Stochastic Second-Order Optimization Methods

Part Il: Non-Convex

Fred Roosta

School of Mathematics and Physics
University of Queensland

Intro
[Jelelolole}

Now, moving onto non-convex problems...

. Non-convex

Intro
0@0000

Non-Convex Is Hard!

@ Saddle points, Local Minima, Local Maxima

Intro
[e]e] Yolole}

@ 2nd Order Necessary Condition

VF(x*)=0 V2F(x*)=0

@ 2nd Order Sufficient Condition

VF(x*)=0 V2F(x*)~0

Intro
[ee]eY Tole}

Non-Convex Is Hard!

@ Additional complexity issues...

o Optimization of a degree four polynomial: NP-hard [Hillar et
al., 2013]

e Checking for sufficient optimality condition: co-NP-complete
[Murty et al., 1987]

o Checking whether a point is not a local minimum:
NP-complete [Murty et al., 1987]

All convex problems are the same,
while every non-convex problem is different.

Not sure who's quote this is!

Intro

(,)— Optimality

IVFx)l[< e and Amin(VEF(x)) = —cn

Line-Search Based Methods

9000000000000 000000000

Outline
o
o

@ Part II: Non-Convex
o Line-Search Based Methods
e L-BFGS

Line-Search Based Methods
0®00000000000000000000

o Sad Note ®: BFGS may fail on non-convex problems with
both exact line search [Mascarenhas, 2004] and inexact (e.g.,
Wolfe) variants [Dai, 2002]

o Happy Note ®: BFGS dominates in many practical
non-convex applications

Line-Search Based Methods
00®0000000000000000000

Newton's Method: Scalar Case

Finding a root of r : R — R, i.e., find x* for which r(x*) = 0:

0= r(x*) = r(x) + (X* - x(k)) (x5 + o(|x* — x(9))
0=r(xM)+ (X(Hl) - x(k)> r'(xF)

k) f(X(k))

(k+1) -
x r'(x(K)’

:X(

Line-Search Based Methods
000®000000000000000000

Secant Method: Scalar Case

Finding a root of r : R — R, i.e., find x* for which r(x*) = 0:

r(x(k)) - r(x(k_l))

Approximate the derivative: — r'(x'*) 0 (=D

(k) _ y(k=1)
(k+1) — (k) _ X X (k)
% =x (r(x(k))—r(x(kl))> r(x)).

Local convergence rate is

“Golden Ratio”

1++5
2

‘X(kJrl) X

<C ‘x(k) —x*

In contrast, rate of convergence of Newton is quadratic!

Line-Search Based Methods
0000®00000000000000000!

Quasi-Newton Method

Quasi-Newton optimization methods extend secant method to
multivariable case!

Line-Search Based Methods
00000®0000000000000000!

Quasi-Newton Method

For r(x) = f'(x), we have

f/(X(k)) _ f/(X(k—l))

10 (k)Y ~
PO — @

£ (xR (X(k) _ X(k71)> ~ £/(xU) — f(x (kD).

Line-Search Based Methods
000000 @000000000000000!

Quasi-Newton Method

Vi(x+p) = VF(x) + V3F(x)p + /1 [V2f(x+ tp) — V2f(x)] p dt
0
= VF(x) + V£ (x)p + o([[pl)).

i.e., when x = x(K) p = x(k=1) — x(K) and ||p|| < 1, we have

V2 (M) (x4) XD~ (V) - TrxD)

Line-Search Based Methods
0000000@00000000000000!

Quasi-Newton Method

V2£(x(9) (x(k) - x(k—1>) ~ (Vf(x(k)) - w(x<k—1>))
So, look for H() =~ V2f(x(K) such that

H() <X(k) _ X(k—l)) _ (vf(x(k)) _ Vf(x(k_l)))

(&

TV
Secant Condition

Line-Search Based Methods
0000000080000 000000000!

Quasi-Newton Method: Another Interpretation

Another interpretation of the secant condition...

Line-Search Based Methods
000000000®000000000000

Quasi-Newton Method: Another Interpretation

Recall:

Iterative Scheme

y*) = argmin {(x — x(NTglh) 4 %(x —xNTH®) (x — x(k))}
xeX

Line-Search Based Methods
0000000000 ®00000000000

Quasi-Newton Method: Another Interpretation

@ Suppose we have a H(¥) and x(k+1)

@ How to update H(K) to obtain a new quadratic approximation
to F(x) at x(kt1)?

1
mis1(p) £ F(xHD) 4 <Vf(x(k+1)), p> 4= <p, H(k+1)p>
One reasonable requirement, suggested by Davidon, is

o Vmy;1(0) = VF(xk+t1)) — trivially satisfied

o Vmyi1(—apy) = VF(x(K) — secant condition

Line-Search Based Methods

0000000000000 00000000

Quasi-Newton Method:

The revolution began with...

