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Structure of the Lecturel

m Background and Motivation

m Wireless Birth-Death Processes

with A. Sankararaman, IEEE Tr. IT, 63(6) 2017
1. Stability, 2. Clustering, 3. Quantitative results

m Interference Queuing Networks
with S. Foss & A. Sankararaman, arXiv 1710.09797
1. Stability, 2. Minimal solution, 3. Initial condition
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Motivations in Wireless Networks|

m Lack of understanding and analysis of
Space-time interactions

— Static spatial setting well understood: Stochastic (Geometry
[FB, Blaszczyszyn 01]

— Churn taken into account in flow-based queuing
[Bonald, Proutiere 06|, [Shakkottai, De Veciana 07]
[Jiang, Walrand 09]

m Contents of this lecture:

Models with such dynamics in stochastic geometry
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|. Wireless Birth-Death Processes

m Setting: Infrastructureless Wireless Network:
Ad-hoc Networks, D2D Networks, IoT

m Statistical assumptions: Markov Models:
Poisson, Exponential

m Mathematical tools:
Point processes, Fluid
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Stochastic Network Modell

m S=[-Q,Q] x[-Q,Q]: torus where the wireless links live
m Links: (Tx-Rx pairs)

m Links: arrive as a PPP on R X S with intensity \:
Prob. of a point arriving in space dx and time dt: Adxdt

m Each Tx has an i.i.d. exponential file size
of mean L bits to transmit to its Rx

m A point exits after the Tx finishes transmitting its file
m P;: set of locations of links present at time t:

&, = {x1,...,XN,}, Xi€S
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Interference and Service Rate

m Interference seen at point x due to configuration ¢

I(x,®)= » Ilx—x)

x;€P#x

— Distance on the torus
—1(-): R™ — R™: path loss function

m The speed of file transfer by link at x in configuration ¢ is

R(x, ®) = Blog, (1 + N+ I(x, <I>))

m B, N Positive constants
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B& D Master Equation

m A point born at x, and time b, with file-size L, dies at time

p
¢ )

dp, =inf ¢ t > by, : / R(xp, ®y)du > L;, »

\ /

m Spatial Birth-Death Process
— Arrivals from the Poisson Rain

— Departures happen at file transfer completion
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Properties of the Dynamics

m The statistical assumptions imply that ¢, is a Markov Pro-
cess on the set of simple counting measures on S

m Fuclidean extension of the flow-level models of
[Bonald, Proutiere 06], [Shakkottai, De Veciana 07]
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Questions

m Existence and uniqueness of the stationary regimes of ®;

m Characterization of the stationary regime(s) if existence
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Main Stability Results|

ai= [ Ujixlax

XES

m Theorem

—If A > m2)La ) , then ®; admits no stationary regime.

A <ipm )L , and r — 1(r) bounded and monotone,
then ®; admits a unique stationary regime

m Necessary condition by Palm calculus, Stochastic intensity
m Sufficient condition by fluid limit

m Corollary
For the path-loss model I(r) =r=*, o > 2, for all A > 0, and all
mean file sizes, the process ®; admits no stationary-regime
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Main Qualitative Result]

m P stationary point-process on S with Palm distribution P’

m Clustering
® is clustered if for all bounded, positive, non-increasing
functions f(-) : R" — R", the shot-noise

satisfies
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Main Qualitative Result (continued)

m Theorem
The steady-state point process, when it exists, is clustered

m Follows from Palm calculus 4+ the FKG inequality

m Interpretation of the result
The steady-state interference measured at a uniformly ran-
domly chosen point of is larger in mean than that at an
uniformly random location of space.

m Key Observation
— Dynamics Shapes Geometry

— Geometry Shapes Dynamics
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A sample of ® when A =0.99 and 1(r) = (r +1)~%.
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Quantitative Results

m Heuristics for the intensity of the steady-state process

1. Poisson heuristic J; - derived by neglecting clustering and
assuming Poisson

2. Second-order heuristic 5 based on a second-order cavity
approximation of the dynamics
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Poisson Heuristic|

m Exact Rate Conservation Law:

AL = BEQ [log2 (1 + +1I(O))] .

