Bayesian Models and Information Symmetry in Adaptive Data Analysis

Adam Smith
Boston University
Simons Workshop on Adaptive Data Analysis
July 25, 2018
This talk

a “worst-case Bayesian” model of adaptive data analysis

• Importance of information symmetry
• Some lower bounds; more open problems
• Based on [Elder’16+] and discussions/work with Jon Ullman, Thomas Steinke, Kobbi Nissim, Uri Stemmer
Outline

• Adaptive linear query model

• Bayesian setting
 ➢ Definition
 ➢ The “only” problem: High-variance posteriors

• Game-theoretic perspective

• Lower bounds as estimation

• Lower bounds for the Bayesian model
Bayesian Setting

Worst-case model allows A to choose P

- Known lower bounds rely on this!

What happens when we allow

- M to see the code of A?
- M to know “as much as” A about P?

First attempt: what if M knows P exactly?

- Not interesting: M_P can ignore data and answer $a_i = q_i(P)$

“Bayesian” setting:

- Consider a “hyperdistribution” Gen that selects P
- What if M and A know Gen but not P?

$$\inf_{Gen} \sup_{M} \sup_{P} \sup_{A} \mathbb{E}_{X \sim p^n \text{ coins}} \left(\max_{i} |a_i - q_i(P)| \right)$$

$$\sup_{Gen} \inf_{M} \sup_{A} \mathbb{E}_{X \sim p^n \text{ coins}} \left(\max_{i} |a_i - q_i(P)| \right)$$

M has more power, so error can only go down
Bayesian Setting

- **Pros**
 - One model of “benign” analyst behavior
 - Captures widely-promoted statistical practice
 - c.f. *Interactive Data Analysis*, Bi, Markovic, Xia, Taylor, 2017
 - Maybe: algorithms with greater resistance to adaptive queries
 - Basically no nontrivial, universal lower bounds!

- **Cons**
 - May not model analyst with multiple data sets (composition)
 - Less robust?

- Nonadaptive queries
 \[\frac{\sqrt{\log k}}{\sqrt{n}} \]

- Tracing queries
 \[\frac{1}{\sqrt{n}} + \frac{\sqrt{k}}{n} \]

- Diff. Priv
 \[\frac{4\sqrt{k}}{\sqrt{n}} \]

[Hardt, Ullman 14, Steinke, Ullman 15] [DFHPRR’15, BNSSSU’16]
“Bayesian” mechanisms

- Given Gen, and $X_1, ..., X_n \sim P \otimes n$:
 - Consider posterior distribution on $P|X$
 - Induces distribution on true mean $q(P)|X$

- Posterior-based mechanisms:
 On input q_j...
 - Posterior expected mean: $a_j = \mathbb{E}(q_j(P)|X)$
 - Noisy posterior mean: $a_j = \mathbb{E}(q_j(P)|X) + N(0, \sigma^2)$
 - Posterior confidence interval:
 $$a_j = \left(\text{quantile}_{0.05}(q_j(P)|X), \text{quantile}_{0.95}(q_j(P)|X) \right)$$

- Consistency [Elder]: When $P \sim Gen$ and $X \sim P \otimes n$, posterior-based mechanisms are “never wrong”
 - E.g. confidence interval captures $q_j(P)$ w.p. 90%
 - No matter if queries are adaptive, as long as queries depend on P only via X.

Only possible problem: high-variance posterior

Example: biased coin flip

Posterior given 15 heads out of 25
Why do “tracing queries” fail?

