1%t step from O

Question: what about the 29 step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢
Equivalently: 1%t step from O

Question: what about the 29 step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢
Equivalently: 1%t step from O

Question: what about the 29 step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢
Equivalently: 1%t step from O

Question: what about the 29 step?

We have to assume the class is closed under restriction.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢

Equivalently: 1%t step from O .

Question: what about the 29 step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still < €: because function in scaled cube is in the
convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢

Equivalently: 1%t step from O . e

Question: what about the 29 step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still < €: because function in scaled cube is in the
convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢

Equivalently: 1%t step from O .

Question: what about the 29 step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still < €: because function in scaled cube is in the
convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢

Equivalently: 1%t step from O .

Question: what about the 29 step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still < €: because function in scaled cube is in the
convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢

Equivalently: 1%t step from O . °,

Question: what about the 29 step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still < €: because function in scaled cube is in the
convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢

Equivalently: 1%t step from O .,

Question: what about the 29 step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still < €: because function in scaled cube is in the
convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: X € [—1,1]* where |Ef(X) — f(0)]| < ¢

Equivalently: 1%t step from O

Question: what about the 29 step?

We have to assume the class is closed under restriction.

Lemma: In second step error is still < €: because function in scaled cube is in the
convex hull of restrictions of f.

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let X bearv.on [—1,1]

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let X bearv.on [—1,1]
Lemma: LetYy =0,Y; = Y1 + (1 — |Y;—1|)X; be a random walk with EX; = 0.

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let X be arv. on [—1,1]
Lemma: LetYy =0,Y; = Y1 + (1 — |Y;—1|)X; be a random walk with EX; = 0.

Then after O ([E|)1(|2 log e)) steps, wh.p 1 —|Y;| < ¢

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let X bearv.on [—1,1]
Lemma: LetYy =0,Y; = Y1 + (1 — |Y;—1|)X; be a random walk with EX; = 0.

Then after O ([E|)1(|2 log e)) steps, wh.p 1 —|Y;| < ¢

Proof: always we have 1— Y] < (1-1Y_1DA- X;)

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let X bearv.on [—1,1]
Lemma: LetYy =0,Y; = Y1 + (1 — |Y;—1|)X; be a random walk with EX; = 0.

Then after O ([E|)1(|2 log e)) steps, wh.p 1 —|Y;| < ¢

Proof: always we have 1— Y] < (1-1Y_1DA- X;)
E(1-1Y;]) <EQ@ - [Y;-1DE(- X;)

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let X be arv. on [—1,1]
Lemma: LetYy =0,Y; = Y1 + (1 — |Y;—1|)X; be a random walk with EX; = 0.

Then after O (IEI e log()) steps, wh.p 1 —|Y;| < ¢

Proof: always we have 1— Y] < (1-1Y_1DA- X;)
E(1-1Y;]) <EQ@ - [Y;-1DE(- X;)

2
E(1— X;) = 1, however, E\/(1 — X)<1—E%—1—c

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let X bearv.on [—1,1]
Lemma: LetYy =0,Y; = Y1 + (1 — |Y;—1|)X; be a random walk with EX; = 0.

Then after O (IEI e log()) steps, wh.p 1 —|Y;| < ¢

Proof: always we have 1— Y] < (1-1Y_1DA- X;)
E(1-1Y;]) <EQ@ - [Y;-1DE(- X;)

2
E(1— X;) = 1, however, E\/(1 — X)<1—E%—1—c

EVT— %] < EJT - [YiaD) (1) < (1 - o)’ .

Proof of main theorem: fast convergence

It’s enough to prove it for one dimension: so let X be arv. on [—1,1]
Lemma: LetYy =0,Y; = Y1 + (1 — |Y;—1|)X; be a random walk with EX; = 0.

Then after O (IEI e log()) steps, wh.p 1 —|Y;| < ¢

Proof: always we have 1— Y] < (1-1Y_1DA- X;)
E(1-1Y;]) <EQ@ - [Y;-1DE(- X;)

2
E(1— X;) = 1, however, E\/(1 — X)<1—E%—1—c

EVT— %] < EJT - [YiaD) (1) < (1 - o)’ .

Round to sign{Y;} once the random walk is close enough to the boundary

Construction of fractional PRGs

fi{=1,1}" - {-1,1}

Fourier coefficients: f(§) = E f(x) [[iesx; , S S [n]

Construction of fractional PRGs

f{=1,1}" > {-1,1}
Fourier coefficients: f(§) = E f(x) [[iesx; , S S [n]
f has bounded Fourier growth if

If(S)<ck vk=>1
S:|S|=k

c = nis a trivial bound.