William C. Davidon

DFP: Davidon-Fletcher-Powell scheme

Line-Search Based Methods
000000000000 e000000000

Quasi-Newton Method

H() <x(k) - x(k_1)> = (Vf(x(k)) - Vf(x(k_l))> .

d equations vs. d? unknowns

The difference between QNMs boils down to how they update H()
(or its inverse)!

Line-Search Based Methods
0000000000000 800000000

Quasi-Newton Method

Typical notation in QN literature:
si 2 x(kt1) _ x(K)

yi 2 VF(x*D) - vr(x()

Line-Search Based Methods
0000000000000 ®0000000

Quasi-Newton Method:

Updating B(¥) £ [H()] ™.

min ||B—B®)|
BeRdxd

st. B=B', s,=By

o With ||A|| = |[WY2AW/2||¢ for a particular W

B(k+1) _ (H B sky[> (k) <H B sw[) N o
yls I's I's
k Sk Yy Sk Yy Sk

o B(K) » 0 iff y/s, > 0 (Curvature Condition) == Guaranteed
by appropriate line search, e.g., Armijo + (strong) Wolfe

@ Under strong convexity (or if iterates satisfy certain
properties), asymptotic super-linear rate of convergence

Line-Search Based Methods
0000000000000 000000

Quasi-Newton Method: Limited Memory

General QNM Update:
B(-+1) = B(K) 4 [something]

o Problem: Memory storage is O(d?)

@ Soution: Limited-Memory QNMs, which are low-storage
methods

Line-Search Based Methods
0000000000000000e00000

L-BFGS

Instead of storing the inverse Hessian B(K), L-BFGS maintains a
history of iterates and gradients as

{Skfma Sk—m—1, -+, Sk},

{Yk=m> Yk=m—1, -+ Yk} -

B(K) depends on B(k—1), Yik—1 and sg_1.

B(k-1) depends on B(k-2), Yi_2 and sg_o.

@ and so on...

So define B(k=1) implicitly in terms of B(=1) 'y, 5 and s;_».
We continue up to B~ which is initialized to be ~I.

These are used to implicitly do B(K)—vector products.

@ Linear rate of convergence

Line-Search Based Methods
00000000000000000eO000

L-BFGS

Curvature Condition: (Vf(x(kt1)) — Vf(x(K), x(k+1) — x()) > 0

o If f(x) is (strictly) convex = v

@ Otherwise, (strong) Wolfe-condition on « (nonlinear inequality)
(Vf(x+ap).p) > B(Vf(x).p), B <1

@ When g = Vf = noisy curvature estimate = many issues arise!

Line-Search Based Methods
000000000000000000e000

L-BFGS

Decoupling of the stochastic gradient and curvature
estimations = different sample subsets for estimating y

@ S, =)_(k —)_(k,1 where)_(k = %Zf:kaJrl X(J)
Yk = VZfSH ()‘(k)sk ~ VfSH ()_(k) — Vf:gH ()_(k_l).
Update H) every L > 1 iterations

Under strong convexity, they show that 0 < izl < HK) <yl

Setting o, ox 1/k, they show

E(f(xK) — £(x*)) < C/k

Line-Search Based Methods
0000000000000000000e0O

L-BFGS

o s, = x(kt) _ x(0)

@ Enforce gradient consistency, i.e., use the samples S:
yi = Vis(x() — Vis(x()).

@ For some § > 0, yx = yx — 08k

@ Update By, 1 as in the usual case with s, and ¥y

@ Add regularization: §k+1 = Byi1 + ml

= -1 ~ -1
o Add regularization again: <Bk+1> = (Bk+1> + Ml

e Spectrum of Ekﬂ is bounded above and away from zero
@ Strong convexity of each f;
§ < miny Amin(V2£i(x)) == curvature condition holds
Setting ax ox 1/k, they show

E(f(xK) — £(x*)) < C/k

Line-Search Based Methods
00000000000000000000eO

L-BFGS

e Combine the ideas of [Byrd et al., 2014] with variance
reduction of [Johnson and Zhang, 2013]

e Recall SVRG: For s and k, inner and outer iteration counters,
respectively, estimate the gradient as

g = (VA(®) - V() + VF(x))
o No need to diminish step-size any more!
@ Under strong convexity:
E(f(x)) — f(x")) < p'E(F(x@) —f(x")), p<1

@ As in SVRG, convergence is with respect to the outer
iterations

Line-Search Based Methods
000000000000000000000e

L-BFGS

@ Idea: Perform QN update on overlapping consecutive batches
@ Ildea: T =S NSki1 #0

® yi = Vo, (xT1) — Vo, (x)

@ Using constant step-size o

e Strongly convex:

