Pseudorandom generators from polarizing random walks

Kaave Hosseini (UC San Diego)

Eshan Chattopadhyay (Cornell)
Pooya Hatami (UT Austin \rightarrow Ohio State)
Shachar Lovett (UC San Diego)

Outline

Introduce Pseudorandom generators (PRGs)

New approach to construct PRGs

Open problems

Introduce Pseudorandom generators(PRGs)

General formulation:

Introduce Pseudorandom generators(PRGs)

General formulation:
$\mathcal{F}=\{f: \mathcal{D} \longrightarrow \mathbb{R}\}$ family of functions
: tests

Introduce Pseudorandom generators(PRGs)

General formulation:
$\mathcal{F}=\{f: \mathcal{D} \longrightarrow \mathbb{R}\}$ family of functions
U : Random variable uniform over \mathcal{D}
: tests
: truly random object

Introduce Pseudorandom generators(PRGs)

General formulation:
$\mathcal{F}=\{f: \mathcal{D} \longrightarrow \mathbb{R}\}$ family of functions
U : Random variable uniform over \mathcal{D}
: tests
: truly random object

A random variable X over \mathcal{D}

Introduce Pseudorandom generators(PRGs)

General formulation:
$\mathcal{F}=\{f: \mathcal{D} \longrightarrow \mathbb{R}\}$ family of functions
U : Random variable uniform over \mathcal{D}
: tests
: truly random object

A random variable X over \mathcal{D} is ε-pseudorandom for $\mathcal{F}(X \varepsilon$-fools $\mathcal{F})$ if

$$
|\mathbb{E} f(X)-\mathbb{E} f(U)| \leq \varepsilon \quad \forall f \in \mathcal{F}
$$

Introduce Pseudorandom generators(PRGs)

General formulation:
$\mathcal{F}=\{f: \mathcal{D} \longrightarrow \mathbb{R}\}$ family of functions
U : Random variable uniform over \mathcal{D}
: tests
: truly random object

A random variable X over \mathcal{D} is ε-pseudorandom for $\mathcal{F}(X \varepsilon$-fools $\mathcal{F})$ if

$$
|\mathbb{E} f(X)-\mathbb{E} f(U)| \leq \varepsilon \quad \forall f \in \mathcal{F}
$$

Usually dealing with functions $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$
So we take $\mathcal{D}=\{-1,1\}^{n}$

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X :

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X :
An algorithm to sample random variable $X \in\{-1,1\}^{n}$

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X :
An algorithm to sample random variable $X \in\{-1,1\}^{n}$
Use few coin flips in the construction.
Algorithm should be "explicit"/ "easy to compute"

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X :
An algorithm to sample random variable $X \in\{-1,1\}^{n}$
Use few coin flips in the construction.
Algorithm should be "explicit"/ "easy to compute"

$$
G:\{-1,1\}^{s} \rightarrow\{-1,1\}^{n}
$$

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X :
An algorithm to sample random variable $X \in\{-1,1\}^{n}$
Use few coin flips in the construction.
Algorithm should be "explicit"/ "easy to compute"

$$
\begin{aligned}
& G:\{-1,1\}^{S} \rightarrow\{-1,1\}^{n} \\
& X=G\left(U_{S}\right) \text { where } U_{S} \text { is uniform over }\{-1,1\}^{S}
\end{aligned}
$$

Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable X :
An algorithm to sample random variable $X \in\{-1,1\}^{n}$
Use few coin flips in the construction.
Algorithm should be "explicit"/ "easy to compute"

$$
\begin{aligned}
& G:\{-1,1\}^{S} \rightarrow\{-1,1\}^{n} \\
& X=G\left(U_{S}\right) \text { where } U_{S} \text { is uniform over }\{-1,1\}^{s}
\end{aligned}
$$

s is called seed length

Example

Example 1:
Tests: \mathbb{F}_{2}^{n} characters

$$
\begin{aligned}
& \mathcal{F}=\left\{f(x)=\prod_{i \in S} x_{i} \quad: \quad S \subseteq[n]\right\} \\
& X: \varepsilon \text {-bias random variable }
\end{aligned}
$$

- PRGs with optimal seed length $O(\log (n / \varepsilon))$ are known.

