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* Ridesharing

* A model of passenger queueing

e Stability region

e Stability with static prices

* A surge-type of dynamic pricing

* Throughput optimality of surge pricing
e Simulations



Ride-hailing

Blyr © e

* Original idea: offer transportation services by @ OLA @ cabify Gf@lfl@
exploiting existing mobility through information

r N
technologies . BlaBlaCar

* Ended up being mostly used by professional car
drivers which pursue profit maximization

* Has greatly disrupted transportation industry all
around the world

e Generic model:

e Passengers and car drivers subscribe to the platform
e Platform connects them when transportation is requested
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Ride-hailing: the picture
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Algorithms & objectives

* Overall system operation determined by the complex interplay of multiple
players

* Passengers’ objective: find a cheap ride, fast
 How long to wait? Maximum acceptable ride fee? When to request a ride?

* Drivers’ objective: maximize profits
* Enter platform? If yes, when & where?
* Accept ride or not?
 Where to “hunt” for rides?

* Platform’s objectives: maximize profits, throughput
* Driver-user matching

* Driver compensation & passenger fee

e Should pickup location matter?
e Dynamic or static?

* Devise algorithms which lead to “good” operating points



Relation to existing work

* Aggregate throughput or platform profit maximization
* No queueing for passengers
* Not all potential passenger demand is served

* No driver incentives considered:
« [Ozkan&Ward’16]: driver-customer matching, asymp. opt. LP-based matching
* [Braverman et al’16]: free driver mobility, asymp. opt. routing

* Analysis of equilibrium between platform, drivers & customers

* [Riguelme et al.’16]: drivers decide entry — not routing, static prices as good as dynamic,
* [Bimpikis et al.’16]: drivers decide routing, effect of balanced demand on platform profits.

* We consider throughput in each region over shorter timescales
* timescale=number of drivers in the system is constant

> Wlhat thrcp)ughput combinations are possible and how to create incentives for their
selection:

» Stability: is a given passenger demand serviceable?
* [Bimpikis et al.’16] tackle a similar problem but under special symmetry assumptions

* Queueing model of passengers waiting for pick-up
» Interpret surge-pricing as stability achieving dynamic policy



Toy example

* What is the minimum number of drivers d to serve passenger demand rates 4, 45?
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Toy example

* What is the minimum number of drivers d to serve passenger demand rates 4, 45?

h/\ /\h
'\/\/

 How to enforce optimal mobility pattern for free drivers at 2°?
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» Stability condition:
241 + 215 < d




Toy example

What is the minimum number of drivers d to serve passenger demand rates A, 157?

i A A d » Stability condition:

/\ /\ 204 +2M5 < d

C\/\/“Q

How to enforce optimal mobility pattern for free drivers at 2°?

* Platform gives reward 7; to drivers giving rides from i
A 133
d,V2A;  d3V2A,

,d{ + d3 = d imply a unique mobility pattern (d4, d3) as driver response

. d
» Choose rewards which give j > A, eq.,r =13

* Can rewards be selected dynamically/distributedly to stabilize system?

If drivers are not rational optimizers?
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Driver model @ =7 =14
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e d drivers
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* T regions

* A continuous time controlled semi-Markov process models driver
mobility

* Each driver entering region i:
1. Becomes busy with probability ©;(t), or stays free

2. Decide where to transit next:
* If busy, choose j with probability g;; (given by passenger’s destination)
* If free, choose j with probability P;;(t) (decided by driver)
3. Actual transition happens after a random exponential time with mean 1/u;;

* Policy process (P;;(t),©;(t),i,j =1,..,r,t = 0).



Queueing model .

@ ° o
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* Passengers arrive to region i according to a Poisson process with rate A;
* q,; proportion has destination region j

* Q;(t) = length of customer queue in region i
* An arriving driver which becomes busy, decreases Q;(t) (if nonzero) by one

4—,’{2

* Drivers may be allowed to become busy when Q;(t) = 0: virtual service
* Driver follows transition according to (q;;), queue length remains 0

* Policy process can depend arbitrarily on past histories (e.g., queue sizes) upto t —.

