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The 2015 ImageNet competition

* An image classification competition during a heated war for deep
learning talent amongst big tech companies.

* Training set of 1.5 million images, to be classified into 1,000 different
categories.

* E.g. “frilled lizard”, “banded gecko”, “reflex camera”, “osciliscope”

* Held out validation set of 100,000 images.

* Competitors could submit models twice per week to check performance on
validation set.



The 2015 ImageNet competition

* In March, Baidu announced it had achieved record accuracy, beating
Google.

* Posted a paper: “Deep Image: Scaling up Image Recognition”

 Team lead: “our company is now leading the race in computer
intelligence...We have great power in our hands—much greater than our

competitors.”
e 4.82% error ->4.58% error

* But they had cheated!
* Registered 30 fake accounts to circumvent the 2 validations per week rule.

* Upon discovery, they were banned from the competition, the paper was
withdrawn, and team lead was fired.

 Why did this help and how can we prevent it?



The Multiple Comparisons Problem
(and Uniform Convergence)

* Suppose we have a classifier f: X — A, a dataset S ~ P™, and a loss
function £(9,y) = 6(y + ¥).
* We want to know the true loss of our classifier:

L(f) = Eqy)~pl£(f(x), ¥)]

but can only estimate the empirical loss:

L(f) = Exy)~s[(f(x), y)]

* Hoeffding’s inequality tells us that with probability 1 — §:
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IL(f) = L(H)| < .



The Multiple Comparisons Problem
(and Uniform Convergence)

* Now what if we have a collection of classifiers C = (fy, ... fx).
* Can no longer use bound from last slide if we select amongst f; as a
function of L(f;): max |L(f;) — L(f;)| will be larger.
l
* To be conservative, we can ask for uniform convergence.
e Just take a union bound (aka Bonferroni correction): w.p. 1 — 6
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The Multiple Comparisons Problem
(and Uniform Convergence)

* For large data sets, this is still very good: multiple comparisons
problem is mild.

e Baidu only submitted k = 200 models, for n = 100,000. So we have
simultaneous 95% confidence intervals of width = 0.0067

* Seemingly enough to confirm their improvement over Google!

But this assumes the functions f; are chosen independently of the data.



What can go wrong

* A simple model:
* Binary data: X € {—1,1}¢, y € {—1,1}.
* Consider the following learning procedure that operates only through
a model validation interface:
1. For each feature i € [d], validate the classifier f;(x) = x;.
2. IfL(f;) < 50%,setc; = 1.Elsesetc; = —1
3. Construct the final classifier f* by majority vote:

fx) =68(c,x) = 0)

Validates d+1 models in total.
Lets see how it does!



What can go wrong

n=10,000 d € [1,..,50,000]

Plot: Accuracy + Bonferroni Corrected Confidence Intervals vs. d
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What can go wrong

The data: X, y uniformly distributed and uncorrelated.

All classifiers have error = 50%.
Bonferroni correction disastrously failed.



The Garden of the Forking Paths [GL14]

We can map out what our algorithm would have done in every eventuality:
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The Garden of the Forking Paths [GL14]

 We only asked d + 1 queries, but there were 2¢ models that we
could have tested (all equally likely) depending on what answers we
got.

* Bonferroni correction on the queries asked is not enough.

* A much larger implicit multiple comparisons problem: (conservatively) must
correct for all models that could have been validated.

* In this case, really do have to.



The Garden of the Forking Paths [GL14]

* [ssues:

* These corrections are giant: adaptivity leads to exponential blowup in
multiple comparisons problem.

* Generally, we won’t have a map of the garden.
* e.g. whenever human decision making is involved, or algorithms are complicated.

* Solution: Pre-registration?
* Gates off the garden. Forces analysis to walk a straight line.
» Safe but overly conservative. Incompatible with data re-use.

How can we make it safe to wander the garden?



A Formalization of the Problem: Statistical Queries

e A data universe X (e.g. X = {0,1}¢)
e Adistribution P € AX
* A dataset S ~ P" consisting of n points x € X sampled i.i.d. from P.



