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Now, moving onto non-convex problems...

. Non-convex
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Non-Convex Is Hard!

@ Saddle points, Local Minima, Local Maxima
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@ 2nd Order Necessary Condition

VF(x*)=0 V2F(x*)=0

@ 2nd Order Sufficient Condition

VF(x*)=0 V2F(x*)~0
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Non-Convex Is Hard!

@ Additional complexity issues...

o Optimization of a degree four polynomial: NP-hard [Hillar et
al., 2013]

e Checking for sufficient optimality condition: co-NP-complete
[Murty et al., 1987]

o Checking whether a point is not a local minimum:
NP-complete [Murty et al., 1987]



All convex problems are the same,
while every non-convex problem is different.

Not sure who's quote this is!
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( , )— Optimality

IVFx)l[ < e and  Amin(VEF(x)) = —cn
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@ Part II: Non-Convex
o Line-Search Based Methods
e L-BFGS
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o Sad Note ®: BFGS may fail on non-convex problems with
both exact line search [Mascarenhas, 2004] and inexact (e.g.,
Wolfe) variants [Dai, 2002]

o Happy Note ®: BFGS dominates in many practical
non-convex applications
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Newton's Method: Scalar Case

Finding a root of r : R — R, i.e., find x* for which r(x*) = 0:

0= r(x*) = r(x) + (X* - x(k)) (x5 + o(|x* — x(9))
0=r(xM)+ (X(Hl) - x(k)> r'(xF)

k) f(X(k))

(k+1) -
x r'(x(K)’

:X(
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Secant Method: Scalar Case

Finding a root of r : R — R, i.e., find x* for which r(x*) = 0:

r(x(k)) - r(x(k_l))

Approximate the derivative: — r'(x'*) 0 (=D

(k) _ y(k=1)
(k+1) — (k) _ X X (k)
% =x (r(x(k))—r(x(kl))> r(x)).

Local convergence rate is

“Golden Ratio”

1++5
2

‘X(kJrl) X

<C ‘x(k) —x*

In contrast, rate of convergence of Newton is quadratic!
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Quasi-Newton Method

Quasi-Newton optimization methods extend secant method to
multivariable case!
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Quasi-Newton Method

For r(x) = f'(x), we have

f/(X(k)) _ f/(X(k—l))

10 (k)Y ~
PO — @

£ (xR (X(k) _ X(k71)> ~ £/(xU) — f(x (kD).
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Quasi-Newton Method

Vi(x+p) = VF(x) + V3F(x)p + /1 [V2f(x+ tp) — V2f(x)] p dt
0
= VF(x) + V£ (x)p + o([[pl)).

i.e., when x = x(K) p = x(k=1) — x(K) and ||p|| < 1, we have

V2 (M) (x4) XD~ (V) - TrxD)
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Quasi-Newton Method

V2£(x(9) (x(k) - x(k—1>) ~ (Vf(x(k)) - w(x<k—1>))
So, look for H() =~ V2f(x(K) such that

H() <X(k) _ X(k—l)) _ (vf(x(k)) _ Vf(x(k_l)))

(&

TV
Secant Condition
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Quasi-Newton Method: Another Interpretation

Another interpretation of the secant condition...
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Quasi-Newton Method: Another Interpretation

Recall:

Iterative Scheme

y*) = argmin {(x — x(NTglh) 4 %(x —xNTH®) (x — x(k))}
xeX




Line-Search Based Methods
0000000000 ®00000000000

Quasi-Newton Method: Another Interpretation

@ Suppose we have a H(¥) and x(k+1)

@ How to update H(K) to obtain a new quadratic approximation
to F(x) at x(kt1)?

1
mis1(p) £ F(xHD) 4 <Vf(x(k+1)), p> 4= <p, H(k+1)p>
One reasonable requirement, suggested by Davidon, is

o Vmy;1(0) = VF(xk+t1)) — trivially satisfied

o Vmyi1(—apy) = VF(x(K) — secant condition
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Quasi-Newton Method:

The revolution began with...