E(F(x9) — £(x')) < o (F<O) = 7)) + Oa)

o Non-convex: Skip updating H®) if y[s, < ¢ lIskll®

< ZHfo(k ”><o<)+0()

Ifa < O(1/VT) = min E Hv;f(x(”)H2 < Oﬁ

Line-Search Based Methods

Outline
o
o
()
)
o
o

o Part II: Non-Convex
o Line-Search Based Methods
o
o Gauss-Newton
]

Line-Search Based Methods
O®00000000000

Gauss-Newton

Problem

min F(x) = f(h(x)

e h:RI - RP

o f:RP — R, and convex

Line-Search Based Methods
0O®0000000000

Gauss-Newton

Let J, : RY — RP be the Jacobian of h, i.e., J,(x) € RP*9,
VF(x) = J,] (x)Vf(h(x))
V2F(x) = J| (x)V2f(h(x))Jn(x) + 0%h(x) V£ (h(x))
(Generalized) Gauss-Newton Matrix:

V2F(x)~ J](x)V2Ff(h(x))JIn(x) =0

G(x) £ Gauss-Newton Matrix

(Generalized) Gauss-Newton Update:

G(xp ~ —VF(xK)

Line-Search Based Methods
000®000000000

Gauss-Newton

Another interpretation:
f(h(x)) ~ f (h(x(k)) + Jn(x19) (x - x(k)>) 2 p(x: x®)
V(h(x®))) = Ve(x");x®) = 37 (x)VF(h(x))

V2 (h(x)) = V2e(x"); 1) = 37 (") V2 (h(x))Jn () = G(x1)

Line-Search Based Methods
0000®00000000

Gauss-Newton

(Generalized) Gauss-Newton Matrix

VEF(x) = Jy (x)V2£ (h(x))Jn(x)

Properties:

e G(x) = 0, V¥x

@ In some applications, after computing
VF(x) = J/] (x)Vf(h(x)), the approximation G(x) does not
involve any additional derivative evaluations

o G(x) is a good approximation if ||92h(x)Vf(h(x))|| is small,
ie.,

o [[VF(h(x))|l is small, or

o ||9%h(x)]| is small, i.e., h is nearly affine

Line-Search Based Methods
00000@®0000000

Gauss-Newton

Gauss-Newton Convergence

Under some regularity assumptions:

@ Damped Gauss-Newton is globally convergent, i.e.,
limy—oo [[VF(xR)]| =0

@ The rate of convergence can be shown to be linear

o Local convergence (S(x) = 9%h(x*)Vf(h(x*))):

Hx(k+1) x*

< IG(x)I| 1S ()] || — x*

+0 <Hx(k) — x*

)

v

Line-Search Based Methods
0000008000000

Gauss-Newton

Finite-Sum Problem

min F(x) = Z fi(hi(x))

xeR4

@ Machine Learning (e.g., deep/recurrent/reinforcement
learning): [Martens, 2010, Martens and Sutskever,
2011, Chapelle and Erhan, 2011, Wu et al., 2017, Botev et al.,
2017]... more on this later

e Scientific Computing (e.g., PDE inverse-problems): [Doel
and Ascher, 2012, Roosta et al., 2014b, Roosta et al.,
2014a, Roosta et al., 2015, Haber et al., 2000, Haber et al.,
2012]

Line-Search Based Methods

O000000@00000

PDE Inverse Problems with Many R.H.S

V- (x(2)Vui(2)) = qi(z), z€Q

i=1,...,n, Q 2 3
ui(2) N sooo,n, QCRor R

ov

=0, z €00

0.2
0.4
0.6

-0.8

(a) True x: 2D (b) True x: 3D

Line-Search Based Methods
00000000 e0000

Forward Problem

Discretize-Then-Optimize

v = P,A_l(x)q,- +e€, i=1,2,...n, xeR?

@ n: No. of measurements

@ d: Mesh size

Line-Search Based Methods
000000000e000

Inverse Problem

€; NN(O, Z,’)

()
F(hi(x) =l =5 2 (PAT (x)a; — vi) |
h;(x)
\[8

mlnF ZHZ (x)ai —v;) [&

Calculating “A~%(x)q," for each i is costly!

Line-Search Based Methods
0000000000800

A remedy: SAA

Scn&ls|=s
U

Fx) = ZHX 2 (PA () — i) [3
sl

ieS

Find s such that, for a given € and §, we get

Pr (|ﬁ5(x) ~F(x)| < eF(x)) >1-4

Line-Search Based Methods

0000000000080

n = 961, Noise 1%, 0; = 0.1, 0o =1

Method

Vanilla

Sub-Sampled

PDE Solves

128,774 3,921

) True Model

0
-0.2
0.4
-06
-0.8

-1

(d) Sub-Sampled GN

Line-Search Based Methods

000000000000 ®

n=>512, Noise 2% o) =1, oy = .1

Method

Vanilla

Sub-Sampled

PDE Solves

45,056

2,264

&

(e) True Model

Lo

(f) Sub-Sampled GN

Line-Search Based Methods

Outline
o
o
()
)
o
o

@ Part II: Non-Convex
o Line-Search Based Methods
o

°
o Natural Gradient

Line-Search Based Methods
0®0000000

Natural Gradient

Cross Entropy Minimization

For px(z), a density parametrized by x, the cross-entropy minimization
with respect to a target density, px(z), is

min £(x) = ~Ex (g px(z)) = ~ [px(2) 108 pu(z) du(z).