A Formalization of the Problem: Statistical Queries

A statistical query is defined by a predicate
¢: X - [0,1].
* The answer to a statistical query is
¢(P) = Ex-p[¢p(x)]
A statistical query oracle is an algorithm for answering statistical
queries: A:SQ — [0,1]

* Parameterized by a dataset: Ag



A Formalization of the Problem: Statisti;al Queries
e Adaptively Chosen Queries:
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A Formalization of the Problem: Statistical Queries

e Adaptively Chosen Queries:

* A statistical estimator A4 is (€, §)-accurate for sequences of k
adaptively chosen queries ¢4, ..., @ if for all &2 and @, with
probability 1 — ¢o:

max|As(¢;) — i(P)| < e.



A Formalization of the Problem: Statistical Queries

* Main quantity of interest: How must € scale with n, k?

n

: log k
Recall: non-adaptive case: € = O ( 06 )

Our adaptive example had € = Q( E)

n

By carefully designing a statistical estimator A, can we do better?



Warmup: An Easy Theorem (If Pigs Could Fly)

Theorem (informal): Let A be a statistical estimator such that for any
sequence of k adaptively chosen queries ¢4, ..., ¢, we have:
1. Empirical accuracy: max |Ag(¢p;) — ¢;(S) | < T and
1

2. Compressibility: the transcript produced by A can be compressedto < t
bits.

t+log 2k/6
2n

then A is (¢, 6)-accurate fore = 7 + \/



Warmup: An Easy Theorem (If Pigs Could Fly)

Proof:

Fix any data analyst (mapping from query answers to queries). Each sequence of k queries asked
corresponds to a transcript of answers generated by A.

By compressibility, there are at most 2¢ such transcripts, and so at most k - 2t queries that can ever
be asked.

Apply a Bonferroni correction to these k - 2t queries:

t+log 2k /6
2n

max|gi(5) — ()| < |
By empirical accuracy:
max|A(¢;) — $:(S)| <7

Theorem follows from triangle inequality.



Strengths of this style of theorem

* Don’t need a map of the garden: can apply Bonferroni correction to a
small set of queries even if we don’t know what they are.

* So don’t need to understand data analyst — can be a human being e.g.

* Don’t need to constrain data analyst at all (e.g. as in pre-registration)
except that they should access data only via our interface.

Are there non-trivial estimators that satisfy the conditions of our
theorem?



Towards Compressible Estimators

* Suppose queries ¢; were paired with guesses g; € [0,1].

* Given a query (¢;, g;), 4 can either answer:
* “Yup”: Guess was correct (|g; — ¢;(S)| < 1)
* “Nope, the answeris a; € [0,1]"

* How well can we compress the transcript of answers if only w of the
guesses are wrong?



Towards Compressible Estimators

* One way to encode the transcript: list tuples corresponding to the indices
of the queries whose guesses were wrong, together with their empirical
answers (to log 1/ bits of precision).

* Encoding length: t < w - (logk + log1/7)
« < w entries in the list
* Each contains an index (log k bits) and a value (log 1/7 bits)

(k) f—k

w(log k+log n)+log| < ~ w-logZ

Error: € = O - 21=0 —°
N N

To come up with compressible estimators, it suffices to come up with good guesses.



Coming up with good guesses

A Heuristic: The Reusable Holdout [DFHPRR15].

1. Split the data set S into a “dirty” set S and “clean” set S,
2. For each query ¢;, compute a guess g; = ¢;(Sp)
3. Submit the pair (¢, g;) to Ag,..

k
W-logg

. Halt after more than w guesses erred by -

\



Coming up with good guesses

k
W-logg
V n
(But could halt early.)

Guarantees error O for any set of k queries.

* Prevents simple “majority” algorithm from overfitting.

* More generally, allows a data analyst to ask queries for a long time so
long as he is not getting lost in the garden. Catches/corrects up to w
instances of overfitting.