• Set up
 ➢ Universe $U = \{1, \ldots, 2^{O(kn)}\}$
 ➢ P is uniform over $T \subseteq U$, where $|T| = N$
 ➢ Mechanism sees $X \subseteq T$ of size n but doesn’t know T

• Analyst knows T, chooses queries...
 ➢ At first: With bias p_j on T, but bias $1/2$ on $U \setminus T$
 • Key fact: Accurate answers based only on X leak information about X
 • Large universe makes it hard to identify T
 • Analysts learns $\hat{X} \subseteq X$
 ➢ Later: with bias p_j on $T \setminus \hat{X}$, but bias $1/2$ on $\hat{X} \cup (U \setminus T)$

• Bayesian setting
 ➢ Mechanism knows T, can ignore X
Impossibility Results

Only possible problem: high-variance posterior

What can we say about variance?

• Nonadaptive linear queries
 ➢ Posterior mean/median have error $O(\log k / \sqrt{n})$

• How many queries can we answer adaptively?
 ➢ Empirical mean + Gaussian: can answer $\Omega(n^2)$
 ➢ Posterior mean: __________ $O(n)$ queries cause problems
 ➢ Posterior mean + Gaussian: _ $O(n^{2.5})$ queries [S, Steinke, Ullman]
 ➢ Posterior mean + arbitrary: _ $O(n^4)$ queries [Elder]
 ➢ Poly-time mechanisms: ______ $O(n^2)$ queries [Nissim, Stemmer]
 ➢ General mechanisms: $2^{O(n)}$ queries—same as for nonadaptive 😞
Outline

• Adaptive linear query model

• Bayesian setting
 ➢ Definition
 ➢ The “only” problem: High-variance posteriors

• Game-theoretic perspective

• Lower bounds as estimation

• Lower bounds for the Bayesian model
Three player game

1. Population player generates P
 - Random strategy is “hyperdistribution” over P

2. Mechanism player selects (randomized) M

3. Analyst selects (randomized) A

\[Value = \mathbb{E}_{\text{everything}} \left(\max_i |a_i - q_i(P)| \right) \]

- “Worst-case” distribution model [DFHPRR/HU]:
 - First randomized M, then (P, A) together
 \[\inf_M \sup_P \sup_A \mathbb{E}_{X \sim p^n} \left(\max_i |a_i - q_i(P)| \right) \]
 - This is a Nash equilibrium, so can switch order: first joint distribution over (P, A), then M
Three player game

1. Population player generates P
 ➢ Random strategy is “hyperdistribution” over P

2. Mechanism player selects (randomized) M

3. Analyst selects (randomized) A

\[Value = \mathbb{E}_{every} \left(\max_i |a_i - q_i(P)| \right) \]

• Bayesian model [Elder]
 ➢ First Gen, then M and A separately.
 • P and A selected independently
 ➢ For each Gen, Nash equilibrium allows swapping M, A
• How do the values of these games compare?
 ➢ Bayesian setting is easier for mechanism
 ➢ So
 \[
 value(\text{Bayesian}) \leq value(\text{worst-case})
 \]

• Bayesian setting: May as well show code of analyst to mechanism
Outline

• Adaptive linear query model

• Bayesian setting
 ➢ Definition
 ➢ The “only” problem: High-variance posteriors

• Game-theoretic perspective

• Lower bounds as estimation

• Lower bounds for the Bayesian model
Proving lower bounds corresponds to finding Gen, f and α.

- Positive result: k adaptive queries to SQ oracle allow approximating $f(P)$.
- Negative result: n samples from P do not.

Current lower bounds involve extra side information visible to A but not oracle.
Outline

• Adaptive linear query model

• Bayesian setting
 ➢ Definition
 ➢ The “only” problem: High-variance posteriors

• Game-theoretic perspective

• Lower bounds as estimation

• Lower bounds for the Bayesian model
What if analyst sees the raw data?