 [I: set of all policy processes

* Il;: set of static policy processes (P;j(t) = p;j, ©;(t) = 0; for some (pl-j), (6,))

* II,: set of policy processes not allowing virtual service (Q;(t —) = 0 = 0;(t) = 0)

* Il,,,: Work conserving policy process not allowing virtual service (also Q;(t —) # 0 = 0;(t) = 1)



Queueing model

M= 1?'!'1?@ O'M‘_As

* Stability: lim sup
!
drivers’ locations

= 0,V for some initial distribution of

EQ;i(t)]
t

* passenger departure rate = arrival rate



Queueing model .
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* What is the largest set of arrival rates A = (A;,i = 1, ...,7) that can be supported
without violating stability ?
» A: stability region for all policies (I1)
» Ag: stability region for static policies (1)
* Ay stability region for policies without virtual service (Il;)

4—,’{2

* Aow: Stability region for work conserving policy without virtual service (Ilgy)

* How can the platform influence drivers to pick optimal policies?



Static mobility pattern

Free driver routing given by (pij)
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Driver balance equations

Let
* b;: rate of drivers becoming busy in region i

* f;: rate of drivers idling in region i
for any policy which the limits exist.

* Flow of drivers entering and leaving each region must balance:

fz’ ‘I‘bi — ijﬁji‘FZ%jS ,Vi b

Jb J > Driver Balance Equations
e Total number of drivers is d: g — 4 E = —(
iy M Sy M

» There exists a policy

which implements
_bi
bi+fi

* Example: 3 regions, d = 18 drivers
* Mobility pattern: symmetric random walk
* Givenbusyratesb, = 2,b. =1
* Uniquely implied f;’s

given b;’s: 0; =

2.5 3.5
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Stability for a given mobility pattern

* Given arrival rates A and a mobility pattern does there exist a stable policy?

» Suffices to find a nonnegative solution (b, f) = (b;, f;,i = 1, ...,7) to the driver

balance equations such that A < b, for a stable static policy to exist for some initial
driver placement

* If no virtual service allowed, must have A = b

* Conversely, if no nonnegative solution exists no stable policy in IT exists

* Example: A, = 2,4, =1,q,4. = 1,q9.p = 1, without virtual service

2 1 12 drivers = unstable
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Stability for a given mobility pattern

Theorem 1:

i. A= Agisthesetofarrival rates A such that (b, f) exist withA < b, f = 0, and
the driver balance equations are satisfied, i.e.,

. biqij fiDij
fit b= fipgi+ 3 bigio Vi Qo) =
J j iJ ij
i. Ny = Ay, is the set of arrival rates as above, with A < b replacedby A = b

* Anincrease in demand could lower the necessary # of drivers (i.e., A¢ & A)
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2 2 3
Min # of drivers= 16 > Min # of drivers= 15



Stability condition for Ay, Agy,

* Not clear how system characteristics affect stability in driver balance equations
* Simpler necessary and sufficient condition for stability in 1, [1g,,

* Example:
* What is the minimum number of drivers d for stability? . - ~
c Ay =2,A,=1 \"/ 0/ &

* Determine minimum # of drivers such that each origin-destination pair is stable without
virtual service:

Aiqij
Min # of drivers = % + 4:q;;T;; = 16
ij
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Stability condition for Ay, Agy,

* Not clear how system characteristics affect stability in driver balance equations
* Simpler necessary and sufficient condition for stability in 1, [1g,,

* Example:
* What is the minimum number of drivers d for stability? . =~ ~
° Aa — 2, /1C = 1 ~— \__/ \_

* Determine minimum # of drivers such that each origin-destination pair is stable without
virtual service:

R . : Aiqij
b ) (c ‘ Min # of drivers = .u_z] + ALCIL]TJL =

- a ‘:) ( C
1 0
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Stability condition for Ay, Agy,

* Not clear how system characteristics affect stability in driver balance equations
* Simpler necessary and sufficient condition for stability in 1, [1g,,

* Example:
* What is the minimum number of drivers d for stability? . - ~
c Ay =2,A,=1 \"/ 0/ &

* Determine minimum # of drivers such that each origin-destination pair is stable without
virtual service:

Aiqij
Min # of drivers = ij%j] + 2ij 44Ty = 21
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Stability condition for Ay, Agy,

* Not clear how system characteristics affect stability in driver balance equations
* Simpler necessary and sufficient condition for stability in 1, [1g,,

* Example:
* What is the minimum number of drivers d for stability? . - ~
c Ay =2,A,=1 \"/ 0/ &

* Determine minimum # of drivers such that each origin-destination pair is stable without
virtual service:

Aiqij
Min # of drivers = ij%"‘z:iinCIijE’i

ij
—overlap term = 15

» Stability condition: 15 < d
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Stability condition for Ag, Agy

* d = # of drivers

. (pl- j): mobility pattern having a single recurrent class

* A = (4;): arrival rates satisfying: A;q;j > 0, j communicates with k (wrt. p) = k
communicates with i (wrt. p) (%)