William C. Davidon

DFP: Davidon-Fletcher-Powell scheme
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Quasi-Newton Method

H() <x(k) - x(k_1)> = (Vf(x(k)) - Vf(x(k_l))> .

d equations vs. d? unknowns

The difference between QNMs boils down to how they update H()
(or its inverse)!
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Quasi-Newton Method

Typical notation in QN literature:
si 2 x(kt1) _ x(K)

yi 2 VF(x*D) - vr(x()
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Quasi-Newton Method:

Updating B(¥) £ [H()] ™.

min  ||B—B®)|
BeRdxd

st. B=B', s,=By

o With ||A|| = |[WY2AW/2||¢ for a particular W

B(k+1) _ (H B sky[> (k) <H B sw[) N o
yls I's I's
k Sk Yy Sk Yy Sk

o B(K) » 0 iff y/s, > 0 (Curvature Condition) == Guaranteed
by appropriate line search, e.g., Armijo + (strong) Wolfe

@ Under strong convexity (or if iterates satisfy certain
properties), asymptotic super-linear rate of convergence
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Quasi-Newton Method: Limited Memory

General QNM Update:
B(-+1) = B(K) 4 [something]

o Problem: Memory storage is O(d?)

@ Soution: Limited-Memory QNMs, which are low-storage
methods
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L-BFGS

Instead of storing the inverse Hessian B(K), L-BFGS maintains a
history of iterates and gradients as

{Skfma Sk—m—1, -+, Sk},

{Yk=m> Yk=m—1, -+ Yk} -

B(K) depends on B(k—1), Yik—1 and sg_1.

B(k-1) depends on B(k-2), Yi_2 and sg_o.

@ and so on...

So define B(k=1) implicitly in terms of B(=1) 'y, 5 and s;_».
We continue up to B~ which is initialized to be ~I.

These are used to implicitly do B(K)—vector products.

@ Linear rate of convergence
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L-BFGS

Curvature Condition: (Vf(x(kt1)) — Vf(x(K), x(k+1) — x()) > 0

o If f(x) is (strictly) convex = v

@ Otherwise, (strong) Wolfe-condition on « (nonlinear inequality)
(Vf(x+ap).p) > B(Vf(x).p), B <1

@ When g = Vf = noisy curvature estimate = many issues arise!
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L-BFGS

Decoupling of the stochastic gradient and curvature
estimations = different sample subsets for estimating y

@ S, = )_(k — )_(k,1 where )_(k = %Zf:kaJrl X(J)
Yk = VZfSH ()‘(k)sk ~ VfSH ()_(k) — Vf:gH ()_(k_l).
Update H) every L > 1 iterations

Under strong convexity, they show that 0 < izl < HK) <yl

Setting o, ox 1/k, they show

E(f(xK) — £(x*)) < C/k
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L-BFGS

o s, = x(kt) _ x(0)

@ Enforce gradient consistency, i.e., use the samples S:
yi = Vis(x() — Vis(x()).

@ For some § > 0, yx = yx — 08k

@ Update By, 1 as in the usual case with s, and ¥y

@ Add regularization: §k+1 = Byi1 + ml

= -1 ~ -1
o Add regularization again: <Bk+1> = (Bk+1> + Ml

e Spectrum of Ekﬂ is bounded above and away from zero
@ Strong convexity of each f;
§ < miny Amin(V2£i(x)) == curvature condition holds
Setting ax ox 1/k, they show

E(f(xK) — £(x*)) < C/k
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L-BFGS

e Combine the ideas of [Byrd et al., 2014] with variance
reduction of [Johnson and Zhang, 2013]

e Recall SVRG: For s and k, inner and outer iteration counters,
respectively, estimate the gradient as

g = (VA(®) - V() + VF(x))
o No need to diminish step-size any more!
@ Under strong convexity:
E(f(x)) — f(x")) < p'E(F(x@) —f(x")), p<1

@ As in SVRG, convergence is with respect to the outer
iterations
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L-BFGS

@ Idea: Perform QN update on overlapping consecutive batches
@ Ildea: T =S NSki1 #0

® yi = Vo, (xT1) — Vo, (x)

@ Using constant step-size o

e Strongly convex:

E(F(x9) — £(x')) < o (F<O) = 7)) + Oa)

o Non-convex: Skip updating H®) if y[s, < ¢ lIskll®

< ZHfo(k ”><o< )+0( )