Some known approaches to construct PRGs

- Use basic PRGs:

Viola[09]: \quad sum of a d many ε-biased PRGs fools degree- $d \mathbb{F}_{2}$-polynomials.

Some known approaches to construct PRGs

- Pseudorandom restriction:

Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14, HT17, ST18, ...

Step 1: show \mathcal{F} simplifies under random restriction.

Some known approaches to construct PRGs

- Pseudorandom restriction:

Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14, HT17, ST18, ...

Step 1: show \mathcal{F} simplifies under random restriction.
Step 2: derandomize the above statement:

Some known approaches to construct PRGs

- Pseudorandom restriction:

Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14, HT17, ST18, ...

Step 1: show \mathcal{F} simplifies under random restriction.
Step 2: derandomize the above statement:
show \mathcal{F} simplifies under pseudorandom restriction as well.

Some known approaches to construct PRGs

- Pseudorandom restriction:

Ajtai-Wigderson85, Ajt93, CR96, AAl+01, GMR+12, IMP12, GMR13, TX13, GW14, HT17, ST18, ...

Step 1: show \mathcal{F} simplifies under random restriction.
Step 2: derandomize the above statement:
show \mathcal{F} simplifies under pseudorandom restriction as well.
Examples of \mathcal{F} : $A C^{0}$, CNFs, Combinatorial rectangles, Branching programs, ...

Some known approaches to construct PRGs

- Pseudorandom restriction:

Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14, HT17, ST18, ...

Step 1: show \mathcal{F} simplifies under random restriction.
Step 2: derandomize the above statement:
show \mathcal{F} simplifies under pseudorandom restriction as well.
Examples of \mathcal{F} : $A C^{0}$, CNFs, Combinatorial rectangles, Branching programs, ...

- Consequence of this work:

Generic method to do step 2 for arbitrary \mathcal{F}.

Fractional PRGs
$f:\{-1,1\}^{n} \rightarrow\{-1,1\}$

Fractional PRGs

$$
f:\{-1,1\}^{n} \rightarrow\{-1,1\} \quad \xrightarrow{\text { multi-linear extension }} \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Fractional PRGs

$$
f:\{-1,1\}^{n} \rightarrow\{-1,1\} \quad \xrightarrow{\text { multi-linear extension }} \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Only consider points in $[-1,1]^{n}$ so $f:[-1,1]^{n} \rightarrow[-1,1]$

Fractional PRGs

Equivalent definition of PRG:
$X \in\{-1,1\}^{n} \varepsilon$-fools \mathcal{F} if

$$
|\mathbb{E} f(X)-f(0)| \leq \varepsilon, \quad \forall f \in \mathcal{F}
$$

Fractional PRGs

Equivalent definition of PRG:
$X \in\{-1,1\}^{n} \varepsilon$-fools \mathcal{F} if

$$
|\mathbb{E} f(X)-f(0)| \leq \varepsilon, \quad \forall f \in \mathcal{F}
$$

because $\mathbb{E} f\left(U_{n}\right)=f\left(\mathbb{E} U_{n}\right)=f(0)$

Fractional PRGs

PRG: random variable $X \in\{-1,1\}^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$

Fractional PRGs

PRG: random variable $X \in\{-1,1\}^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Fractional PRG (f-PRG): random variable $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$

Fractional PRGs

PRG: random variable $X \in\{-1,1\}^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Fractional PRG (f-PRG): random variable $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$

Fractional PRGs

PRG: random variable $X \in\{-1,1\}^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Fractional PRG (f-PRG): random variable $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$

Trivial f-PRG: $X \equiv 0$; we will rule it out later.

Fractional PRGs

PRG: random variable $X \in\{-1,1\}^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Fractional PRG (f-PRG): random variable $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$

Trivial f-PRG: $X \equiv 0$; we will rule it out later.
Question. Are f-PRGs easier to construct than PRGs?
Can f-PRGs be used to construct PRGs?