* T;; = mean travel time from j to i if always free

* 1/v,=mean time to leave k when free

* 1), = portion of time spent in k if always free

. fk” = rate of free drivers out of k under a unit busy flow of drivers from i to j

Theorem 2: A € Ay = A, if and only if

\o i NG £
Z z%g ‘|‘Z)\iq@'jTji_ min Zz,] z%yfk SCZ
P I[LZ] Y k:m, #0 TV
\ ] | ] |\ }

| |

necessarily busy  upper bound for free overlap term




Optimizing over p;;’s

Incentivizing driver mobility
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Mobility pattern optimization

e Can carry more passengers by optimizing the routing of free cars

* Optimal transshipment of free drivers:

minz &

ig 1 =4 P ,
R - el N
st X+ Y fii =3 Ngii+ Y fii, Vi
J J J

over fz’j 20,’i,j=1,...,7“
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Stability region with flexible mobility

* b;: rate of drivers becoming busy in region i (incl. virtual service)
* fij: rate of free drivers flowing from i to j

* Any policy satisfies the driver balance equations:

Zfij+bi:iji+ijjSVi
J J J

biqi; &:d
Z ij +%:,uz'j

iy M

Theorem 3: A = A, = Ay = Ay, is the set of arrival rates A such that (b, f) exist with

A=Db,f =0, and the driver balance equations are satisfied

Proof: Ay = Aoy, © A by Theorem 2

Any stable process satisfies driver balance eq with b = A



Optimizing mobility through rewards

 How to influence drivers to follow (throughput) optimal mobility
patterns?
* Drivers maximize time average reward rates

» Offer rewards to drivers depending on the region a passenger is
picked up from

* Reward values = scaled
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Reward-optimizing policies

* A passenger pick-up from i generates reward at rate r; for the duration of transport

» Simplification: busy decision depends on current location but not on queue state
* A busy driver who ends up not serving gets no reward and moves freely

* Let ¢; = probability a busy driver at i actually serves a passenger

* Drivers choose busy rates b = (b;) which maximize average reward rate:
DRIVER(r, ¢) : max Y —¢;b;

1

J J J
®ib; fz’j
Z 2% i Z Mij =4,

over bz’,fij >0,2,5,€ R.



Reward-optimizing policies

Theorem 4: If A € A there exist reward rates r = (1;), service probabilities ¢p = (¢p;), and
busy rates b such that:

1. b maximizes DRIVER(T, ¢), and
2. Aj = b;ip; foralli

* Proof: use dual of max p for appropriate z € [0,1]
s.t. pA < zb
(b, f) feasible in DRIVER(O, z1)
over p,b, f > 0.
* Caveats:

* Rewards depend on system parameters (e.g., demand) which need to be estimated
* Itis important for r to fully determine ¢, b



Uniqueness of service rates

* Q: Do rewards determine throughput uniquely?

* Example:ry =14 . A 4
Gj (d) (2 (3) (dg) (4 \b
\_/*v -

»Ifdy < 21,d, < 214 then multiple d, d, possible

* Reward per driver=7,/2 =14/2

» If stability condition 24, + 21, < d; + d, satisfied then d, d, unique

1A _ T4ds
dV21,  d,V22A,

,d1 + ds = d imply unique d{,d4
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Reward-optimizing policies

Proposition: Given A, r, the equilibrium (b, ¢) in Theorem 4 is unique (modulo
regions with zero reward) if feasible driver circulations are composed by
independent cycles

* Proof:
* Equilibrium (b, ¢) construction:

1. Start with zero circulating drivers in every cycle ¢
2. Let D. = mean cycle time of cycle ¢

3. Place an infinitesimal amount of drivers on cycle of highest reward per driver (max7./D,)
Continue to 2 until all d drivers are placed

4. ¢, b completely determined by D. and A; = b;¢; for all i
* Construction generates uniqgue outcome

Conjecture: uniqueness also holds in arbitrary systems



Selection of rewards

Remark: The rewards r which incentivize a stable policy, as selected in the last theorem,

solve min DRIVER(r, ¢x)
T Charge r; to customers in location i
.. Z ;Ai =1 Reward by 7; busy driver in location i
- 7
1

Normalized platform revenue = fixed
over r; > 0,V1

for some service probabilities ¢p*

* DRIVER(T, ™) = maximum reward earned by a reward-optimizing driver under
rewards r and service probabilities ¢p*

* For a fixed normalized platform revenue, choose the 7;’s to minimize average driver
profit
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Dynamic rewards

e Static rewards require estimates of system characteristics and reward
virtual service

