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Now, moving onto non-convex problems...
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Non-Convex Is Hard!

Saddle points, Local Minima, Local Maxima
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2nd Order Necessary Condition

∇F (x?) = 0 ∇2F (x?)�0

2nd Order Sufficient Condition

∇F (x?) = 0 ∇2F (x?)�0
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Non-Convex Is Hard!

Additional complexity issues...

Optimization of a degree four polynomial: NP-hard [Hillar et
al., 2013]

Checking for sufficient optimality condition: co-NP-complete
[Murty et al., 1987]

Checking whether a point is not a local minimum:
NP-complete [Murty et al., 1987]
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All convex problems are the same,
while every non-convex problem is different.

Not sure who’s quote this is!
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(εg , εH)− Optimality

‖∇F (x)‖ ≤ εg and λmin(∇2F (x)) ≥ −εH
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Sad Note /: BFGS may fail on non-convex problems with
both exact line search [Mascarenhas, 2004] and inexact (e.g.,
Wolfe) variants [Dai, 2002]

Happy Note ,: BFGS dominates in many practical
non-convex applications
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Newton’s Method: Scalar Case

Finding a root of r : R→ R , i.e., find x? for which r(x?) = 0:

0 = r(x?) = r(x (k)) +
(
x? − x (k)

)
r ′(x (k)) + o(|x? − x (k)|)

0 = r(x (k)) +
(
x (k+1) − x (k)

)
r ′(x (k))

x (k+1) = x (k) − r(x (k))

r ′(x (k))
.
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Secant Method: Scalar Case

Finding a root of r : R→ R, i.e., find x? for which r(x?) = 0:

Approximate the derivative: r ′(x (k)) ≈ r(x (k))− r(x (k−1))

x (k) − x (k−1)

x (k+1) = x (k) −

(
x (k) − x (k−1)

r(x (k))− r(x (k−1))

)
r(x (k)).

Local convergence rate is

∣∣∣x (k+1) − x?
∣∣∣ ≤ C

∣∣∣x (k) − x?
∣∣∣

“Golden Ratio”︷ ︸︸ ︷
1 +
√

5

2 .

In contrast, rate of convergence of Newton is quadratic!
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Quasi-Newton Method

Quasi-Newton optimization methods extend secant method to
multivariable case!
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Quasi-Newton Method

For r(x) = f ′(x), we have

f ′′(x (k)) ≈ f ′(x (k))− f ′(x (k−1))

x (k) − x (k−1)
,

i.e.,

f ′′(x (k))
(
x (k) − x (k−1)

)
≈ f ′(x (k))− f ′(x (k−1)).
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Quasi-Newton Method

∇f (x + p) = ∇f (x) +∇2f (x)p +

∫ 1

0

[
∇2f (x + tp)−∇2f (x)

]
p dt

= ∇f (x) +∇2f (x)p + o(‖p‖),

i.e., when x = x(k),p = x(k−1) − x(k), and ‖p‖ � 1 , we have

∇2f (x(k))
(

x(k) − x(k−1)
)
≈
(
∇f (x(k))−∇f (x(k−1))

)
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Quasi-Newton Method

∇2f (x(k))
(

x(k) − x(k−1)
)
≈
(
∇f (x(k))−∇f (x(k−1))

)
So, look for H(k) ≈ ∇2f (x(k)) such that

H(k)
(

x(k) − x(k−1)
)

=
(
∇f (x(k))−∇f (x(k−1))

)
︸ ︷︷ ︸

Secant Condition
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Quasi-Newton Method: Another Interpretation

Another interpretation of the secant condition...
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Quasi-Newton Method: Another Interpretation

Recall:

Iterative Scheme

y(k) = argmin
x∈X

{
(x− x(k))Tg(k) +

1

2
(x− x(k))TH(k)(x− x(k))

}
x(k+1) = x(k) + αk

(
y(k) − x(k)

)
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Quasi-Newton Method: Another Interpretation

Suppose we have a H(k) and x(k+1)

How to update H(k) to obtain a new quadratic approximation
to F (x) at x(k+1)?

mk+1(p) , f (x(k+1)) +
〈
∇f (x(k+1)),p

〉
+

1

2

〈
p,H(k+1)p

〉

One reasonable requirement, suggested by Davidon, is

∇mk+1(0) = ∇f (x(k+1)) −→ trivially satisfied

∇mk+1(−αpk) = ∇f (x(k)) −→ secant condition
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Quasi-Newton Method: DFP

The revolution began with...