Fractional PRGs

How to convert $X \in[-1,1]^{n}$ to $X^{\prime} \in\{-1,1\}^{n}$?

Fractional PRGs

How to convert $X \in[-1,1]^{n}$ to $X^{\prime} \in\{-1,1\}^{n}$?
Main idea: do a random walk that converges to $\{-1,1\}^{n}$

Fractional PRGs

How to convert $X \in[-1,1]^{n}$ to $X^{\prime} \in\{-1,1\}^{n}$?
Main idea: do a random walk that converges to $\{-1,1\}^{n}$
the steps of the random walk are from X

Fractional PRGs

How to convert $X \in[-1,1]^{n}$ to $X^{\prime} \in\{-1,1\}^{n}$?
Main idea: do a random walk that converges to $\{-1,1\}^{n}$ the steps of the random walk are from X

Recall: f-PRG is $X=\left(X_{1}, \cdots, X_{n}\right) \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$ Trivial solution: $X \equiv 0$

Fractional PRGs

How to convert $X \in[-1,1]^{n}$ to $X^{\prime} \in\{-1,1\}^{n}$?
Main idea: do a random walk that converges to $\{-1,1\}^{n}$ the steps of the random walk are from X

Recall: f-PRG is $X=\left(X_{1}, \cdots, X_{n}\right) \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$ Trivial solution: $X \equiv 0$

Need to enforce non-triviality: require $\mathbb{E}\left|X_{i}\right|^{2} \geq p$ for all $i=1, \ldots, n$

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
\mathcal{F} : class of n-variate Boolean functions, closed under restrictions

Constructing PRGs from f-PRGs

Main theorem:
Suppose:
\mathcal{F} : class of n-variate Boolean functions, closed under restrictions

$$
X \in[-1,1]^{n}: \quad|\mathbb{E} f(X)-f(0)| \leq \varepsilon \quad \forall f \in \mathcal{F}
$$

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
\mathcal{F} : class of n-variate Boolean functions, closed under restrictions

$$
\begin{aligned}
& X \in[-1,1]^{n}: \quad|\mathbb{E} f(X)-f(0)| \leq \varepsilon \quad \forall f \in \mathcal{F} \\
& \mathbb{E}\left|X_{i}\right|^{2} \geq p \text { for all } i=1, \ldots, n
\end{aligned}
$$

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
\mathcal{F} : class of n-variate Boolean functions, closed under restrictions

$$
\begin{aligned}
& X \in[-1,1]^{n}: \quad|\mathbb{E} f(X)-f(0)| \leq \varepsilon \quad \forall f \in \mathcal{F} \\
& \mathbb{E}\left|X_{i}\right|^{2} \geq p \text { for all } i=1, \ldots, n
\end{aligned}
$$

Then there is $X^{\prime}=G\left(X^{1}, \ldots, X^{t}\right)$ such that X^{1}, \ldots, X^{t} are independent copies of X,

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
\mathcal{F} : class of n-variate Boolean functions, closed under restrictions

$$
\begin{aligned}
& X \in[-1,1]^{n}: \quad|\mathbb{E} f(X)-f(0)| \leq \varepsilon \quad \forall f \in \mathcal{F} \\
& \mathbb{E}\left|X_{i}\right|^{2} \geq p \text { for all } i=1, \ldots, n
\end{aligned}
$$

Then there is $X^{\prime}=G\left(X^{1}, \ldots, X^{t}\right)$ such that X^{1}, \ldots, X^{t} are independent copies of X,

$$
X^{\prime} \in\{-1,1\}^{n}:\left|\mathbb{E} f\left(X^{\prime}\right)-f(0)\right| \leq \varepsilon t \quad \forall f \in \mathcal{F}
$$

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
\mathcal{F} : class of n-variate Boolean functions, closed under restrictions

$$
\begin{aligned}
& X \in[-1,1]^{n}: \quad|\mathbb{E} f(X)-f(0)| \leq \varepsilon \quad \forall f \in \mathcal{F} \\
& \mathbb{E}\left|X_{i}\right|^{2} \geq p \text { for all } i=1, \ldots, n
\end{aligned}
$$