Ifa < O(1/VT) = min E Hv;f(x(”)H2 < Oﬁ
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o Part II: Non-Convex
o Line-Search Based Methods
o
o Gauss-Newton
]
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Gauss-Newton

Problem

min F(x) = f(h(x)

e h:RI - RP

o f:RP — R, and convex
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Gauss-Newton

Let J, : RY — RP be the Jacobian of h, i.e., J,(x) € RP*9,
VF(x) = J,] (x)Vf(h(x))
V2F(x) = J| (x)V2f(h(x))Jn(x) + 0%h(x) V£ (h(x))
(Generalized) Gauss-Newton Matrix:

V2F(x)~ J](x)V2Ff(h(x))JIn(x) =0

G(x) £ Gauss-Newton Matrix

(Generalized) Gauss-Newton Update:

G(xp ~ —VF(xK)
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Gauss-Newton

Another interpretation:
f(h(x)) ~ f (h(x(k)) + Jn(x19) (x - x(k)>) 2 p(x: x®)
V(h(x®))) = Ve(x");x®) = 37 (x)VF(h(x))

V2 (h(x)) = V2e(x"); 1) = 37 (") V2 (h(x))Jn () = G(x1)
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Gauss-Newton

(Generalized) Gauss-Newton Matrix

VEF(x) = Jy (x)V2£ (h(x))Jn(x)

Properties:

e G(x) = 0, V¥x

@ In some applications, after computing
VF(x) = J/] (x)Vf(h(x)), the approximation G(x) does not
involve any additional derivative evaluations

o G(x) is a good approximation if ||92h(x)Vf(h(x))|| is small,
ie.,

o [[VF(h(x))|l is small, or

o ||9%h(x)]| is small, i.e., h is nearly affine
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Gauss-Newton

Gauss-Newton Convergence

Under some regularity assumptions:

@ Damped Gauss-Newton is globally convergent, i.e.,
limy—oo [[VF(xR)]| =0

@ The rate of convergence can be shown to be linear

o Local convergence (S(x) = 9%h(x*)Vf(h(x*))):

Hx(k+1) x*

< IG(x)I| 1S ()] || — x*

+0 <Hx(k) — x*

)

v
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Gauss-Newton

Finite-Sum Problem

min F(x) = Z fi(hi(x))

xeR4

@ Machine Learning (e.g., deep/recurrent/reinforcement
learning): [Martens, 2010, Martens and Sutskever,
2011, Chapelle and Erhan, 2011, Wu et al., 2017, Botev et al.,
2017]... more on this later

e Scientific Computing (e.g., PDE inverse-problems): [Doel
and Ascher, 2012, Roosta et al., 2014b, Roosta et al.,
2014a, Roosta et al., 2015, Haber et al., 2000, Haber et al.,
2012]
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PDE Inverse Problems with Many R.H.S

V- (x(2)Vui(2)) = qi(z), z€Q

i=1,...,n, Q 2 3
ui(2) N sooo,n, QCRor R

ov

=0, z €00

0.2
0.4
0.6

-0.8

(a) True x: 2D (b) True x: 3D
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Forward Problem

Discretize-Then-Optimize

v = P,A_l(x)q,- +e€, i=1,2,...n, xeR?

@ n: No. of measurements

@ d: Mesh size
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Inverse Problem

€; NN(O, Z,’)

()
F(hi(x) =l =5 2 (PAT (x)a; — vi) |
h;(x)
\[8

mlnF ZHZ (x)ai —v;) [&

Calculating “A~%(x)q," for each i is costly!
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A remedy: SAA

Scn&ls|=s
U

Fx) = ZHX 2 (PA () — i) [3
sl

ieS

Find s such that, for a given € and §, we get

Pr (|ﬁ5(x) ~F(x)| < eF(x)) >1-4
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n = 961, Noise 1%, 0; = 0.1, 0o =1

Method

Vanilla

Sub-Sampled

PDE Solves

128,774 3,921

) True Model

0
-0.2
0.4
-06
-0.8

-1

(d) Sub-Sampled GN
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n=>512, Noise 2% o) =1, oy = .1

Method

Vanilla

Sub-Sampled

PDE Solves

45,056

2,264

&

(e) True Model

Lo

(f) Sub-Sampled GN
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@ Part II: Non-Convex
o Line-Search Based Methods
o

°
o Natural Gradient
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Natural Gradient

Cross Entropy Minimization

For px(z), a density parametrized by x, the cross-entropy minimization
with respect to a target density, px(z), is

min £(x) = ~Ex (g px(z)) = ~ [ px(2) 108 pu(z) du(z).