NB: p,(z)du(z) can be the empirical measure over the training data.

Fisher Information Matrix

Suppose z ~ p,. Under some weak regularity assumptions:

F(x) 2 B (Vlog pu(2) (V log pu(2))) = —E, (V2log py(=)) .

Natural Gradient Descent

F(X(k))p(k) ~ g(k) —= x(k+1) = x(k) _|_ a(k)p(k)

Line-Search Based Methods
[eeX Yololelelele]

Natural Gradient

Interpretation |:

min £(x) = —E, (log px(2))

Natural Gradient vs. Newton's Method

For a given x:

Hessian Matrix: V2£(x) = —E, (V2 log p«(z))
Fisher Matrix: F(x) =—-Ex (V2 log px(z))

Line-Search Based Methods
000®00000

Natural Gradient

Interpretation I:

Let py be the empirical measure over the given training set {z;};_, where
z; ~ py~ for some true, but unknown, parameter x*, i.e., empirical risk
minimization:

min £(x) = —*Z|ngx

xeX

Approximation I: Natural Gradient vs. Newton's Method

For a given x:

n
Hessian: V2L(x) = —% sz log px(zi), zi ~ px

. 1 <
Approximate Fisher: F(x) = - Z V2log pe(zi), zi ~ px

Line-Search Based Methods
000080000

Natural Gradient

Interpretation IlI:
min £L(x) = — = Z log px(z

xeX
In Gauss-Newton, we had £(x) = f(h(x)). Here, we can consider
f(t) = —logt € R and h(x) = p«(z) € R. So,

G(x) = f"(h(x))Vh(x)Vh(x)" = %Vpx(Z) (Vpe(2)
(px(2))

- (5 90) (1 vn) | o pu(2) (Vlog ()

Approximation Il: Natural Gradient vs. Gauss-Newton

1 n
G(x) = —— > Vliogpu(z) (Viog pu(z:)) ", zi ~ puc

i=1

:—*ZWogpx) (Viogpu(z:)", zi ~ pu

Line-Search Based Methods
00000®000

Natural Gradient

Interpretation IllI:
More generally, consider fitting probabilistic models

min £(x) = L(p)

Recall: steepest descent in Euclidean space
Ideally, we want

p* = argmin L(x + p),
llplI<1

but it is easier to do

Lﬁ(x) = argmin X
[OLCo ~ JEmin (V). P

Line-Search Based Methods

000000800

Natural Gradient

Interpretation IllI:

KullbackLeibler distance

For given x and x, the Kullback-Leibler distance from py to py is

KL(x ||) £ T, <|og ;E;) -/ (log ’;8) pe(2) dus(2).

F(x) = Vi KL(x || x)|x=
If F(x) > 0, then in a neighborhood of x, we have KL(x || x) > 0, and

KL(x || x) = 5 (x = x)* F(x) (x — x)

N =

Line-Search Based Methods
000000080

Natural Gradient

Interpretation llI:
Ideally, we want

p*= argmin L(x+p)
KL(x|lx+p)<1

But, if p < 1, we can approximate

F1(x)VL(x) < argmin (VL(x),p)

PTF(x)p<1

Line-Search Based Methods
00000000e

Natural Gradient

Classical: [Amari, 1998]
Overview: [Martens, 2014]
On manifolds: [Song and Ermon, 2018]

Deep learning: [Pascanu and Bengio, 2013, Martens and
Grosse, 2015, Grosse and Salakhudinov, 2015]

Trust-Region Based Methods
©0000000000000

Outline
o
o

@ Part II: Non-Convex
)

o Trust-Region Based Methods

@ Trust-Region
o Cubic Regularization

Trust-Region Based Methods
0®000000000000

Problem Statement

Minimizing Finite Sum Problem
1 n
1 F = — f;'
min F(x) p ;1 (x)

x€XCRY

e fi: (non-)convex and smooth
@ n>1and/ord>1

Trust-Region Based Methods
00@00000000000

@ Trust Region: [Sorensen, 1982, Conn et al., 2000]
(k) _ - Ky 4 1 2 (5 (k)
s/ =arg min <s, VF(x)> +5 <S,V F(x)s>

sl <Ak

e Cubic Regularization: [Griewank, 1981, Nesterov et al., 2006,
Cartis et al., 2011a, Cartis et al., 2011b]