Coming up with good guesses

A Leaderboard: The Ladder Mechanism [BH15]
Goal: Keep track of most accurate classifier so far.
1. Set bestErrory = 1.0

2. For each candidate classifier f;:
1. Construct query ¢:(S) = min L(f)
L<

2. Construct guess g; = bestError;_4

3. Compute a; = As(P¢, 9¢)

4. If guess was in error by more than t, set bestError; = a;.
5. Otherwise set bestError; = bestErrory_;



Coming up with good guesses

e Each time guess is in error, bestError improves by = 7
* So guess isin error at most w = 1/7 times.

Total erroris T +

V n

logx ;
C e : ~ 085
Optimizing: Erroris e = 0O (—)



Coming up with good guesses

Guarantees for General Statistical Queries: Median Mechanism [RR10]

e Let X = {0,1}<.

* Important fact: For any set of k statistical queries, there is a dataset
of size 0 (logk

) that encodes all queries with T-accuracy.

.logk
 And the set of all such datasets is of size = 2~ <2

T2



Coming up with good guesses

1. letC ={S' cX:]5'| <

2. For each query ¢;:
1. Construct guess g; = median(¢;(S'):S' € C;)

2. Compute a; = As(¢¢, g¢)

3. If the guess was in error by more than t:
Cerr ={S" € Gz [¢;(S) — g¢l = 7}

log k
72

4. Otherwise:
Ciy1 = Ct



Coming up with good guesses

» We know that |C,| = 24108 %/7° and |C,| = 1 for all t.

* Each incorrect guess halves ;.

d-logk
72

d-logk/d
?n

* The number of mistaken guesses isw <

Total erroris T + \/

1

ddog§)4

n

Optimizing, erroris € = (



Takeaway

* We can obtain error scaling only polylogarithmically with k!
* Comparable to the non-adaptive case. ©

* But...

* Our dependence on n,log k could be better, and...
e Qur statistical estimator is not efficient. ®

* We can become really good at guessing the answers to SQs as soon as
k is larger than the (effective) dimension of the data.
* So big improvements whenn > d ©
* But no guaranteed improvement whenn < d ®



Takeaway

* We don’t yet fully understand how to mitigate all of these caveats.
* But we can get part way there.

* Need to move beyond description length.
* Some information theoretic measure?
* Needs to be robust to “post-processing” and should compose well.



Differential Privacy [Dwork, McSherry, Nissim, Smith]

D -
Algorithm

¥

Pr [r]




A stability condition on the output
distribution:

A: X™ - Ois (a, B)-differentially private if for every pair of neighboring
datasets S, S’, and outcome E:

Prl[A(S) e E] < e“Pr|A(S’) e E]+ B

Crucial: Stability on the distribution.

No metric on O.




Distributional Stability Yields Robustness to
Postprocessing

Theorem: If A: X™ — O is (a, B)-differentially private, and f: O — O’ is
an arbitrary algorithm, then f o A : X" — O’ is (a, f)-differentially
private.

Important:
Don’t need to understand anything about f.

4 O) _
f= ?f@ f =
g




Distributional Stability Degrades Gracefully
Under Composition

Compose( E?E ;D)
Fori=1tok:
1. Let @ choose an a-DP A4; based on 0y, ..., 0;_1.

2. Let 0; = AL(D)
Output (04, ..., 0y).

Theorem* [DRV]: For every €7, and ', Compose( &2 ;D)is (a’, B')-
differentially private for:

a'=0 (a - \/k ‘In (ﬁi))




Composition and Post-processing:
Modular Algorithm Design

e Differential Privacy is a powerful language for
stable algorithm design.

* Can combine a collection of differentially private
primitives modularly in arbitrary ways.

e Simplest primitive: independent, Gaussian noise
addition.

e e.g. Output ¢(S) + N(0,02)

InG)
where g = 0 A
an




Another Transfer Theorem

Theorem: [DFHPRR’15,BNSSSU’16]: Let A be a statistical estimator that
satisfies:

1. Differential Privacy: A is (¢, € - 0)-differentially private, and

2. Empirical Accuracy: For any sequence of k adaptively chosen
queries ¢4, ..., P, with probability 1 — € - §:
max |As(¢) — $i(S) | < €

Then Ais (O(€), 0(6))-accurate.
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See http://www.adaptivedataanalysis.com for lecture notes.
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