Then there is $X^{\prime}=G\left(X^{1}, \ldots, X^{t}\right)$ such that X^{1}, \ldots, X^{t} are independent copies of X,

$$
\begin{aligned}
& X^{\prime} \in\{-1,1\}^{n}:\left|\mathbb{E} f\left(X^{\prime}\right)-f(0)\right| \leq \varepsilon t \quad \forall f \in \mathcal{F} \\
& t=O\left(\frac{1}{p} \log \left(\frac{n}{\varepsilon}\right)\right)
\end{aligned}
$$

Constructing PRGs from f-PRGs

Main theorem:

Suppose:
\mathcal{F} : class of n-variate Boolean functions, closed under restrictions

$$
\begin{aligned}
& X \in[-1,1]^{n}:|\mathbb{E} f(X)-f(0)| \leq \varepsilon \quad \forall f \in \mathcal{F} \\
& \mathbb{E}\left|X_{i}\right|^{2} \geq p \text { for all } i=1, \ldots, n
\end{aligned}
$$

Then there is $X^{\prime}=G\left(X^{1}, \ldots, X^{t}\right)$ such that X^{1}, \ldots, X^{t} are independent copies of X,

$$
\begin{aligned}
& X^{\prime} \in\{-1,1\}^{n}:\left|\mathbb{E} f\left(X^{\prime}\right)-f(0)\right| \leq \varepsilon t \quad \forall f \in \mathcal{F} \\
& t=O\left(\frac{1}{p} \log \left(\frac{n}{\varepsilon}\right)\right)
\end{aligned}
$$

- If X has seed length s then X^{\prime} has seed length $t s$

Random walk PRG: First step

Goal: use the f-PRG to define a random walk

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

We have to assume the class is closed under restriction.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

We have to assume the class is closed under restriction.
Lemma: In second step error is still $\leq \varepsilon$: because function in scaled cube is in the convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

We have to assume the class is closed under restriction.
Lemma: In second step error is still $\leq \varepsilon$: because function in scaled cube is in the convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

We have to assume the class is closed under restriction.
Lemma: In second step error is still $\leq \varepsilon$: because function in scaled cube is in the convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

We have to assume the class is closed under restriction.
Lemma: In second step error is still $\leq \varepsilon$: because function in scaled cube is in the convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

We have to assume the class is closed under restriction.
Lemma: In second step error is still $\leq \varepsilon$: because function in scaled cube is in the convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

We have to assume the class is closed under restriction.
Lemma: In second step error is still $\leq \varepsilon$: because function in scaled cube is in the convex hull of restrictions of f.

Random walk PRG: First step

Goal: use the f-PRG to define a random walk
f-PRG: $X \in[-1,1]^{n}$ where $|\mathbb{E} f(X)-f(0)| \leq \varepsilon$
Equivalently: $1^{\text {st }}$ step from 0

Question: what about the $2^{\text {nd }}$ step?

We have to assume the class is closed under restriction.
Lemma: In second step error is still $\leq \varepsilon$: because function in scaled cube is in the convex hull of restrictions of f.

Proof of main theorem: fast convergence

It's enough to prove it for one dimension: so let X be a r.v. on $[-1,1]$

Proof of main theorem: fast convergence

It's enough to prove it for one dimension: so let X be a r.v. on $[-1,1]$
Lemma: Let $Y_{0}=0, Y_{t}=Y_{t-1}+\left(1-\left|Y_{t-1}\right|\right) X_{t}$ be a random walk with $\mathbb{E} X_{i}=0$.