Example 1: Coin flips
• Domain = \{0,1\}^d
 ➢ Coordinates are independent
 ➢ \(P\) described by biases \(p_1, ..., p_d\)
 ➢ Gen: Each bias \(p_j \in R \{\frac{1}{3}, \frac{2}{3}\}\), i.i.d.
• If some coordinate has \(n/2\) ones, then posterior distribution is \(\{\frac{1}{3}, \frac{2}{3}\}\)
 ➢ Analyst finds a bad query (w.h.p.) when \(d = 2^{\Omega(n)}\)

Example 2: Parities
• Domain = \{0,1\}^d
 ➢ \(P_z\) : Uniform on \(\{u: z \odot u = 0\}\)
 ➢ Gen: select \(Z \in R \{0,1\}^d\)
• If \(x\) has \(d - 1\) linearly independent vectors,
 ➢ then \(Z|x\) is uniform \(\{z_1, z_2\}\)
 ➢ Analyst can ask query with different values on \(z_1, z_2\)
• If \(n = d\), probability of exactly \(d - 1\) linear constraints is \(1/4\)
What about using linear queries?

- Replace parities with coding construction [Elder]
- Set up
 - Consider linear error-correcting code $C \subseteq F_2^N$, dimension d
 - $U = [N] \times F_2$
 - Gen: Select $c \in R C$, output P_c uniform on \{(i, c_i) : i \in [N]\}
- When can we find high-variance queries?
 - X gives a set of linear constraints on c
 - Suppose they have rank $d - 1$
 - Then $c|x$ is uniform on $\{c_1, c_2\}$ \Rightarrow bad query
 - $\Pr(rank(x) = d - \Omega(1)) = \Theta(1/\sqrt{n})$
- How can we extract x from answers to linear queries?
 - Let $sh(x) \in \{0, -1, +1\}^N$ denote “signed histogram” for x
 - $sh(x)_i = 0$ if position is absent, and ± 1 otherwise
 - Posterior distribution $sh(P)|x$ equals $\frac{1}{N}sh(x)$
 - Ask linear queries on sh.

Posterior mean + arbitrary: $\bar{O}(n^4)$ queries
Posterior mean + Gaussian: $\bar{O}(n^{2.5})$ queries
Computationally bounded mechanisms

• Suppose M is polynomial time
• Use public-key crypto to conceal T in tracing attack [Nissim Stemmer]
 ➢ Public info: pk_1, pk_2, \ldots, pk_n
 ➢ $U = \{(i, sk_i): i = 1, \ldots, N\}$
 ➢ $X = \{(i, sk_i): i \in S\}$ where $|S| = n$
 ➢ Attacker encrypts query values with public keys
 • Mechanism sees only query restricted to X

• Theorem: In Bayesian setting, polynomial-time mechanisms can answer $k = \tilde{O}(n^2)$ in worst case
Impossibility Results

Only possible problem: high-variance posterior

What can we say about variance?

• Nonadaptive linear queries
 - Posterior mean/median have error $O\left(\sqrt{\log k / n}\right)$

• How many queries can we answer adaptively?
 - Empirical mean + Gaussian: can answer $\Omega(n^2)$
 - Posterior mean: _______ $O(n)$ queries cause problems
 - Posterior mean + Gaussian: _ $O(n^{2.5})$ queries [S,Steinke,Ullman]
 - Posterior mean + arbitrary: _ $O(n^4)$ queries [Elder]
 - Poly-time mechanisms: ______ $O(n^2)$ queries [Nissim,Stemmer]
 - General mechanisms: $2^{O(n)}$ queries—same as for nonadaptive 😞
Outline

• Adaptive linear query model

• Bayesian setting
 ➢ Definition
 ➢ The “only” problem: High-variance posteriors

• Game-theoretic perspective

• Lower bounds as estimation

• Lower bounds for the Bayesian model
Bayesian setting

Pros
- One model of “benign” analyst behavior
- Captures widely-promoted statistical practice
 - Interactive Data Analysis, Bi, Markovic, Xia, Taylor
- Maybe: algorithms with greater resistance to adaptive queries
 - Basically no nontrivial, universal lower bounds!

Cons
- May not model analyst with multiple data sets (composition)
- Less robust?

Open: A better understanding of the setting