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Introduce Pseudorandom generators(PRGs)

General formulation: 
ℱ = #:% ⟶ ℝ family of functions : tests
( : Random variable uniform over % : truly random object

A random variable ) over % is *-pseudorandom for ℱ () *-fools ℱ) if 
+# ) − +# ( ≤ * ∀# ∈ ℱ

Usually dealing with functions #: −1,1 2 → −1,1
So we take % = −1,1 2
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Introducing Pseudorandom generators(PRGs)

Goal: Construct random variable !:
An algorithm to sample random variable ! ∈ −1,1 '

Use few coin flips in the construction.
Algorithm should be “explicit”/ ”easy to compute”

(: −1,1 ) ⟶ −1,1 '

! = ( ,) where ,) is uniform over −1,1 )

- is called seed length



Example

Example 1: Tests: !"# characters
ℱ = & ' = ∏)∈+ ') ∶ - ⊆ /
0 ∶ 1-bias random variable

• PRGs with optimal seed length 2 log //1 are known.



Some known approaches to construct PRGs

§ Use basic PRGs:
Viola[09]: sum of a ! many "-biased PRGs fools degree-! #$-polynomials.
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§ Pseudorandom restriction:
Ajtai-Wigderson85, Ajt93, CR96, AAI+01, GMR+12, IMP12, GMR13, TX13, GW14, 
HT17, ST18, …

Step 1: show ℱ simplifies under random restriction.
Step 2: derandomize the above statement: 

show ℱ simplifies under pseudorandom restriction as well.
Examples of ℱ: "#$, CNFs, Combinatorial rectangles, Branching programs, …

§ Consequence of this work: 
Generic method to do step 2 for arbitrary ℱ.
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Fractional PRGs

PRG:  random variable ! ∈ −1,1 & where '( ! − ((0) ≤ -
Fractional PRG (f-PRG): random variable ! ∈ [−1,1]& where '( ! − ((0) ≤ -

Trivial f-PRG: ! ≡ 0 ; we will rule it out later.
Question. Are f-PRGs easier to construct than PRGs?

Can f-PRGs be used to construct PRGs?
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Fractional PRGs

How to convert ! ∈ −1,1 & to !' ∈ −1,1 &?
Main idea: do a random walk that converges to −1,1 &

the steps of the random walk are from !

Recall: f-PRG is ! = (!*,⋯ , !&) ∈ [−1,1]& where / 0 ! − 0(0) ≤ 3
Trivial solution: ! ≡ 0

Need to enforce non-triviality: require / !5 6 ≥ 8 for all 9 = 1,… , ;
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Main theorem:
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• If # has seed length C then #′ has seed length <C
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It’s enough to prove it for one dimension: so let ! be a r.v. on [−1,1]
Lemma: Let '( = 0 , '+ = '+,- + 1 − '+,- !+ be a random walk with /!0 = 0.

Then after 1 -
/ 2 3 log

-
7 steps, w.h.p 1 − '+ ≤ 9

Proof:  always we have 1 − |'0| < 1 − '0,- 1 − !0
/ 1 − '0 < / 1 − '0,- / 1 − !0

/ 1 − !0 = 1, however, / 1 − !0 < 1 − /2<3
= = 1 − >

/ 1 − |'0| < / (1 − |'0,-|) 1 − > < 1 − > 0 ∎
Round to sign{'+} once the random walk is close enough to the boundary

Proof of main theorem: fast convergence
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Construction of fractional PRGs

!: −1,1 & → {−1,1}

Fourier coefficients: *! + = - ! . ∏0∈2 .0 , + ⊆ [5]

! has bounded Fourier growth if

7
2: 2 89

| *! + | ≤ <9 ∀> ≥ 1

c = 5 is a trivial bound.
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• Let 6 ∈ −1,1 & be a 8-bias r.v. : 9∏;∈+ 6; < 8 , ∀0 ⊆ > , 0 ≠ @

• Construction: A = C
DE 6 , note: A ∈ − C

DE ,
C
DE

&
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5 log log 6 + log 8

5

Functions with sensitivity 9: Prev. seed-length:
Gopalan-Servedio-Wigderson’16: + = 9 2 < log 6 [Hatami-Tal 17]

Permutation branching programs of width =: 
Reingold-Steinke-Vadhan’13: + = =0

Read once branching programs of width =: 
Chattopadhyay-Hatami-Reingold-Tal’18: + = log> 6
Circuits of depth ?: 
Tal’17: + = log@ 9
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• Put the f-PRGs as rows of a !×# matrix
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• If function class ℱ is “simple”, can we terminate the random walk earlier?

• Can we construct hitting sets this way?

Questions



Thank you!