Proof of main theorem: fast convergence

It's enough to prove it for one dimension: so let X be a r.v. on $[-1,1]$
Lemma: Let $Y_{0}=0, Y_{t}=Y_{t-1}+\left(1-\left|Y_{t-1}\right|\right) X_{t}$ be a random walk with $\mathbb{E} X_{i}=0$.
Then after $O\left(\frac{1}{\mathbb{E}|X|^{2}} \log \left(\frac{1}{\varepsilon}\right)\right)$ steps, w.h.p $1-\left|Y_{t}\right| \leq \varepsilon$

Proof of main theorem: fast convergence

It's enough to prove it for one dimension: so let X be a r.v. on $[-1,1]$
Lemma: Let $Y_{0}=0, Y_{t}=Y_{t-1}+\left(1-\left|Y_{t-1}\right|\right) X_{t}$ be a random walk with $\mathbb{E} X_{i}=0$.
Then after $O\left(\frac{1}{\mathbb{E}|X|^{2}} \log \left(\frac{1}{\varepsilon}\right)\right)$ steps, w.h.p $1-\left|Y_{t}\right| \leq \varepsilon$

Proof: always we have

$$
1-\left|Y_{i}\right|<\left(1-\left|Y_{i-1}\right|\right)\left(1-X_{i}\right)
$$

Proof of main theorem: fast convergence

It's enough to prove it for one dimension: so let X be a r.v. on $[-1,1]$
Lemma: Let $Y_{0}=0, Y_{t}=Y_{t-1}+\left(1-\left|Y_{t-1}\right|\right) X_{t}$ be a random walk with $\mathbb{E} X_{i}=0$.
Then after $O\left(\frac{1}{\mathbb{E}|X|^{2}} \log \left(\frac{1}{\varepsilon}\right)\right)$ steps, w.h.p $1-\left|Y_{t}\right| \leq \varepsilon$

Proof: always we have

$$
\begin{aligned}
& 1-\left|Y_{i}\right|<\left(1-\left|Y_{i-1}\right|\right)\left(1-X_{i}\right) \\
& \mathbb{E}\left(1-\left|Y_{i}\right|\right)<\mathbb{E}\left(1-\left|Y_{i-1}\right|\right) \mathbb{E}\left(1-X_{i}\right)
\end{aligned}
$$

Proof of main theorem: fast convergence

It's enough to prove it for one dimension: so let X be a r.v. on $[-1,1]$
Lemma: Let $Y_{0}=0, Y_{t}=Y_{t-1}+\left(1-\left|Y_{t-1}\right|\right) X_{t}$ be a random walk with $\mathbb{E} X_{i}=0$.
Then after $O\left(\frac{1}{\mathbb{E}|X|^{2}} \log \left(\frac{1}{\varepsilon}\right)\right)$ steps, w.h.p $1-\left|Y_{t}\right| \leq \varepsilon$

Proof: always we have

$$
\begin{aligned}
& 1-\left|Y_{i}\right|<\left(1-\left|Y_{i-1}\right|\right)\left(1-X_{i}\right) \\
& \mathbb{E}\left(1-\left|Y_{i}\right|\right)<\mathbb{E}\left(1-\left|Y_{i-1}\right|\right) \mathbb{E}\left(1-X_{i}\right)
\end{aligned}
$$

$\mathbb{E}\left(1-X_{i}\right)=1$, however, $\mathbb{E} \sqrt{\left(1-X_{i}\right)}<1-\frac{\mathbb{E} X_{i}^{2}}{8}=1-c$

Proof of main theorem: fast convergence

It's enough to prove it for one dimension: so let X be a r.v. on $[-1,1]$
Lemma: Let $Y_{0}=0, Y_{t}=Y_{t-1}+\left(1-\left|Y_{t-1}\right|\right) X_{t}$ be a random walk with $\mathbb{E} X_{i}=0$.
Then after $O\left(\frac{1}{\mathbb{E}|X|^{2}} \log \left(\frac{1}{\varepsilon}\right)\right)$ steps, w.h.p $1-\left|Y_{t}\right| \leq \varepsilon$

Proof: always we have

$$
\begin{aligned}
& 1-\left|Y_{i}\right|<\left(1-\left|Y_{i-1}\right|\right)\left(1-X_{i}\right) \\
& \mathbb{E}\left(1-\left|Y_{i}\right|\right)<\mathbb{E}\left(1-\left|Y_{i-1}\right|\right) \mathbb{E}\left(1-X_{i}\right)
\end{aligned}
$$

$$
\mathbb{E}\left(1-X_{i}\right)=1 \text {, however, } \mathbb{E} \sqrt{\left(1-X_{i}\right)}<1-\frac{\mathbb{E} X_{i}^{2}}{8}=1-c
$$

$$
\mathbb{E} \sqrt{1-\left|Y_{i}\right|}<\mathbb{E} \sqrt{\left(1-\left|Y_{i-1}\right|\right)}(1-c)<(1-c)^{i}
$$