William C. Davidon

DFP: Davidon-Fletcher-Powell scheme



Intro Line-Search Based Methods Trust-Region Based Methods Discussion and Examples

Quasi-Newton Method

H(k)
(

x(k) − x(k−1)
)

=
(
∇f (x(k))−∇f (x(k−1))

)
.

d equations vs. d2 unknowns

The difference between QNMs boils down to how they update H(k)

(or its inverse)!
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Quasi-Newton Method

Typical notation in QN literature:

sk , x(k+1) − x(k)

yk , ∇f (x(k+1))−∇f (x(k))
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Quasi-Newton Method: BFGS

Updating B(k) ,
[
H(k)

]−1
:

min
B∈Rd×d

‖B− B(k)‖

s.t. B = BT , sk = Byk

With ‖A‖ = ‖W1/2AW1/2‖F for a particular W

B(k+1) =

(
I−

skyTk
yTk sk

)
B(k)

(
I−

skyTk
yTk sk

)
+

ykyTk
yTk sk

B(k) � 0 iff yTk sk > 0 (Curvature Condition) =⇒ Guaranteed
by appropriate line search, e.g., Armijo + (strong) Wolfe

Under strong convexity (or if iterates satisfy certain
properties), asymptotic super-linear rate of convergence
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Quasi-Newton Method: Limited Memory

General QNM Update:

B(k+1) = B(k) + [something]

Problem: Memory storage is O(d2)

Soution: Limited-Memory QNMs, which are low-storage
methods
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L-BFGS

Instead of storing the inverse Hessian B(k), L-BFGS maintains a
history of iterates and gradients as

{sk−m, sk−m−1, . . . , sk} ,
{yk−m, yk−m−1, . . . , yk} .

B(k) depends on B(k−1), yk−1 and sk−1.

B(k−1) depends on B(k−2), yk−2 and sk−2.

and so on...

So define B(k−1) implicitly in terms of B(k−1), yk−2 and sk−2.

We continue up to B(k−m), which is initialized to be γI.

These are used to implicitly do B(k)–vector products.

Linear rate of convergence
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L-BFGS

Curvature Condition:
〈
∇f (x(k+1))−∇f (x(k)), x(k+1) − x(k)

〉
> 0

If f (x) is (strictly) convex =⇒3

Otherwise, (strong) Wolfe-condition on α (nonlinear inequality)

〈∇f (x + αp),p〉 ≥ β 〈∇f (x),p〉 , β < 1

When g ≈ ∇f =⇒ noisy curvature estimate =⇒ many issues arise!
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L-BFGS [Byrd et al., 2014]

Decoupling of the stochastic gradient and curvature
estimations =⇒ different sample subsets for estimating yk

sk = x̄k − x̄k−1 where x̄k = 1
L

∑k
j=k−L+1 x(j).

yk = ∇2fSH
(x̄k)sk ≈ ∇fSH

(x̄k)−∇fSH
(x̄k−1).

Update H(k) every L ≥ 1 iterations

Under strong convexity, they show that 0 ≺ µ1I � H(k) � µ2I

Setting αk ∝ 1/k , they show

E(f (x(k))− f (x?)) ≤ C/k
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L-BFGS [Mokhtari and Ribeiro, 2014]

sk = x(k+1) − x(k)

Enforce gradient consistency, i.e., use the samples S:
yk = ∇fS(x(k+1))−∇fS(x(k)).