1 o
(k) — i (k) hd 2F(x(k) kiisII3
s arg min <s, VF(x)> t5 <s, V<F(x)s> +3 Is||

Trust-Region Based Methods
[e]e]e] Yololelelelelololele}

@ Trust Region:

s(k) = arg min <s, VF(x(k))> + % <s, VzF(x(k))s>

lIsll<Ax

@ Cubic Regularization:

) = arg min (5, VF(M)) + 2 (s, V2F(x0)s) + %]

in
s€Rd

Trust-Region Based Methods
0000@000000000

@ Trust Region:

s = arg min <s, VF(x(k))> + % <s, H(k)s>

lIsll<Ax

@ Cubic Regularization:

s¥) — arg m <s, VF(x<k))> + % <s, H(k)s> + %HS\P

in
scRd

Trust-Region Based Methods
00000®00000000

@ To get iteration complexity, previous work required:

| (W9 = v2F)) O < cls@P)

@ Stronger than “Dennis-Moré”

I (H(x(k)) — V2F(x(k))) s(K)ll

lim =0
e EQI
e We relaxed (1) to
| (H® = v2F(x®)) s9)| < es®] @)

@ Quasi-Newton, Sketching, Sub-Sampling satisfy Dennis-Moré
and (2) but not necessarily (1)

Trust-Region Based Methods
000000 ®0000000

Trust-Region Based Methods
0000000e000000

Lemma (Sampling)
Suppose | V2fi(x)|| < Ki, i =1,2,...,n. Let K = max K.

i=1,...,n

Givenany0<e<1,0<d <1, and x € RY, if

1 K2 2d
81> 20 10g 29,
)
then for
V2
) |S|Z
JES
we have

Pr(||H(x) ~V2E(x)|| < e) >1-4.

@ Only top eigenvalues/eigenvectors need to preserved.

Trust-Region Based Methods
00000000800000

b= £ (a] x)|[[ail13
=
PO CHESIENE

‘vaz

Trust-Region Based Methods
000000000e0000

Lemma (Sampling

Suppose | V2£(x)|| < Ki, i=1,2,...,n. Let K =131 | K.
Givenany0<e<1,0<d <1, andxeRd if

~—

16K2 2d
IOg ?7

S =

then for

) |&§:m

we have

Pr(IIH(X) — V2F(X)| <€) > 16,

Trust-Region Based Methods
0000000000e000

=1

1 n

*E K,'S maXx K,'

n < 1 i= n
1=

Trust-Region Based Methods
00000000000e00

Theorem ()
If € € O(en), then Stochastic TR terminates after

TeO (max{egzeﬁl, i},

iterations, upon which, with high probability, we have that

IVF(x)|| <€, and /\m;n(V2F(x)) > —(e+ey).

e This is tight! [Cartis et al., 2012]

Trust-Region Based Methods
000000000000 e0

Theorem ()
If e € O(eg, €14), then Stochastic ARC terminates after

TeO <max{e;3/2, 6;/3}>)

iterations, upon which, with high probability, we have that

IVFX)|| < g, and Amin(VZF(x)) > — (e +).

e This is tight! [Cartis et al., 2012]

Trust-Region Based Methods
0000000000008

e For e%_, =€g=¢
o Stochastic TR: T € O(e %)

o Stochastic ARC: T € O(¢ 1)

Discussion and Examples

Outline
o
o
]
o
o
o

@ Part Ill: Discussion and Examples

Discussion and Examples
0O®000000000000000

But why 1st Order Methods?

Q: But Why 1st Order Methods?

@ Cheap lterations

e Easy To Implement

@ “Good" Worst-Case Complexities

@ Good Generalization

Discussion and Examples
0O®00000000000000

But why 72nd Order Methods

Q: But Why Not 2nd Order Methods?

o (UW&dp Expensive lterations

e Fdgy Hard To Implement

o /B0 “Bad” Worst-Case Complexities

o Good Bad Generalization

Discussion and Examples
000®0000000000000

Our Goal...

Goal: Improve 2nd Order Methods...

o Cheap HxpéNsIé Iterations

e Easy Hayd To Use

e "Good" //Bdd// Average(?)-Case Complexities

e Good BAd Generalization

Discussion and Examples

Our Goal..

Any Other Advantages?

o Effective lterations = Less Iterations = Less Communications

@ Saddle Points For Non-Convex Problems

@ Less Sensitive to Parameter Tuning

@ Less Sensitive to Initialization

Discussion and Examples
0000000000000

Simulations: ¢, Regularized LR

Data n p NNZ K(F)
D: 106 10* 0.02% ~ 10
D> 5 % 10* 5 x 10 DENSE ~ 10°
Ds 107 2x10* | 0.006% ~ 10"

Discussion and Examples

Di,n = 10° p = 10*, sparsity : 0.02%,

Pure Newton
---GD 1
—AGD
——L-BFGS: 10
——-LBFGS: 100 |]
—BFGS
——SSN-X: 1%
---SSN-X: 5%
—SSN-X: 10%
——SSN-NX: 1%
---SSN-NX: 5% 1
—SSN-NX: 10%

Log(Fun Rel. Err.)