Proof of main theorem: fast convergence

It's enough to prove it for one dimension: so let X be a r.v. on $[-1,1]$
Lemma: Let $Y_{0}=0, Y_{t}=Y_{t-1}+\left(1-\left|Y_{t-1}\right|\right) X_{t}$ be a random walk with $\mathbb{E} X_{i}=0$.
Then after $O\left(\frac{1}{\mathbb{E}|X|^{2}} \log \left(\frac{1}{\varepsilon}\right)\right)$ steps, w.h.p $1-\left|Y_{t}\right| \leq \varepsilon$

Proof: always we have

$$
\begin{aligned}
& 1-\left|Y_{i}\right|<\left(1-\left|Y_{i-1}\right|\right)\left(1-X_{i}\right) \\
& \mathbb{E}\left(1-\left|Y_{i}\right|\right)<\mathbb{E}\left(1-\left|Y_{i-1}\right|\right) \mathbb{E}\left(1-X_{i}\right)
\end{aligned}
$$

$\mathbb{E}\left(1-X_{i}\right)=1$, however, $\mathbb{E} \sqrt{\left(1-X_{i}\right)}<1-\frac{\mathbb{E} X_{i}^{2}}{8}=1-c$

$$
\mathbb{E} \sqrt{1-\left|Y_{i}\right|}<\mathbb{E} \sqrt{\left(1-\left|Y_{i-1}\right|\right)}(1-c)<(1-c)^{i}
$$

Round to $\operatorname{sign}\left\{Y_{t}\right\}$ once the random walk is close enough to the boundary

Construction of fractional PRGs

$$
f:\{-1,1\}^{n} \rightarrow\{-1,1\}
$$

Fourier coefficients: $\hat{f}(S)=\mathbb{E} f(x) \prod_{i \in S} x_{i}, \quad S \subseteq[n]$

Construction of fractional PRGs

$$
f:\{-1,1\}^{n} \rightarrow\{-1,1\}
$$

Fourier coefficients: $\hat{f}(S)=\mathbb{E} f(x) \prod_{i \in S} x_{i}, \quad S \subseteq[n]$
f has bounded Fourier growth if

$$
\sum_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1
$$

$\mathrm{c}=n$ is a trivial bound.

Construction of fractional PRGs

$\cdot f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\sum_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$

Construction of fractional PRGs

- $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\sum_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$
- Let $Y \in\{-1,1\}^{n}$ be a ε-bias r.v. : $\left|\mathbb{E} \prod_{i \in S} Y_{i}\right|<\varepsilon, \forall S \subseteq[n], S \neq \phi$

Construction of fractional PRGs

$\cdot f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\sum_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$

- Let $Y \in\{-1,1\}^{n}$ be a ε-bias r.v. : $\left|\mathbb{E} \prod_{i \in S} Y_{i}\right|<\varepsilon, \forall S \subseteq[n], S \neq \phi$
- Construction: $X=\frac{1}{2 c} Y$, note: $X \in\left\{-\frac{1}{2 c}, \frac{1}{2 c}\right\}^{n}$

Construction of fractional PRGs

Proof:
$f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\sum_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$
Construction: $X=\frac{1}{2 c} Y, Y \in\{-1,1\}^{n}$ is ε-bias r.v: $\left|\mathbb{E} \prod_{i \in S} Y_{i}\right|<\varepsilon, \forall S \subseteq[n]$,

Construction of fractional PRGs

Proof:
$f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\sum_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$
Construction: $X=\frac{1}{2 c} Y, Y \in\{-1,1\}^{n}$ is ε-bias r.v: $\left|\mathbb{E} \prod_{i \in S} Y_{i}\right|<\varepsilon, \forall S \subseteq[n]$,

$$
|\mathbb{E} f(X)-f(0)|=\left|\sum_{S \neq \varnothing} \hat{f}(S) \cdot \mathbb{E} \prod_{i \in S} X_{i}\right|
$$