For some δ > 0, ŷk = yk − δsk
Update Bk+1 as in the usual case with sk and ŷk
Add regularization: B̂k+1 = Bk+1 + mI

Add regularization again:

(̂̂
Bk+1

)−1

=
(

B̂k+1

)−1
+ MI

Spectrum of
̂̂
Bk+1 is bounded above and away from zero

Strong convexity of each fi

δ < minx λmin(∇2fi (x)) =⇒ curvature condition holds

Setting αk ∝ 1/k , they show

E(f (x(k))− f (x?)) ≤ C/k
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L-BFGS [Moritz et al., 2015]

Combine the ideas of [Byrd et al., 2014] with variance
reduction of [Johnson and Zhang, 2013]

Recall SVRG: For s and k , inner and outer iteration counters,
respectively, estimate the gradient as

g(s) =
(
∇fj(x(s))−∇fj(x(k)) +∇F (x(k))

)
No need to diminish step-size any more!

Under strong convexity:

E(f (x(k))− f (x?)) ≤ ρkE(f (x(0))− f (x?)), ρ < 1

As in SVRG, convergence is with respect to the outer
iterations
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L-BFGS [Berahas et al., 2016, Berahas and Takáč, 2017]

Idea: Perform QN update on overlapping consecutive batches

Idea: Tk = Sk ∩ Sk+1 6= ∅

yk = ∇fOk
(x(k+1))−∇fOk

(x(k))

Using constant step-size α

Strongly convex:

E(f (x(k))− f (x?)) ≤ ρk
(
f (x(0))− f (x?)

)
+O(α)

Non-convex: Skip updating H(k) if yT
k sk ≤ ε ‖sk‖2

E

(
1

T

T−1∑
k=0

∥∥∥∇f (x(k))
∥∥∥2
)
≤ O

(
1

Tα

)
+O(α)

If α ≤ O(1/
√
T ) =⇒ min

k≤T−1
E
∥∥∥∇f (x(k))

∥∥∥2

≤ O
√

1

T
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Gauss-Newton

Problem

min
x∈Rd

F (x) = f (h(x))

h : Rd → Rp

f : Rp → R, and convex
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Gauss-Newton

Let Jh : Rd → Rp be the Jacobian of h, i.e., Jh(x) ∈ Rp×d .

∇F (x) = JTh (x)∇f (h(x))

∇2F (x) = JTh (x)∇2f (h(x))Jh(x) + ∂2h(x)∇f (h(x))

(Generalized) Gauss-Newton Matrix:

∇2F (x) ≈ JTh (x)∇2f (h(x))Jh(x)︸ ︷︷ ︸
G(x) , Gauss-Newton Matrix

� 0

(Generalized) Gauss-Newton Update:

G(x(k))p ≈ −∇F (x(k))
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Gauss-Newton

Another interpretation:

f (h(x)) ≈ f
(

h(x(k)) + Jh(x(k))
(

x− x(k)
))

, `(x; x(k))

∇f (h(x(k))) = ∇`(x(k); x(k)) = JT
h (x(k))∇f (h(x(k)))

∇2f (h(x(k))) ≈ ∇2`(x(k); x(k)) = JT
h (x(k))∇2f (h(x(k)))Jh(x(k)) = G(x(k))
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Gauss-Newton

(Generalized) Gauss-Newton Matrix

∇2F (x) ≈ JTh (x)∇2f (h(x))Jh(x)

Properties:

G(x) � 0, ∀x

In some applications, after computing
∇F (x) = JTh (x)∇f (h(x)), the approximation G(x) does not
involve any additional derivative evaluations

G(x) is a good approximation if ‖∂2h(x)∇f (h(x))‖ is small,
i.e.,

‖∇f (h(x))‖ is small, or

‖∂2h(x)‖ is small, i.e., h is nearly affine
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Gauss-Newton

Gauss-Newton Convergence

Under some regularity assumptions:

Damped Gauss-Newton is globally convergent, i.e.,
limk→∞

∥∥∇F (x(k))
∥∥ = 0

The rate of convergence can be shown to be linear

Local convergence (S(x) , ∂2h(x?)∇f (h(x?))):∥∥∥x(k+1) − x?
∥∥∥ ≤ ‖G(x?)‖ ‖S(x?)‖

∥∥∥x(k) − x?
∥∥∥+O

(∥∥∥x(k) − x?
∥∥∥2
)
,
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Gauss-Newton

Finite-Sum Problem

min
x∈Rd

F (x) =
n∑

i=1

fi (hi (x))

Machine Learning (e.g., deep/recurrent/reinforcement
learning): [Martens, 2010, Martens and Sutskever,
2011, Chapelle and Erhan, 2011, Wu et al., 2017, Botev et al.,
2017]... more on this later

Scientific Computing (e.g., PDE inverse-problems): [Doel
and Ascher, 2012, Roosta et al., 2014b, Roosta et al.,
2014a, Roosta et al., 2015, Haber et al., 2000, Haber et al.,
2012]
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PDE Inverse Problems with Many R.H.S

∇ · (x(z)∇ui (z)) = qi (z), z ∈ Ω

∂ui (z)

∂ν
= 0, z ∈ ∂Ω

 , i = 1, . . . , n, Ω ⊂ R2 or R3

(a) True x : 2D (b) True x : 3D



Intro Line-Search Based Methods Trust-Region Based Methods Discussion and Examples

Forward Problem

Discretize-Then-Optimize

vi = PiA
−1(x)qi + εi , i = 1, 2, . . . n, x ∈ Rd

n: No. of measurements

d : Mesh size
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Inverse Problem

εi ∼N (0,Σi )

⇓

fi (hi (x)) =‖Σ
− 1

2
i

(
PiA

−1(x)qi − vi
)︸ ︷︷ ︸

hi (x)

‖2

⇓

min
x

F (x) =
1

n

n∑
i=1

‖Σ−
1
2

i

(
PiA

−1(x)qi − vi
)
‖2

Calculating “A−1(x)qi” for each i is costly!
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A remedy: SAA

S ⊂ [n] & |S| = s

⇓

F (x) ≈ F̂s(x) =
1

|S|
∑
i∈S
‖Σ−

1
2

i

(
PiA

−1(x)qi − vi
)
‖2

2

Trace estimation: [Roosta and Ascher, 2015, Roosta et al., 2015]

Find s such that, for a given ε and δ, we get

Pr
(
|F̂s(x)− F (x)| ≤ εF (x)

)
≥ 1− δ
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n = 961, Noise 1%, σ1 = 0.1, σ2 = 1

Method Vanilla Sub-Sampled

PDE Solves 128,774 3,921

(c) True Model (d) Sub-Sampled GN
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n = 512, Noise 2% σI = 1, σII = .1

Method Vanilla Sub-Sampled

PDE Solves 45,056 2,264

(e) True Model (f) Sub-Sampled GN
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Natural Gradient

Cross Entropy Minimization

For px(z), a density parametrized by x, the cross-entropy minimization
with respect to a target density, px(z), is

min
x∈X
L(x) = −Ex (log px(z)) = −

∫
px(z) log px(z) dµ(z).

NB: px(z)dµ(z) can be the empirical measure over the training data.

Fisher Information Matrix

Suppose z ∼ px. Under some weak regularity assumptions:

F(x) , Ex

(
∇ log px(z) (∇ log px(z))T

)
= −Ex

(
∇2 log px(z)

)
.