NB: p,(z)du(z) can be the empirical measure over the training data.

Fisher Information Matrix

Suppose z ~ p,. Under some weak regularity assumptions:

F(x) 2 B (Vlog pu(2) (V log pu(2)) ) = —E, (V2log py(=)) .

Natural Gradient Descent

F(X(k))p(k) ~ g(k) —= x(k+1) = x(k) _|_ a(k)p(k)
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Natural Gradient

Interpretation |:

min £(x) = —E, (log px(2))

Natural Gradient vs. Newton's Method

For a given x:

Hessian Matrix: V2£(x) = —E, (V2 log p«(z))
Fisher Matrix: F(x) =—-Ex (V2 log px(z))
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Natural Gradient

Interpretation I:

Let py be the empirical measure over the given training set {z;};_, where
z; ~ py~ for some true, but unknown, parameter x*, i.e., empirical risk
minimization:

min £(x) = —*Z|ngx

xeX

Approximation I: Natural Gradient vs. Newton's Method

For a given x:

n
Hessian: V2L(x) = —% sz log px(zi), zi ~ px

. 1 <
Approximate Fisher: F(x) = - Z V2log pe(zi), zi ~ px
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Natural Gradient

Interpretation IlI:
min £L(x) = — = Z log px(z

xeX
In Gauss-Newton, we had £(x) = f(h(x)). Here, we can consider
f(t) = —logt € R and h(x) = p«(z) € R. So,

G(x) = f"(h(x))Vh(x)Vh(x)" = %Vpx(Z) (Vpe(2)
(px(2))

- (5 90) (1 vn) | o pu(2) (Vlog ()

Approximation Il: Natural Gradient vs. Gauss-Newton

1 n
G(x) = —— > Vliogpu(z) (Viog pu(z:)) ", zi ~ puc

i=1

:—*ZWogpx ) (Viogpu(z:)",  zi ~ pu
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Natural Gradient

Interpretation IllI:
More generally, consider fitting probabilistic models

min £(x) = L(p)

Recall: steepest descent in Euclidean space
Ideally, we want

p* = argmin L(x + p),
llplI<1

but it is easier to do

Lﬁ(x) = argmin X
[OLCo ~ JEmin (V). P
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Natural Gradient

Interpretation IllI:

KullbackLeibler distance

For given x and x, the Kullback-Leibler distance from py to py is

KL(x || ) £ T, <|og ;E;) -/ (log ’;8) pe(2) dus(2).

F(x) = Vi KL(x || x)|x=
If F(x) > 0, then in a neighborhood of x, we have KL(x || x) > 0, and

KL(x || x) = 5 (x = x)* F(x) (x — x)

N =
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Natural Gradient

Interpretation llI:
Ideally, we want

p*= argmin L(x+p)
KL(x|lx+p)<1

But, if p < 1, we can approximate

F1(x)VL(x) < argmin (VL(x),p)

PTF(x)p<1
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Natural Gradient

Classical: [Amari, 1998]
Overview: [Martens, 2014]
On manifolds: [Song and Ermon, 2018]

Deep learning: [Pascanu and Bengio, 2013, Martens and
Grosse, 2015, Grosse and Salakhudinov, 2015]
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@ Part II: Non-Convex
)

o Trust-Region Based Methods

@ Trust-Region
o Cubic Regularization
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Problem Statement

Minimizing Finite Sum Problem
1 n
1 F = — f;'
min  F(x) p ;1 (x)

x€XCRY

e fi: (non-)convex and smooth
@ n>1and/ord>1
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@ Trust Region: [Sorensen, 1982, Conn et al., 2000]
(k) _ - Ky 4 1 2 (5 (k)
s/ =arg min <s, VF(x )> +5 <S,V F(x )s>

sl <Ak

e Cubic Regularization: [Griewank, 1981, Nesterov et al., 2006,
Cartis et al., 2011a, Cartis et al., 2011b]