Construction of fractional PRGs

Proof:
$f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\sum_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$
Construction: $X=\frac{1}{2 c} Y, Y \in\{-1,1\}^{n}$ is ε-bias r.v: $\left|\mathbb{E} \prod_{i \in S} Y_{i}\right|<\varepsilon, \forall S \subseteq[n]$,

$$
\begin{aligned}
|\mathbb{E} f(X)-f(0)| & =\left|\sum_{S \neq \emptyset} \hat{f}(S) \cdot \mathbb{E} \prod_{i \in S} X_{i}\right| \\
& \leq \sum_{S \neq \varnothing}|\hat{f}(S)|\left|\mathbb{E} \prod_{i \in S} X_{i}\right|
\end{aligned}
$$

Construction of fractional PRGs

Proof:
$f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\sum_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$
Construction: $X=\frac{1}{2 c} Y, Y \in\{-1,1\}^{n}$ is ε-bias r.v: $\left|\mathbb{E} \prod_{i \in S} Y_{i}\right|<\varepsilon, \forall S \subseteq[n]$,

$$
\begin{aligned}
|\mathbb{E} f(X)-f(0)| & =\left|\sum_{S \neq \emptyset} \hat{f}(S) \cdot \mathbb{E} \prod_{i \in S} X_{i}\right| \\
& \leq \sum_{S \neq \emptyset}|\hat{f}(S)|\left|\mathbb{E} \prod_{i \in S} X_{i}\right| \\
& \leq \sum_{S \neq \emptyset}|\hat{f}(S)|\left(\frac{1}{2 c}\right)^{|S|}\left|\mathbb{E} \prod_{i \in S} Y_{i}\right|
\end{aligned}
$$

Construction of fractional PRGs

Proof:
$f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\sum_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$
Construction: $X=\frac{1}{2 c} Y, Y \in\{-1,1\}^{n}$ is ε-bias r.v: $\left|\mathbb{E} \prod_{i \in S} Y_{i}\right|<\varepsilon, \forall S \subseteq[n]$,

$$
\begin{aligned}
|\mathbb{E} f(X)-f(0)| & =\left|\sum_{S \neq \emptyset} \hat{f}(S) \cdot \mathbb{E} \prod_{i \in S} X_{i}\right| \\
& \leq \sum_{S \neq \emptyset}|\hat{f}(S)|\left|\mathbb{E} \prod_{i \in S} X_{i}\right| \\
& \leq \sum_{S \neq \emptyset}|\hat{f}(S)|\left(\frac{1}{2 c}\right)^{|S|}\left|\mathbb{E} \prod_{i \in S} Y_{i}\right| \\
& \leq \sum_{S \neq \emptyset}|\hat{f}(S)|\left(\frac{1}{2 c}\right)^{|S|} \varepsilon
\end{aligned}
$$

Construction of fractional PRGs

Proof:
$f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\sum_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$
Construction: $X=\frac{1}{2 c} Y, Y \in\{-1,1\}^{n}$ is ε-bias r.v: $\left|\mathbb{E} \prod_{i \in S} Y_{i}\right|<\varepsilon, \forall S \subseteq[n]$,

$$
\begin{aligned}
|\mathbb{E} f(X)-f(0)| & =\left|\sum_{S \neq \emptyset} \hat{f}(S) \cdot \mathbb{E} \prod_{i \in S} X_{i}\right| \\
& \leq \sum_{S \neq \emptyset}|\hat{f}(S)|\left|\mathbb{E} \prod_{i \in S} X_{i}\right| \\
& \leq \sum_{S \neq \emptyset}|\hat{f}(S)|\left(\frac{1}{2 c}\right)^{|S|}\left|\mathbb{E} \prod_{i \in S} Y_{i}\right| \\
& \leq \sum_{S \neq \emptyset}|\hat{f}(S)|\left(\frac{1}{2 c}\right)^{|S|} \varepsilon \\
& \leq \sum_{k \geq 1} c^{k}\left(\frac{1}{2 c}\right)^{k} \varepsilon
\end{aligned}
$$

