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Outline

 qubits and entanglements

 entanglement networks

 research issues and research challenges
 state information
 route diversity

 summary 



Elementary quantum 101

 bit has only two values: 0,1
 physically represented by two state device



Quantum bits
 qubit - two-state quantum-mechanical system
 example: photon polarization

Horizontally polarized

| ⟩𝑥𝑥 =
1
0

Vertically polarized

| ⟩𝑦𝑦 =
0
1



Superposition of states

⟩𝜙𝜙 = 𝛼𝛼 ⟩𝑥𝑥 + 𝛽𝛽| ⟩𝑦𝑦 , 𝛼𝛼2 + 𝛽𝛽2 = 1



Measurement

 uncountable number of states

 single photon: either 𝑋𝑋 or 𝑌𝑌 goes off, not both
 repeat many times: 𝑃𝑃(𝑥𝑥) = 𝛼𝛼2, 𝑃𝑃(𝑦𝑦) = 𝛽𝛽2



Two qubits
 four basis states, ⟩00 , ⟩01 , | ⟩10 , | ⟩11

⟩𝜓𝜓 = 𝛼𝛼00 ⟩00 + 𝛼𝛼01 ⟩01 + 𝛼𝛼10 ⟩10 + 𝛼𝛼11| ⟩11

 Bell state (Einstein-Podolsky-Rosen(EPR) 
pair)

⟩| ⟩00 + |11
2



Two qubit states
 Bell state (EPR pair)

⟩| ⟩00 + |11
2

measuring first qubit yields 0,1 
 if 1, measuring second qubit yields 1
 if 0, measuring second qubit yields 0

 other powerful measurement correlations
 basis of quantum computing, quantum key 

distribution, quantum sensing



Long distance entanglement

𝑅𝑅 ≈ 1.44𝜂𝜂 bits/mode when 𝜂𝜂 ≪ 1

𝜂𝜂 = 𝑒𝑒−𝛼𝛼𝛼𝛼 in fiber

Alice Bob

| ⟩𝜓𝜓0𝜓𝜓1| ⟩𝜓𝜓0 | ⟩𝜓𝜓1

𝐿𝐿
𝜂𝜂 - transmittivity



Quantum Networks
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Repeaters, e2e entanglements

Alice ….

Phase 1: link entanglements
𝑝𝑝 = 1 − 1 − 𝑝𝑝0 𝑚𝑚

Phase 2: splice links together
Bell state measurements, 𝑞𝑞 – prob.of success

Bob 
𝑚𝑚Alice 

𝑛𝑛

𝑞𝑞



 can connect multiple users
multiple paths per user pair

trusted 
node

repeater
lossy
link

Quantum entanglement network



Challenges: performance, control

 given pairs of users, capacity region?

 resource allocation schemes?

 stateless vs stateful control?

 static routing vs opportunistic routing?

 latency models?



State information, Path diversity

 grid network

 single mode per link 

 one memory per repeater per link per mode

 one pair of end-to-end communicating nodes

1- Pant, Mihir, Hari Krovi, Don Towsley, Leandros Tassiulas, Liang Jiang, Prithwish Basu, Dirk 
Englund, and Saikat Guha. "Routing entanglement in the quantum internet." arXiv preprint 
arXiv:1708.07142 (2017).
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Grid Network - Phase 1

Alice

Bob



Grid Network – Phase 2

𝑞𝑞

Y

X

Alice

Bob



Rate dependence on 𝑝𝑝

 greedy shortest path 
algorithm
 find shortest path
 next shortest path
 …

 requires global 
information

 𝑅𝑅𝑔𝑔(𝑝𝑝, 𝑞𝑞) –
entanglement rate

Note: when 𝑞𝑞 = 1, 2-D 
grid percolates at 𝑝𝑝 > 0.5

𝑅𝑅𝑔𝑔(𝑝𝑝 = 0.55, 𝑞𝑞 = 1)

𝑅𝑅𝑔𝑔(0.45, 1)
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When every repeater has global state 
information

 𝑅𝑅𝑈𝑈𝑈𝑈(𝑝𝑝, 𝑞𝑞) –
upperbound

 𝑞𝑞 = 1, max flow
 achievable with 

global information
 𝑞𝑞 < 1,

𝑅𝑅𝑈𝑈𝑈𝑈 = 4 × 𝑅𝑅𝑔𝑔

𝑅𝑅𝑈𝑈𝑈𝑈(0.6,1)

𝑅𝑅𝑔𝑔(0.6,1)

𝑅𝑅𝑈𝑈𝑈𝑈(0.6,0.9)

𝑅𝑅𝑔𝑔(0.6,0.9)
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Routing entanglement flows with 
local state information

𝑑𝑑𝐴𝐴 = 2.8
𝑑𝑑𝐵𝐵 = 3

𝑑𝑑𝐴𝐴 = 3.2
𝑑𝑑𝐵𝐵 = 2.2

𝑑𝑑𝐴𝐴 = 1.4
𝑑𝑑𝐵𝐵 = 4.1

Alice

Bob

𝑑𝑑𝐴𝐴 = 2
𝑑𝑑𝐵𝐵 = 3.6

v w
u𝑝𝑝

𝑑𝑑𝐴𝐴,𝑑𝑑𝐵𝐵 Euclidean distance 
from Alice, Bob
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𝑅𝑅𝑔𝑔(0.6, 0.9)

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙(0.6, 0.9)

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙(0.6, 0.9)

When every repeater only has local 
state information
 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝, 𝑞𝑞) – rate using 

local rule
 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝, 𝑞𝑞 - rate using 

single static path of 
same distance 
 no diversity
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Open Questions

 rate-optimal protocol?

 effect of multiple modes, multiple memories?

 effect of coherence times, purification, etc.?

 3+ qubit entanglements?



Conclusions

 quantum repeater networks achieve much 
larger rates than linear chains due to multi-
path routing, even with only local information

multi-flow strategies that exploit spatial 
division can provide significant performance 
improvements in such networks

 research on Q-networks in its infancy.  Many 
exciting problems!



Happy retirement, Jean 

How about a new hobby?

Design and analysis of 
quantum networks
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