1 o
(k) — i (k) hd 2F(x(k) kiisII3
s arg min <s, VF(x )> t5 <s, V<F(x )s> +3 Is||
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@ Trust Region:

s(k) = arg min <s, VF(x(k))> + % <s, VzF(x(k))s>

lIsll<Ax

@ Cubic Regularization:

) = arg min (5, VF(M)) + 2 (s, V2F(x0)s) + %]

in
s€Rd
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@ Trust Region:

s = arg min <s, VF(x(k))> + % <s, H(k)s>

lIsll<Ax

@ Cubic Regularization:

s¥) — arg m <s, VF(x<k))> + % <s, H(k)s> + %HS\P

in
scRd
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@ To get iteration complexity, previous work required:

| (W9 = v2F)) O < cls@P )

@ Stronger than “Dennis-Moré”

I (H(x(k)) — V2F(x(k))) s(K)ll

lim =0
e EQI
e We relaxed (1) to
| (H® = v2F(x®)) s9)| < es®] @)

@ Quasi-Newton, Sketching, Sub-Sampling satisfy Dennis-Moré
and (2) but not necessarily (1)
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Lemma ( Sampling )
Suppose | V2fi(x)|| < Ki, i =1,2,...,n. Let K = max K.

i=1,...,n

Givenany0<e<1,0<d <1, and x € RY, if

1 K2 2d
81> 20 10g 29,
)
then for
V2
) |S|Z
JES
we have

Pr(||H(x) ~V2E(x)|| < e) >1-4.

@ Only top eigenvalues/eigenvectors need to preserved.
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b= £ (a] x)|[[ail13
=
PO CHESIENE

‘vaz
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Lemma ( Sampling

Suppose | V2£(x)|| < Ki, i=1,2,...,n. Let K =131 | K.
Givenany0<e<1,0<d <1, andxeRd if

~—

16K2 2d
IOg ?7

S =

then for

) |&§:m

we have

Pr(IIH(X) — V2F(X)| <€) > 16,
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=1

1 n

*E K,'S maXx K,'

n < 1 i= n
1=
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Theorem ( )
If € € O(en), then Stochastic TR terminates after

TeO (max{egzeﬁl, i},

iterations, upon which, with high probability, we have that

IVF(x)|| <€, and /\m;n(V2F(x)) > —(e+ey).

e This is tight! [Cartis et al., 2012]
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Theorem ( )
If e € O(eg, €14), then Stochastic ARC terminates after

TeO <max{e;3/2, 6;/3}> )

iterations, upon which, with high probability, we have that

IVFX)|| < g, and  Amin(VZF(x)) > — (e + ).

e This is tight! [Cartis et al., 2012]
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e For e%_, =€g=¢
o Stochastic TR: T € O(e %)

o Stochastic ARC: T € O(¢ 1)
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@ Part Ill: Discussion and Examples
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But why 1st Order Methods?

Q: But Why 1st Order Methods?

@ Cheap lterations

e Easy To Implement

@ “Good" Worst-Case Complexities

@ Good Generalization
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But why 72nd Order Methods

Q: But Why Not 2nd Order Methods?

o (UW&dp Expensive lterations

e Fdgy Hard To Implement

o /B0 “Bad” Worst-Case Complexities

o Good Bad Generalization
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Our Goal...

Goal: Improve 2nd Order Methods...

o Cheap HxpéNsIé Iterations

e Easy Hayd To Use

e "Good" //Bdd// Average(?)-Case Complexities

e Good BAd Generalization
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Our Goal..

Any Other Advantages?

o Effective lterations = Less Iterations = Less Communications

@ Saddle Points For Non-Convex Problems

@ Less Sensitive to Parameter Tuning

@ Less Sensitive to Initialization
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Simulations: ¢, Regularized LR

Data n p NNZ K(F)
D: 106 10* 0.02% ~ 10
D> 5 % 10* 5 x 10 DENSE ~ 10°
Ds 107 2x10* | 0.006% ~ 10"
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Di,n = 10° p = 10*, sparsity : 0.02%,

Pure Newton
---GD 1
—AGD
——L-BFGS: 10
——-LBFGS: 100 | ]
—BFGS
——SSN-X: 1%
---SSN-X: 5%
—SSN-X: 10%
——SSN-NX: 1%
---SSN-NX: 5% 1
—SSN-NX: 10%

Log( Fun Rel. Err.)