* MaxWeight dynamic policy: r; proportional to Q;(t) at all times t
* Q;(t) = # of customers waiting in region i  [Tassiulas & Ephremides’S2]
* A type of Uber-like surge pricing

e Each driver acts as if she would have maximized (time-)average rewards
if Q(t) did not change
* Drivers solve DRIVER(Q(t—), 1)
* Valid if Q(t) changes on a slower timescale than travel times, e.g., in heavy loads

* Virtual service not rewarded

* Platform needs only to inform drivers about current rewards — no need
to keep estimates



Throughput optimality of MaxWeight

Theorem 5: The MaxWeight policy is stable for all arrival rates in the
stability region and for any initial driver placement

i(t)?
* Proof: Z ()
p 2%
i d — qi(t)?
since @ i _9
dt zz: i
<2

(A€ A=A < bforsome
busy rates b)

>

>

qi(t) ,
M A 27;

qi(t),
i v Z

1

\

¢i(t), _
M bilt)

¢i(t), _
i bilt)

-

is a Lyapunov function for any fluid limit trajectory

|
Maximum average reward DRIVER(q(t), 1)




Numerical example
A

ogliolno
Ay

* Free drivers follow a symmetric random walk:
10()\1 -+ )\4) — 12 min()\l, )\4) S d

* 6 regions, d drivers
* Assume A; > A,

* Throughput optimal I1,,, policy:
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Numerical example

* Input rate asymmetry:

arge gains by incentive policies
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Conclusions

* A model of ride-hailing with passenger queueing

* Obtained the set of possible passenger service rates under various set
of policies
* Nonunique service rates: if unstable, rational drivers may get trapped into
multiple recurrent classes

* If stable, uniquely defined service rates in simple systems
* Uber type surge pricing interpreted as MaxWeight scheduling

* Throughput optimal
e Results to lower delays than the stability-optimal static policy in simulations



Open Issues

* Unigueness of driver response for any set of rewards
* Delay performance of various policies

* s MaxWeight stability achieving if drivers are more myopic, or less
exact

* Long-run equilibrium?



The End



Extension to Markov Decision Processes

* Do reward incentives exist such that a unique desired behavior is effected?

* Inverse problem of an MDP
* Given:
 finite state and action MDP
* Desired behavior: ;, = probability of being in state i and taking action a, for all i, a

* Determine reward 7;, given in state i for taking action a, for all i, a such that an
optimal policy has the desired behavior

* |ssue: multiple optimal policies exist if desired behavior is nondeterministic
* Random rewarding: reward with probability ¢;, else no reward

Conjecture: there exist rewards r and reward probabilities ¢ such that the
only optimal policy is the one implied by the desired behavior



Subtleties

* In the fixed mobility case, fictitious service increases the stability region as the system
can use it to perform routing

* In the flexible mobility stability is not facilitated since routing is optimized anyway.

* MaxWeight does not require any special selection between optimal reward-policies, if
multiple exist.

* In the flexible mobility case, the use of b_i’s in the definition of the stability region (slide
24) is superfluous.

* So we could have removed b_i’s and note that f_ij is the rate of non serving drivers (free or busy).

* We do not need to make any assumption for separation of timescales. This is OK since
we are interested in stability. Separation between queue state evolution and the driver
control problem obtains at the fluid limit — which is relevant for stability.

* When is the assumption that the drivers are not strategic, nor anticipate any queue state
changes is justified?



Reward-optimizing policies

* A passenger pick up from i generates reward at rate r; for the
duration of transport

* Reward is generated also for fictitious service

* Equivalently:

s.t. by +wa ijqﬂJerﬂ,w
2—+sz“=

over b;, fi; 20,2,] =1,...,r




Stability region
* Notice that a stable process (not necessarily static) satisfies:

* ) fu+b —Z fii + 25 biqji, Vi

Let A = set of (A;) which satisfy
<4

for some b; = A;, f; = 0 for all i.

* b;: rate of drivers becoming busy in region i (incl. fictitious service)
* fij: rate of drivers idling in region i and next move to j

* For any A € A there exists a static policy which is stable under appropriate initial
placement of drivers. (Theorem 1)

e Corollary: A stable policy for arrival rates A exists if and only if A € A.
* Dynamic policies are as good as static in terms of stability.
* Ais the stability region.
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Example

* Assume A; > A,
* |[dle drivers follow a symmetric random walk:

10()\1 + )\4) — 12 min()\l, )\4) S d

* Optimal static policy:
* Obtained by solving the transshipment problem

2()\1 + )\4) —+ Qmax()\l, )\4) <d
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