-
o

a5
=)

0 50 100 150 200 250
Time (sec)

(g) Function Relative Error

Discussion and Examples

D>,n =5 x 10* p =5 x 103, sparsity : Dense,

\ Pure Newton

---GD

—AGD '_
——L-BFGS: 10

---L-BFGS: 100
—BFGS
——S8N-X: 1%
---8SN-X: 5%
—SSN-X: 10%
—e—SSN-NX: 1% 4
-=--8SN-NX: 5%
—SSN-NX: 10%

Log(Fun Rel. Err.)

-
o

=N
=)
T

0 50 100 150 200
Time (sec)

(i) Function Relative Error

Discussion and Examples

D3, n =107, p = 2 x 10, sparsity : 0.006%,

Pure Newton
—AGD
---L-BFGS: 100
—BFGS
—S8SN-X: 20%
—SSN-NX: 20%

Log(Fun Rel. Err.)

0 50 100 150 200 250
Time (sec)

(k) Function Relative Error

Discussion and Examples

Newton GPU vs. TensorFlow

Data: Cover Type, n= 4.5 x 10°,d = 378

step size: (Adam: 1.00e+01, Adadelta: 1.00e+04, step size: (Adam: 1.00e+01, Adadelta: 1.00e+04,
Adagrad: 1.00e+03, RMSProp: 1.00e+01, Adagrad: 1.00e+03, RMSProp: 1.00e+01,
Momentum: 1.00e-02) Momentum: 1.00e-02)
70 - — 900000
f e S AN 2
60 o € 800000
©
> 50 4 =
9 ' 700000
o c
3 40 2
o S 600000
<30 5 K
7] w .
e % ¢ 500000 >
©
10 2 400000
[e] B = POV
0 300000
107 10° 10 10° 10° 107 10" 10° 10 10° 10°

Time in (seconds) Time (seconds)

Newton GPU vs. TensorFlow

Test Accuracy

Discussion and Examples

Data: Newsgroup20, n = 10* d = 10°

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-01,
Momentum: 1.00e-03)

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-01,

Momentum: 1.00e-03)

90 35000
Ty E’
8o v Z 30000
70 o
F 25000
60 :
S
50 S 20000
g
40 N
3 15000 <
30 [N N
2 10000 N
20 s} \ N
& 5000 Tt
10| 8 NI
0 2 . 1 ‘0 ‘] ‘2 3 0 2 ‘l 0 == \1\ = 2 3
10° 107 10 10 10 10 10° 107 10 10 10 10

Time in (seconds)

Time (seconds)

Discussion and Examples
00000000000e00000

1120 T
1100 £ H
1080 - H
g
2 1060 |-
>
0
@
o
a3
1040 -
SGD
Adagrad
1020 RMSProp M
Newton
Adadelta
Adam
1000 - Momentum -
FLAG
. | . L
107 1070 10 10°

Step Size

Figure: Skew Param = 0

1120

1100

1080

=}
=
S

Loss Value

1040

1020

1000

980

SGD
Adagrad
RMSProp
Newton
Adadelta
Adam
Momentum
FLAG

L

Discussion and Examples

00000000000

1071%

10710
Step Size

Figure: Skew Param

2

0000

1120

1100

1080

=}
=
S

Loss Value

1040

1020

1000

980

SGD
Adagrad
RMSProp
Newton
Adadelta
Adam
Momentum
FLAG

L

Discussion and Examples

1071%

10710
Step Size

Figure: Skew Param

107

4

10°

1120

1100

1080

=}
=
S

Loss Value

1040

1020

1000

980

SGD
Adagrad
RMSProp
Newton
Adadelta
Adam
Momentum
FLAG

L

Discussion and Examples
0000000000000

1071%

10710
Step Size

Figure: Skew Param

107

6

Loss Value

1120

1100

1080

=}
=
S

1040

1020

1000

980

SGD
Adagrad
RMSProp
Newton
Adadelta
Adam
Momentum
FLAG

L

Discussion and Examples
0000000000000

1071%

10710
Step Size

Figure: Skew Param

107

8

10°

1120

1100

1080

=}
=
S

Loss Value

1040

1020

1000

980

SGD
Adagrad
RMSProp
Newton
Adadelta
Adam
Momentum
FLAG

Discussion and Examples
0000000000000000

.
10718

|
10710
Step Size

Figure: Skew Param

107

9

10°

Discussion and Examples
00000000000000000

Numerical Examples: Deep Learning

Dataset Size Network (# parameters)
curves 20,000 784-400-200-100-50-25-6 842,340
Cifar10 50,000 ResNet18 270,896