Construction of fractional PRGs

$\Sigma_{S:|| |=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$,
seed length $=c^{2} \log \left(\frac{n}{\epsilon}\right)\left(\log \log n+\log \left(\frac{1}{\epsilon}\right)\right)$

Functions with sensitivity s :
Gopalan-Servedio-Wigderson'16:

Prev. seed-length:
$2^{\sqrt{s}} \log n$ [Hatami-Tal 17]

Construction of fractional PRGs

$$
\Sigma_{s:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1, \quad \text { seed length }=c^{2} \log \left(\frac{n}{\epsilon}\right)\left(\log \log n+\log \left(\frac{1}{\epsilon}\right)\right)
$$

Functions with sensitivity s :
Gopalan-Servedio-Wigderson'16:

$$
c=s
$$

Prev. seed-length:
$2^{\sqrt{s}} \log n$ [Hatami-Tal 17]

Permutation branching programs of width w :
Reingold-Steinke-Vadhan'13:

$$
c=w^{2}
$$

Construction of fractional PRGs

$\Sigma_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$,
seed length $=c^{2} \log \left(\frac{n}{\epsilon}\right)\left(\log \log n+\log \left(\frac{1}{\epsilon}\right)\right)$

Functions with sensitivity s :
Gopalan-Servedio-Wigderson'16: $\quad c=s$
Permutation branching programs of width w :
Reingold-Steinke-Vadhan'13:

$$
c=w^{2}
$$

Read once branching programs of width w :
Chattopadhyay-Hatami-Reingold-Tal'18:

$$
c=\log ^{w} n
$$

Prev. seed-length:
$2^{\sqrt{s}} \log n$ [Hatami-Tal 17]

Construction of fractional PRGs

$\sum_{S:|S|=k}|\hat{f}(S)| \leq c^{k} \quad \forall k \geq 1$,

$$
\text { seed length }=c^{2} \log \left(\frac{n}{\epsilon}\right)\left(\log \log n+\log \left(\frac{1}{\epsilon}\right)\right)
$$

Functions with sensitivity s :
Gopalan-Servedio-Wigderson'16:

$$
c=s
$$

Prev. seed-length:
$2^{\sqrt{s}} \log n$ [Hatami-Tal 17]

Permutation branching programs of width w :
Reingold-Steinke-Vadhan'13: $\quad c=w^{2}$
Read once branching programs of width w :
Chattopadhyay-Hatami-Reingold-Tal'18:

$$
c=\log ^{w} n
$$

Circuits of depth d :
Tal'17:

$$
c=\log ^{d} s
$$

Questions

- One way to view our construction is as follows

X_{1}
\vdots
X_{t}

- Put the f-PRGs as rows of a $t \times n$ matrix

Questions

- One way to view our construction is as follows

		X_{1}	
\boldsymbol{g}	\boldsymbol{g}	\vdots	\boldsymbol{g}
		X_{t}	

- Put the f-PRGs as rows of a $t \times n$ matrix
- Apply a "random walk gadget" g on each column: $g:[-1,1]^{t} \rightarrow\{-1,1\}$

Questions

- One way to view our construction is as follows

		X_{1}	
\boldsymbol{g}	\boldsymbol{g}	\vdots	\boldsymbol{g}
		X_{t}	

- Put the f-PRGs as rows of a $t \times n$ matrix
- Apply a "random walk gadget" g on each column: $g:[-1,1]^{t} \rightarrow\{-1,1\}$

$$
G\left(X_{1}, \ldots, X_{t}\right)=\left(g\left(X_{1,1}, \ldots, X_{t, 1}\right), \ldots, g\left(X_{1, n}, \ldots, X_{t, n}\right)\right)
$$

Questions

- If function class \mathcal{F} is "simple", can we terminate the random walk earlier?

Questions

- If function class \mathcal{F} is "simple", can we terminate the random walk earlier?
- Can we construct hitting sets this way?

Thank you!