-
o

a5
=)

0 50 100 150 200 250
Time (sec)

(g) Function Relative Error
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D>,n =5 x 10* p =5 x 103, sparsity : Dense,

\ Pure Newton

---GD

—AGD '\_
——L-BFGS: 10

---L-BFGS: 100
—BFGS
——S8N-X: 1%
---8SN-X: 5%
—SSN-X: 10%
—e—SSN-NX: 1% 4
-=--8SN-NX: 5%
—SSN-NX: 10%

Log( Fun Rel. Err.)

-
o

=N
=)
T

0 50 100 150 200
Time (sec)

(i) Function Relative Error
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D3, n =107, p = 2 x 10, sparsity : 0.006%,

Pure Newton
—AGD
---L-BFGS: 100
—BFGS
—S8SN-X: 20%
—SSN-NX: 20%

Log( Fun Rel. Err.)

0 50 100 150 200 250
Time (sec)

(k) Function Relative Error
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Newton GPU vs. TensorFlow

Data: Cover Type, n= 4.5 x 10°,d = 378

step size: (Adam: 1.00e+01, Adadelta: 1.00e+04, step size: (Adam: 1.00e+01, Adadelta: 1.00e+04,
Adagrad: 1.00e+03, RMSProp: 1.00e+01, Adagrad: 1.00e+03, RMSProp: 1.00e+01,
Momentum: 1.00e-02) Momentum: 1.00e-02)
70 - — 900000
f e S AN 2
60 o € 800000
©
> 50 4 =
9 ' 700000
o c
3 40 2
o S 600000
<30 5 K
7] w .
e % ¢ 500000 >
©
10 2 400000
[e] B = POV
0 300000
107 10° 10 10° 10° 107 10" 10° 10 10° 10°

Time in (seconds) Time (seconds)



Newton GPU vs. TensorFlow

Test Accuracy
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Data: Newsgroup20, n = 10* d = 10°

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-01,
Momentum: 1.00e-03)

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
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Numerical Examples: Deep Learning

Dataset Size Network (# parameters)
curves 20,000 784-400-200-100-50-25-6 842,340
Cifar10 50,000 ResNet18 270,896




Deep Auto-Encoder

Discussion and Examples

Autoencoder: curves
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Autoencoder: curves
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Autoencoder: curves
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ResNet18

Loss

ResNet18, batch size: 200 ResNet18, batch size: 200

—— STR: training
—— SGD: training

Accuracy

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175

Epoch Epoch

No Batch Normalization 4+ No data augmentation.

2
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—— STR: training

STR: test

—— SGD: training

SGD: test
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ResNet18

ResNet18b, batch size: 200 ResNet18b, batch size: 200
100 —— STR: training —— STR: training
—— SGD: training I A2 T s e S e e I STR: test
0 ® —— SGD: training
w0 1 “
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Batch Normalization + Data augmentation.
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Worst Case Complexity

My %ﬁ to pick with worst case complexity results!!!
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Discussion and Examples

Worst Case Complexity

@ Q: What do “Newton’s method” and “air travel’ have in
common?

@ A: Both are very fast, but their worst-case is bad!!!




Should you ask a Question
during Seminar?

v
Are you
Do you actually HAVE | Mo | STEH | ves
a question? show off?
Yes

v

Are you sure it’s not a dumb | yaube

question or that the speaker |-
already answered it?

| don’t
think so...

THANK YOU!

Do you really need to ask the
question in public or could you
follow up with him/her later?

Doesn’t
matter,

Are you the Seminar organizer Thank God.
asking a question because no one Please ask the
else is and the awkward silence is [~ question and let’s
making everyone uncomfortable? get out of here!

No |
v
Ok, you have a legitimate
question. Po you actuall o
care about the answer? Not really, |
Just want o
show off.

FINE, ASK YOUR QUESTION.
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