Deep Auto-Encoder

Discussion and Examples

Autoencoder: curves

10
(7}]
1%}
(@)
|
)]
£
£
©
=102}]
1 .
10
10° 10° 100
of Props
= = Momentum SGD: a=0.5 - - Momentum SGD: a= 0.1

Momentum SGD: o= 0.05 - GN Uniform

Figure: Random Initialization

Deep Auto-Encoder

Discussion and Examples

Autoencoder: curves

10°
- 102}]
o
o
»
[0}
E oA
10]
0 .
10
10° 10° 100
of Props
= = Momentum SGD: a=0.5 - - Momentum SGD: a= 0.1

Momentum SGD: o= 0.05 - GN Uniform

Figure: Random Initialization

Deep Auto-Encoder

Discussion and Examples

Autoencoder: curves

10°

Training Loss
6kl\)
1
f
i
/ .
1

1 .
101 0° 10° 100
of Props
= = Momentum SGD: a=0.01 - = Momentum SGD: a= 0.1

Momentum SGD: a= 0.05 - GN Uniform

Figure: Zero Initialization

Deep Auto-Encoder

Discussion and Examples

Autoencoder: curves

10°
_ 102]
o
L0
%
[0}
=
10]
10° :
10° 10° 1010
of Props

= = Momentum SGD: a=0.01 - = Momentum SGD: a= 0.1
Momentum SGD: a= 0.05 - GN Uniform

Figure: Zero Initialization

Discussion and Examples

Deep Auto-Encoder

Autoencoder: curves

10°]
%)
1%}
o
— L
= —— TR Uniform: A = 500",
% 102 F|— TR Uniform: A = 1200 1
|: TR Uniform: A ;= 3000
= = Momentum SGD: «= 0.001
— = Momentum SGD: «=0.01
Momentum SGD: a= 0.1
= = Momentum SGD: a= 0.5
-=+-=-GN Uniform
101 0 ‘ 5 10
10 10 10

of Props

Figure: Scaled Random Initialization

Discussion and Examples

Deep Auto-Encoder

Autoencoder: curves

Test errpr

107 :
10° 10° 1010
of Props

Figure: Scaled Random Initialization

Discussion and Examples
0000000000000

borks Daniel |

Is it all rosie?

ResNet18

Loss

ResNet18, batch size: 200 ResNet18, batch size: 200

—— STR: training
—— SGD: training

Accuracy

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175

Epoch Epoch

No Batch Normalization 4+ No data augmentation.

2

Discussion and Examples

—— STR: training

STR: test

—— SGD: training

SGD: test

Discussion and Examples

ResNet18

ResNet18b, batch size: 200 ResNet18b, batch size: 200
100 —— STR: training —— STR: training
—— SGD: training I A2 T s e S e e I STR: test
0 ® —— SGD: training
w0 1 “
e I P R D R SGD: test
Q
<
0.6
1072
0.5
0 25 0 75 100 15 150 175 200 75 S0 75 100 135 150 175 200
Epoch Epoch

Batch Normalization + Data augmentation.

Discussion and Examples
0000000000000

Worst Case Complexity

My %ﬁ to pick with worst case complexity results!!!

©

@

“VC 9° a ‘)one

't;, FicK Wi HUDU'
r

Discussion and Examples

Worst Case Complexity

Worst Case Complexity

Discussion and Examples

Worst Case Complexity

@ Q: What do “Newton’s method” and “air travel’ have in
common?

@ A: Both are very fast, but their worst-case is bad!!!

Should you ask a Question
during Seminar?

v
Are you
Do you actually HAVE | Mo | STEH | ves
a question? show off?
Yes

v

Are you sure it’s not a dumb | yaube

question or that the speaker |-
already answered it?

| don’t
think so...

THANK YOU!

Do you really need to ask the
question in public or could you
follow up with him/her later?

Doesn’t
matter,

Are you the Seminar organizer Thank God.
asking a question because no one Please ask the
else is and the awkward silence is [~ question and let’s
making everyone uncomfortable? get out of here!

No |
v
Ok, you have a legitimate
question. Po you actuall o
care about the answer? Not really, |
Just want o
show off.

FINE, ASK YOUR QUESTION.

8 Amari, S-1. (1998).
Natural gradient works efficiently in learning.
Neural computation, 10(2):251-276.

[§ Berahas, A. S., Nocedal, J., and Takac, M. (2016).
A multi-batch |-bfgs method for machine learning.
In Advances in Neural Information Processing Systems, pages
1055-1063.

[§ Berahas, A. S. and Taka¢, M. (2017).