Poisson Heur.: Largest solution to the fixed point equation:

o0

AL — Bf / e—NZ(l — e_z)e_ﬁf fxes(l_eﬁlmx”))dxdz
1H<2) Z
z=0

Ignores the Palm effect and uses that if X, Y are non-negative
and independent,

E lln (1 + Y)_i a)] - 7 ezaz(1 _ EleX))E[e"]dz.

z=0

m The Poisson heuristic is tight in heavy and light traffic
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Second Order Heuristic|

The intensity [ is given by
AL
Bs —

B log, (1 + Nils)

where I is the smallest solution of the fixed-point equation

I —\L / I({1x]]) dx

1
g Blog (1 ™ N+Is+1<uxu>)
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Second Order Heuristic (continued)

m Rationale based on p3(x,y): second moment measure of ®

m Rate Comnservation for p;: when considering I as a constant

1 1
~BI 1+ = ADs
L 0g2( N+Is+1<||x—y||>> b

/02(X7 y>

m From the definition of second moment measure,

o x /02(07X) %
L= [ )20

xXES

which gives the fixed point equation for I

m The formula for 5, follows from Rate Conservation for p; = [
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— Simulations
o5t |- - - Second-Order Heuristic
''''' Poisson Heuristic
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Il. Interference Queuing Networks

m Aim: extension of dynamics to R? (scalability)
m Setting

— Discretization: queuing dynamics on a grid

— Low SINR: linearization of the log
m Mathematical Tools

— Interacting particle systems

— Coupling from the past

— Rate conservation principle
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Assumptions, Notation|

m Queue i at i € Z4 has state x;(t) € N at time t

m Arrivals to queues:
i.i.d. Poisson processes of rate A > 0

m Interference sequence:
{ai};ca, non-negative, symmetric (a; = a_;), and irreducible

m Service discipline:
generalized processor-sharing with rate of queue i at time t:

x;(t)
D jezd AjXi—j(t)
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Stability, Minimal Stationary Regime

m Stability: when starting the system empty at time 0, weak
convergence of the state of any finite set of queues as t — oo

m Theorem If .

ZieZd aj

A<

— The network is stable

— The weak limit is the minimal stationary regime

m Proof: CFP

1

jczd A

m The stability condition A\ < > is sharp (current proof in

special cases only)
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Quantitative Properties of Minimal Stationary Regimel|

m Theorem The weak limit, when it exists, satisfies

)\a()
1= AD ez

In addition its coordinates (x;), ;4 are associated

m Proof: RCP

E[Xo] =

m Association: analogue of of clustering in the continuum

m Remarkable fact: closed form for the mean for this
infinite-dimensional, non-reversible, non-asymptotically in-
dependent particle system
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Uniqueness

m Below, assume that )\ < 5 1 =
iezd ™1

m Proposition If E[x3] < co, then the minimal solution is the
unique stationary solution with finite second moment

m Proposition If

A< g 1+c where c¢= ag e ZjEZd\{O} o
3 Zjezd aj ZjeZd\{O} aj

then E[x3] < oo
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Domain of Attraction of the Minimal Solution|

m Theorem If )\ < %ZHZ — and the initial condition satisfies
jezd

sup x;(0) < o
iczd

then {x;(-)};.z¢ converges weakly to the minimal stationary
solution

m Theorem For d =1, for all A > 0, there exists

1. A deterministic sequence (j)icz such that if x;(0) > o; for
all i € Z, then lim; . xo(t) = 0o a.s.

2. A distribution £ on N s.t. if {x;(0)}icz is i.i.d. with marginal
distr. £, then lim; . xo(t) = co a.s.

KInterference Queuing Networks /




Summary

m A new basic representation of space-time interactions in
wireless networks

m A generative model for clustering as assumed in simulation
standards

B A new dynamic notion of capacity involving both queuing
and IT

m First exact analytical results in the low SINR case and good
heuristics in general

m A new particle system dynamics with closed form although
no reversibility, no asymptotic independence
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Thanks Jean|

MERCI JEAN POUR NOS PREMIERS ~ 40 ANS
D’INTERACTIONS AMICALES ET
SCIENTIFIQUES!

KInterference Queuing Networks /