Natural Gradient Descent

F(x(k))p(k) ≈ g(k) =⇒ x(k+1) = x(k) + α(k)p(k)
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Natural Gradient

Interpretation I:

min
x∈X
L(x) = −Ex (log px(z))

Natural Gradient vs. Newton’s Method

For a given x:

Hessian Matrix: ∇2L(x) = −Ex

(
∇2 log px(z)

)
Fisher Matrix: F(x) = −Ex

(
∇2 log px(z)

)
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Natural Gradient

Interpretation I:

Let px be the empirical measure over the given training set {zi}ni=1 where
zi ∼ px? for some true, but unknown, parameter x?, i.e., empirical risk
minimization:

min
x∈X
L(x) = −1

n

n∑
i=1

log px(zi )

Approximation I: Natural Gradient vs. Newton’s Method

For a given x:

Hessian: ∇2L(x) = −1

n

n∑
i=1

∇2 log px(zi ), zi ∼ px?

Approximate Fisher: F̂(x) = −1

n

n∑
i=1

∇2 log px(zi ), zi ∼ px
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Natural Gradient

Interpretation II:

min
x∈X
L(x) = −1

n

n∑
i=1

log px(zi )

In Gauss-Newton, we had L(x) = f (h(x)). Here, we can consider
f (t) = − log t ∈ R and h(x) = px(z) ∈ R. So,

G(x) = f ′′(h(x))∇h(x)∇h(x)T =
1

(px(z))2∇px(z) (∇px(z))T

=

(
1

px(z)
∇px(z)

)(
1

px(z)
∇px(z)

)T

= ∇ log px(z) (∇ log px(z))T

Approximation II: Natural Gradient vs. Gauss-Newton

G(x) = −1

n

n∑
i=1

∇ log px(zi ) (∇ log px(zi ))T , zi ∼ px?

F̂(x) = −1

n

n∑
i=1

∇ log px(zi ) (∇ log px(zi ))T , zi ∼ px
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Natural Gradient

Interpretation III:
More generally, consider fitting probabilistic models

min
x∈Rd

L(x) = L(px)

Recall: steepest descent in Euclidean space

Ideally, we want

p? = argmin
‖p‖≤1

L(x + p),

but it is easier to do

−∇L(x)

‖∇L(x)‖
= argmin
‖p‖≤1

〈∇L(x),p〉
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Natural Gradient

Interpretation III:

KullbackLeibler distance

For given x and x, the Kullback-Leibler distance from px to px is

KL(x ‖ x) , Ex

(
log

px(z)

px(z)

)
=

∫ (
log

px(z)

px(z)

)
px(z) dµ(z).

F(x) = ∇2
x KL(x ‖ x)|x=x

If F(x) � 0, then in a neighborhood of x, we have KL(x ‖ x) > 0, and

KL(x ‖ x) ≈ 1

2
(x− x)2 F(x) (x− x)
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Natural Gradient

Interpretation III:

Ideally, we want

p? = argmin
KL(x‖x+p)≤1

L(x + p)

But, if p� 1, we can approximate

F−1(x)∇L(x) ∝ argmin
pT F(x)p≤1

〈∇L(x),p〉
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Natural Gradient

Classical: [Amari, 1998]

Overview: [Martens, 2014]

On manifolds: [Song and Ermon, 2018]

Deep learning: [Pascanu and Bengio, 2013, Martens and
Grosse, 2015, Grosse and Salakhudinov, 2015]
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Problem Statement

Minimizing Finite Sum Problem

min
x∈X⊆Rd

F (x) =
1

n

n∑
i=1

fi (x)

fi : (non-)convex and smooth

n� 1 and/or d � 1
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Trust Region: [Sorensen, 1982, Conn et al., 2000]

s(k) = arg min
‖s‖≤∆k

〈
s,∇F (x(k))

〉
+

1

2

〈
s,∇2F (x(k))s

〉

Cubic Regularization: [Griewank, 1981, Nesterov et al., 2006,
Cartis et al., 2011a, Cartis et al., 2011b]

s(k) = arg min
s∈Rd

〈
s,∇F (x(k))

〉
+

1

2

〈
s,∇2F (x(k))s

〉
+
σk
3
‖s‖3
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Trust Region:

s(k) = arg min
‖s‖≤∆k

〈
s,∇F (x(k))