A Robust Multi-Batch L-BFGS Method for Machine Learning.
arXiv preprint arXiv:1707.08552.

[§ Botev, A, Ritter, H., and Barber, D. (2017).
Practical Gauss-Newton optimisation for deep learning.
arXiv preprint arXiv:1706.03662.

[@ Byrd, R. H., Hansen, S., Nocedal, J., and Singer, Y. (2014).
A stochastic quasi-Newton method for large-scale
optimization.

arXiv preprint arXiv:1401.7020.

[3 Cartis, C., Gould, N. I, and Toint, P. L. (2012).
Complexity bounds for second-order optimality in
unconstrained optimization.

Journal of Complexity, 28(1):93-108.

[§ Chapelle, O. and Erhan, D. (2011).
Improved preconditioner for Hessian free optimization.
In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, volume 201.

[§ Dai, Y.-H. (2002).
Convergence properties of the bfgs algoritm.
SIAM Journal on Optimization, 13(3):693-701.

[Doel, K. v. d. and Ascher, U. (2012).
Adaptive and stochastic algorithms for EIT and DC resistivity
problems with piecewise constant solutions and many
measurements.

SIAM J. Scient. Comput., 34:DOI: 10.1137,/110826692.

Grosse, R. and Salakhudinov, R. (2015).

Scaling up natural gradient by sparsely factorizing the inverse
Fisher matrix.

In International Conference on Machine Learning, pages
2304-2313.

Haber, E., Ascher, U. M., and Oldenburg, D. (2000).
On optimization techniques for solving nonlinear inverse
problems.

Inverse problems, 16(5):1263.

Haber, E., Chung, M., and Herrmann, F. (2012).
An effective method for parameter estimation with PDE

constraints with multiple right-hand sides.
SIAM Journal on Optimization, 22(3):739-757.

Johnson, R. and Zhang, T. (2013).
Accelerating stochastic gradient descent using predictive
variance reduction.

In Advances in Neural Information Processing Systems, pages
315-323.

[§ Martens, J. (2010).
Deep learning via Hessian-free optimization.
In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 735-742.

[§ Martens, J. (2014).
New insights and perspectives on the natural gradient method.
arXiv preprint arXiv:1412.1193.

[§ Martens, J. and Grosse, R. (2015).
Optimizing neural networks with kronecker-factored
approximate curvature.
In International conference on machine learning, pages
2408-2417.

[§ Martens, J. and Sutskever, I. (2011).
Learning recurrent neural networks with Hessian-free
optimization.

In Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 1033-1040. Citeseer.

Mascarenhas, W. F. (2004).

The BFGS method with exact line searches fails for
non-convex objective functions.

Mathematical Programming, 99(1):49-61.

Mokhtari, A. and Ribeiro, A. (2014).
Res: Regularized stochastic BFGS algorithm.
Signal Processing, IEEE Transactions on, 62(23):6089-6104.

Moritz, P., Nishihara, R., and Jordan, M. I. (2015).
A linearly-convergent stochastic L-BFGS algorithm.
arXiv preprint arXiv:1508.02087.

Pascanu, R. and Bengio, Y. (2013).
Revisiting natural gradient for deep networks.
arXiv preprint arXiv:1301.3584.

Roosta, F. and Ascher, U. (2015).

Improved bounds on sample size for implicit matrix trace
estimators.
Foundations of Computational Mathematics, 15(5):1187-1212.

Roosta, F., Székely, G. J., and Ascher, U. (2015).

Assessing stochastic algorithms for large scale nonlinear least
squares problems using extremal probabilities of linear
combinations of gamma random variables.

SIAM/ASA Journal on Uncertainty Quantification, 3(1):61-90.

Roosta, F., van den Doel, K., and Ascher, U. (2014a).

Data completion and stochastic algorithms for PDE inversion
problems with many measurements.

Electronic Transactions on Numerical Analysis, 42:177-196.

Roosta, F., van den Doel, K., and Ascher, U. (2014b).
Stochastic algorithms for inverse problems involving PDEs and
many measurements.

SIAM J. Scientific Computing, 36(5):S3-522.

E Song, Y. and Ermon, S. (2018).
Accelerating Natural Gradient with Higher-Order Invariance.
arXiv preprint arXiv:1803.01273.

[Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., and Ba, J.
(2017).
Scalable trust-region method for deep reinforcement learning
using kronecker-factored approximation.

In Advances in neural information processing systems, pages
5279-5288.

[§ Xu, P., Roosta, F., and Mahoney, M. W. (2017).
Newton-Type Methods for Non-Convex Optimization Under

Inexact Hessian Information.
arXiv preprint arXiv:1708.07164.

	Intro
	Line-Search Based Methods
	L-BFGS
	Gauss-Newton
	Natural Gradient

	Trust-Region Based Methods
	Trust Region/Cubic Regularization

	Discussion and Examples
	
	

