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e Computational [Berthet & Rigollet 13, Ma & Wu 15, Brennan et
al. 18, Feldman et al. 18]

e Privacy [Dwork et al. 06, Hardt & Talwar 09, Duchi et al. 13]
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15, Steinhardt & Duchi 16]
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Stochastic Gradient methods

lterate (fork =1, 2, ...)
gr = V f(xr) + &

Lk+1 — T — OkJi

ﬂl’heorem (Nemirovski & Yudin 83; Nemirovski et al. 09; Agarwal et al. 11)\
After k iterations, we have (optimal) convergence
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Problem Statement

Problem: given M rounds of adaptation and n computations,
what is the optimal error in optimization”

A _ Algorithms with M rounds of computation
M,n = and n (noisy) gradient computations

J = Function class of interest

Study minimax optimization error

Magn(F) =t sup (BIF(7) ~ £}
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e [Perchet, RCS 18] Batched Bandits. For 2 armed bandit,
optimal regret achievable with M = O(log log n)

e [Nemirovski et al. 09, Ghadimi & Lan 12] Stochastic
strongly convex optimization:
Var(§)

f(@) = f* 5 lleo — & exp(=M/+/Cond(f)) + —
or

M > /Cond(f)logn rounds

e [Smith, TU 17] To solve convex optimization, need

1
M =2 log — rounds
€
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" Theorem (D., Ruan, Yun 18) \
My n(Frrx) > Cldom) -n (@)

where C'(d,n) > :
g poly(n)

_J
" Theorem (D., Ruan, Yun 18) R
if M < (d/2)loglogn then there is an algorithm s.t.
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Maintain

At round t,

get parallel (noisy) gradients 7 N

.....
1

w.h.p.

Achievability

easible box By = ¢; + |-, Tt] with center ¢;
take points z; € By,1=1,....m

AN

Vf(z1)

vf(.mm)

. N

r* e {y | <$f($z)7y —x) < €lly — x|}
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Recursive shrinking

Box radius decreases as

ry < m“f_l

or, recursively

B 1+3,.8° r1
re Svry_{ SV ry_o <ovev
t—1 5 @t Bt 1
< VZJIOB Tg ~ IV B—1
for us, dimension d
d 1
5 — =g} d—+2

d+ 2
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Recursive shrinking

Box radius decreases as 1y < Wf

—1

with 8 = 2 or, recursively
Bt —1
re S v At
and
Vit <l o< —
~n ~ logn
s )
_ loglogn log logn
Solution: ¢ > —
~ logl/B  log(l+ d/2)
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Lower bound: recursive packing

1
52512522‘“251\4

Ut = 01 packing of
initial set O
Ut = 25, packing of Q
ball centered at u
|dea:
1. define functions
recursively on balls
2. optimization means
identifying ball
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Functlon constructlons

e |ndex functions by path down U1:M = (ula coe s UNT)
fo (@) = 19, (x) T & up + oy B

fulM( ) f?ilj)ut+1M(x) xgut_l_étB

us3
L U2
Optimizing well means

identitying sequence
defining function U1



Function construction

1
fur (@) = 5w = ]
Recurse:

fur.. (%) = SmoothMax{fu,, , (%), |z — ue||* + b}

max{fy(z). ()
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