〉
+

1

2

〈
s,∇2F (x(k))s

〉

Cubic Regularization:

s(k) = arg min
s∈Rd

〈
s,∇F (x(k))

〉
+

1

2

〈
s,∇2F (x(k))s

〉
+
σk
3
‖s‖3
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Trust Region:

s(k) = arg min
‖s‖≤∆k

〈
s,∇F (x(k))

〉
+

1

2

〈
s,H(k)s

〉

Cubic Regularization:

s(k) = arg min
s∈Rd

〈
s,∇F (x(k))

〉
+

1

2

〈
s,H(k)s

〉
+
σk
3
‖s‖3
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To get iteration complexity, previous work required:∥∥∥(H(k) −∇2F (x(k))
)

s(k)
∥∥∥ ≤ C‖s(k)‖2 (1)

Stronger than “Dennis-Moré”

lim
k→∞

‖
(
H(x(k))−∇2F (x(k))

)
s(k)‖

‖s(k)‖
= 0

We relaxed (1) to∥∥∥(H(k) −∇2F (x(k))
)

s(k)
∥∥∥ ≤ ε‖s(k)‖ (2)

Quasi-Newton, Sketching, Sub-Sampling satisfy Dennis-Moré
and (2) but not necessarily (1)
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∥∥∥H(x)−∇2F (x)
∥∥∥ ≤ ε =⇒

∥∥∥ (H(x)−∇2F (x)
)

s
∥∥∥ ≤ ε‖s‖

H(x) =
1

|S|
∑
j∈S
∇2fj(x)
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Lemma (Uniform Sampling [Xu et al., 2017])

Suppose ‖∇2fi (x)‖ ≤ Ki , i = 1, 2, . . . , n. Let K = max
i=1,...,n

Ki .

Given any 0 < ε < 1, 0 < δ < 1, and x ∈ Rd , if

|S| ≥ 16K 2

ε2
log

2d

δ
,

then for

H(x) =
1

|S|
∑
j∈S
∇2fj(x),

we have

Pr
(
‖H(x)−∇2F (x)‖ ≤ ε

)
≥ 1− δ.

Only top eigenvalues/eigenvectors need to preserved.



Intro Line-Search Based Methods Trust-Region Based Methods Discussion and Examples

F (x) =
1

n

n∑
i=1

fi (aT
i x)

pi =
|f ′′i (aT

i x)|‖ai‖2
2∑n

j=1 |f ′′j (aT
j x)|‖aj‖2

2

H(x) =
1

|S|
∑
j∈S

1

npj
∇2fj(x)
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Lemma (Non-Uniform Sampling [Xu et al., 2017])

Suppose ‖∇2fi (x)‖ ≤ Ki , i = 1, 2, . . . , n. Let K̄ = 1
n

∑n
i=1 Ki .

Given any 0 < ε < 1, 0 < δ < 1, and x ∈ Rd , if

|S| ≥ 16K̄ 2

ε2
log

2d

δ
,

then for

H(x) =
1

|S|
∑
j∈S

1

npj
∇2fj(x),

we have

Pr
(
‖H(x)−∇2F (x)‖ ≤ ε

)
≥ 1− δ,
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1

n

n∑
i=1

Ki ≤ max
i=1,...,n

Ki
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Theorem ( [Xu et al., 2017])

If ε ∈ O(εH), then Stochastic TR terminates after

T ∈ O
(
max{ε−2

g ε−1
H , ε−3

H }
)
,

iterations, upon which, with high probability, we have that

‖∇F (x)‖ ≤ εg , and λmin(∇2F (x)) ≥ − (ε+ εH) .

This is tight! [Cartis et al., 2012]
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Theorem ( [Xu et al., 2017])

If ε ∈ O(εg , εH), then Stochastic ARC terminates after

T ∈ O
(

max{ε−3/2
g , ε−3

H }
)
,

iterations, upon which, with high probability, we have that

‖∇F (x)‖ ≤ εg , and λmin(∇2F (x)) ≥ − (ε+ εH) .