Construction of fractional PRGs

* f{=11}" - (=11} with X5z If)| < ¥ Vk=1

Construction of fractional PRGs
* f{=11}" - (=11} with X5z If)| < ¥ Vk=1

e letY e {—1,1}"beac-biasrv.: |E[l;esYil <€, VS S n],S # ¢

Construction of fractional PRGs
* f{=11}" - (=11} with X5z If)| < ¥ Vk=1
e letY e {—1,1}"beac-biasrv.: |E[l;esYil <€, VS S n],S # ¢

. 1 1 1)1
e Construction: X = —Y , note: X € {——,—}
2C 2C 2cC

Construction of fractional PRGs

Proof :
fi{=11}" = (=11} with Xg. g If) < c* VEk =1

Construction: X = %Y Y e{—1,1}"ise-biasrv: |[E[l;esYi| <€, VS C [n],

Construction of fractional PRGs

Proof :
fi{=11}" = (=11} with Xg. g If) < c* VEk =1

Construction: X = %Y Y e{—1,1}"ise-biasrv: |[E[l;esYi| <€, VS C [n],

IEf(X) — f(O)] = [Zg2p F(S) - Eies X

Construction of fractional PRGs

Proof :
fi{=11}" = (=11} with Xg. g If) < c* VEk =1

Construction: X = %Y Y e{—1,1}"ise-biasrv: |[E[l;esYi| <€, VS C [n],

IEf(X) — f(O)] = [Zg2p F(S) - Eies X
= Zs¢®|f(5)||[|3 [lies Xil

Construction of fractional PRGs

Proof :

fi{=11}" = (=11} with Xg. g If) < c* VEk =1

Construction: X = %Y Y e{—1,1}"ise-biasrv: |[E[l;esYi| <€, VS C [n],

[Ef (X) = f(O)] = |Zs20f(S) - Ellies X
= ZS:t@ f(S) |[EHi€SXi|

. N
< Tsuol /O] (2) IEMies ¥

2C

Construction of fractional PRGs

Proof :
fi{=11}" = (=11} with Xg. g If) < c* VEk =1

Construction: X = %Y Y e{—1,1}"ise-biasrv: |[E[l;esYi| <€, VS C [n],

IEf(X) — f(O)] = |Zg2p F(S) - Ellies Xi|

= ZS:t@ f(S) |[EHi€SXi|
N

: s
< S50l O] (35) ETies Vi
< ool (2)" e

2C

Construction of fractional PRGs

Proof :
fi{=11}" = (=11} with Xg. g If) < c* VEk =1

Construction: X = %Y Y e{—1,1}"ise-biasrv: |[E[l;esYi| <€, VS C [n],

IEf(X) — f(O)] = |Zg2p F(S) - Ellies Xi|

= ZS:t@ f(S) |[EHi€SXi|
N

: s
< S50l O] (35) ETies Vi
< ool (2)" e

2C

k
1
< i 50
—_ Zkzlc 2 &E

Construction of fractional PRGs

Yoisi=k f) S cf vk=1, seed length = ¢ log (g) (loglogn + log (é))

Functions with sensitivity s: Prev. seed-length:

Gopalan-Servedio-Wigderson’16: C=S Zﬁlogn [Hatami-Tal 17]

Construction of fractional PRGs

Ysusi=k If)] <k vk =1, seed length = ¢ log (g) (loglogn + log (é))
Functions with sensitivity s: Prev. seed-length:
Gopalan-Servedio-Wigderson’16: C=S Zﬁlogn [Hatami-Tal 17]

Permutation branching programs of width w:
Reingold-Steinke-Vadhan’13: c=w?

Construction of fractional PRGs

Ysusi=k If)] <k vk =1, seed length = ¢ log (g) (loglogn + log (é))
Functions with sensitivity s: Prev. seed-length:
Gopalan-Servedio-Wigderson’16: C=S Zﬁlogn [Hatami-Tal 17]

Permutation branching programs of width w:
Reingold-Steinke-Vadhan’13: c=w?

Read once branching programs of width w:
Chattopadhyay-Hatami-Reingold-Tal’18: C = logW n

Construction of fractional PRGs

Ysisi=k [<c* vk=1, seed length = ¢? log (g) (loglogn + log (é))

Functions with sensitivity s:
Gopalan-Servedio-Wigderson’16: c=S5

Permutation branching programs of width w:

Reingold-Steinke-Vadhan’13: c=w?

Read once branching programs of width w:
Chattopadhyay-Hatami-Reingold-Tal’18: C = logW n
Circuits of depth d:

Tal'l7: c =log%s

Prev. seed-length:
2‘/§logn [Hatami-Tal 17]

Questions

* One way to view our construction is as follows

X1

Xt

e Put the f-PRGs as rows of a tXn matrix

Questions

* One way to view our construction is as follows

X1

Xt

e Put the f-PRGs as rows of a tXn matrix

* Apply a “random walk gadget” g on each column: g: [—-1,1]¢ - {—1,1}

Questions

* One way to view our construction is as follows

X1

Xt

e Put the f-PRGs as rows of a tXn matrix

* Apply a “random walk gadget” g on each column: g: [—-1,1]¢ - {—1,1}

G(Xy, i X0) = (9(Xa1 s Xe1)s s 9 (Xas s X))

Questions

* |f function class F is “simple”, can we terminate the random walk earlier?

Questions

* |f function class F is “simple”, can we terminate the random walk earlier?

e Can we construct hitting sets this way?

Thank you!

