INTERFERENCE QUEUING NETWORKS Wireless Spatial Birth-Death Processes

> F. Baccelli UT Austin

En l'honneur de Jean Walrand

The Next Wave in Networking Research September 07, 2018, Berkeley

Stochastic Network Model

- **S** = $[-\mathbf{Q}, \mathbf{Q}] \times [-\mathbf{Q}, \mathbf{Q}]$: torus where the wireless links live
- Links: (Tx-Rx pairs)

 $\mathbf{5}$

- Links: arrive as a PPP on $\mathbb{R} \times S$ with intensity λ : Prob. of a point arriving in space dx and time dt: $\lambda dxdt$
- Each Tx has an i.i.d. exponential file size of mean L bits to transmit to its Rx
- A point exits after the Tx finishes transmitting its file
- Φ_t : set of locations of links present at time t:

$$\Phi_t = \{ \mathbf{x}_1, \ldots, \mathbf{x}_{\mathbf{N}_t} \}, \quad \mathbf{x}_i \in \mathbf{S}$$

B, **N** Positive constants

B& D Master Equation

 \blacksquare A point born at x_p and time b_p with file-size L_p dies at time

$$\mathbf{d_p} = \inf \left\{ \mathbf{t} > \mathbf{b_p} : \int\limits_{\mathbf{u} = \mathbf{b_p}}^{\mathbf{t}} \mathbf{R}(\mathbf{x_p}, \mathbf{\Phi_u}) \mathbf{du} \geq \mathbf{L_p} \right\}$$

- Spatial Birth-Death Process
 - Arrivals from the Poisson Rain
 - Departures happen at file transfer completion

Interference Queuing Networks

 $\mathbf{7}$

Quantitative Results

- Heuristics for the intensity of the steady-state process
 - 1. Poisson heuristic $\beta_{\rm f}$ derived by neglecting clustering and assuming Poisson
 - 2. Second-order heuristic β_s based on a second-order cavity approximation of the dynamics

Interference Queuing Networks

 $\mathbf{14}$

Poisson Heuristic

Exact Rate Conservation Law:

$$\lambda \mathbf{L} = \beta \mathbb{E}_{\Phi}^{\mathbf{0}} \left[\log_2 \left(\mathbf{1} + \frac{\mathbf{1}}{\mathbf{N} + \mathbf{I}(\mathbf{0})} \right) \right].$$

Poisson Heur.: Largest solution to the fixed point equation:

$$\lambda \mathbf{L} = \frac{\beta_{\mathbf{f}}}{\ln(2)} \int_{\mathbf{z}=\mathbf{0}}^{\infty} \frac{\mathbf{e}^{-\mathbf{N}\mathbf{z}}(\mathbf{1}-\mathbf{e}^{-\mathbf{z}})}{\mathbf{z}} \mathbf{e}^{-\beta_{\mathbf{f}} \int_{\mathbf{x}\in\mathbf{S}}(\mathbf{1}-\mathbf{e}^{-\mathbf{z}\mathbf{l}(||\mathbf{x}||)}) d\mathbf{x}} d\mathbf{z}$$

Ignores the Palm effect and uses that if X, Y are non-negative and independent,

$$\mathbb{E}\left[\ln\left(1+\frac{X}{Y+a}\right)\right] = \int\limits_{z=0}^{\infty} \frac{e^{-az}}{z} (1-\mathbb{E}[e^{-zX}])\mathbb{E}[e^{-zY}]dz.$$

■ The Poisson heuristic is tight in heavy and light traffic

Interference Queuing Networks

15

Second Order Heuristic

The intensity β_s is given by

$$eta_{s} = rac{\lambda L}{B \log_2 \left(1 + rac{1}{N + I_s}\right)}$$

where I_s is the smallest solution of the fixed-point equation

$$\mathbf{I_s} = \lambda \mathbf{L} \int\limits_{\mathbf{x} \in \mathbf{S}} \frac{\mathbf{l}(||\mathbf{x}||)}{\mathbf{B} \log_2 \left(\mathbf{1} + \frac{\mathbf{1}}{\mathbf{N} + \mathbf{I_s} + \mathbf{l}(||\mathbf{x}||)}\right)} \mathbf{dx}$$

Interference Queuing Networks

16

Second Order Heuristic (continued) Rationale based on $\rho_2(\mathbf{x}, \mathbf{y})$: second moment measure of Φ Rate Conservation for ρ_2 : when considering I_s as a constant $\rho_{2}(\mathbf{x}, \mathbf{y}) \frac{1}{\mathbf{L}} \mathbf{B} \log_{2} \left(1 + \frac{1}{\mathbf{N} + \mathbf{I}_{s} + \mathbf{l}(||\mathbf{x} - \mathbf{y}||)} \right) = \lambda \beta_{s}$ From the definition of second moment measure, $\mathbf{I_s} = \int \mathbf{l}(||\mathbf{x}||) \frac{\rho_2(\mathbf{0}, \mathbf{x})}{\beta_s} \mathbf{dx}$ $\mathbf{x} \in \mathbf{S}$ which gives the fixed point equation for I_s The formula for β_s follows from Rate Conservation for $\rho_1 = \beta_s$

Interference Queuing Networks

17

Domain of Attraction of the Minimal Solution

• Theorem If $\lambda < \frac{2}{3} \frac{1+c}{\sum_{j \in \mathbb{Z}^d} a_j}$ and the initial condition satisfies

 $\sup_{i\in\mathbb{Z}^d} x_i(0) < \infty$

then $\{x_i(\cdot)\}_{i\in\mathbb{Z}^d}$ converges weakly to the minimal stationary solution

- Theorem For d = 1, for all $\lambda > 0$, there exists
 - 1. A deterministic sequence $(\alpha_i)_{i \in \mathbb{Z}}$ such that if $\mathbf{x}_i(\mathbf{0}) \ge \alpha_i$ for all $i \in \mathbb{Z}$, then $\lim_{t \to \infty} \mathbf{x}_{\mathbf{0}}(t) = \infty$ a.s.
 - 2. A distribution ξ on \mathbb{N} s.t. if $\{\mathbf{x}_i(\mathbf{0})\}_{i\in\mathbb{Z}}$ is i.i.d. with marginal distr. ξ , then $\lim_{t\to\infty} \mathbf{x}_0(t) = \infty$ a.s.

Interference Queuing Networks

 $\mathbf{25}$