This is tight! [Cartis et al., 2012]



Intro Line-Search Based Methods Trust-Region Based Methods Discussion and Examples

For ε2
H = εg = ε

Stochastic TR: T ∈ O(ε−2.5)

Stochastic ARC: T ∈ O(ε−1.5)
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Outline

Part I: Convex
Smooth

Newton-CG

Non-Smooth

Proximal Newton
Semi-smooth Newton

Part II: Non-Convex
Line-Search Based Methods

L-BFGS
Gauss-Newton
Natural Gradient

Trust-Region Based Methods

Trust-Region
Cubic Regularization

Part III: Discussion and Examples
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But why 1st Order Methods?

Q: But Why 1st Order Methods?

Cheap Iterations

Easy To Implement

“Good” Worst-Case Complexities

Good Generalization
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But why Not?2nd Order Methods

Q: But Why Not 2nd Order Methods?

///////Cheap Expensive Iterations

/////Easy Hard To Implement

/////////“Good” “Bad” Worst-Case Complexities

//////Good Bad Generalization
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Our Goal...

Goal: Improve 2nd Order Methods...

Cheap ////////////Expensive Iterations

Easy//////Hard To Use

“Good” ////////“Bad” Average(?)-Case Complexities

Good /////Bad Generalization
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Our Goal..

Any Other Advantages?

Effective Iterations ⇒ Less Iterations ⇒ Less Communications

Saddle Points For Non-Convex Problems

Less Sensitive to Parameter Tuning

Less Sensitive to Initialization
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Simulations: `2 Regularized LR

F (x) =
1

n

n∑
i=1

(
log
(

1 + exp(aT
i x)
)
− bia

T
i x
)

+
λ

2
‖x‖2

Data n p nnz κ(F )

D1 106 104 0.02% ≈ 104

D2 5× 104 5× 103 Dense ≈ 106

D3 107 2× 104 0.006% ≈ 1010
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D1, n = 106, p = 104, sparsity : 0.02%, κ ≈ 104

(g) Function Relative Error
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D2, n = 5× 104, p = 5× 103, sparsity : Dense, κ ≈ 106

(i) Function Relative Error
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D3, n = 107, p = 2× 104, sparsity : 0.006%, κ ≈ 1010

(k) Function Relative Error
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Newton GPU vs. TensorFlow

Data: Cover Type, n = 4.5× 105, d = 378
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Newton GPU vs. TensorFlow

Data: Newsgroup20, n = 104, d = 106
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Figure: Skew Param = 0
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Figure: Skew Param = 2
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Figure: Skew Param = 4
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Figure: Skew Param = 6
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Figure: Skew Param = 8
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Figure: Skew Param = 9
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Numerical Examples: Deep Learning

Dataset Size Network (# parameters)
curves 20, 000 784-400-200-100-50-25-6 842, 340
Cifar10 50, 000 ResNet18 270, 896
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Deep Auto-Encoder
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Deep Auto-Encoder
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Deep Auto-Encoder
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Deep Auto-Encoder
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Deep Auto-Encoder
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Deep Auto-Encoder

10
0

10
5

10
10

# of Props

10
-1

10
0

10
1

10
2

10
3

T
e
s
t 
e
rr

p
r

Autoencoder: curves

Figure: Scaled Random Initialization



Intro Line-Search Based Methods Trust-Region Based Methods Discussion and Examples

Is it all rosie?
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ResNet18
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ResNet18
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Worst Case Complexity

My to pick with worst case complexity results!!!
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Worst Case Complexity
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Worst Case Complexity
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Worst Case Complexity
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Worst Case Complexity

Q: What do “Newton’s method” and “air travel” have in
common?

A: Both are very fast, but their worst-case is bad!!!
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THANK YOU!
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