Incidence geometry and applications

Shubhangi Saraf Rutgers University

Sylvester-Gallai Theorem (1893)

Sylvester-Gallai Theorem (1893)

Proof of Sylvester-Gallai:

- By contradiction. If possible, for every pair of points, the line through them contains a third.
- Consider the point-line pair with the smallest nonzero distance.

 $dist(Q, m) < dist(P, \ell)$

- Several extensions and variations studied
 - Complexes, other fields, colorful, quantitative, approximate, high-dimensional
- Several recent *connections to complexity theory*
 - Structure of arithmetic circuits (DS06, KS09, SS11)
 - Locally Correctable Codes
- [BDWY11, DSW12]: Quantitative SG thms
 - Connections of Incidence theorems to rank bounds for design matrices
 - Connections to Matrix rigidity
 - 2-query LCCs over the Reals do not exist
- [ADSW12]: Approximate/Stable SG thms
 - Stable rank of design matrices
 - stable LCCs over R do not exist
- [DSW13]: High dimension/quantitative SG thms
 - Improved lower bounds for 3 query LCCs over R

The Plan

- Extensions of the Sylvester-Gallai Theorem
 - Complex numbers
 - Quantitative versions
 - Stable versions
 - High dimensions

Connection to Locally Correctable Codes

New lower bounds for 3-query LCCs

Points in Complex space

Kelly's Theorem:

For every pair of points in c t d, the line through them contains a third, then all points contained in a complex plane

[Elkies, Pretorius, Swanpoel 2006]: First elementary proof

[D**S**W12]:

New proof using basic linear algebra

Quantitative SG

For every point there are at least on points s.t there is a third point on the line

[BDWY11]: dimension $\leq O(1/872)$

[DSW12]: dimension $\leq O(1/\delta \uparrow)$

Few words about the proof

Incidence Theorems from Rank Bounds

- Given $v \downarrow 1$, $v \downarrow 2$,..., $v \downarrow n \in \mathbf{C} \uparrow d$
- For every collinear triple $v \downarrow i$, $v \downarrow j$, $v \downarrow k$, $\exists \alpha \downarrow i$, $\alpha \downarrow j$, $\alpha \downarrow k$ so that $\alpha \downarrow i$ $v \downarrow i + \alpha \downarrow j$ $v \downarrow j + \alpha \downarrow k$ $v \downarrow k = 0$
- Construct $n \times d$ matrix \mathbf{V} s.t $i \uparrow th$ row is $v \downarrow i$
- Construct $m \times n$ matrix A s.t for each collinear triple $v \downarrow i$, $v \downarrow j$, $v \downarrow k$ there is a row with $\alpha \downarrow i$, $\alpha \downarrow j$, $\alpha \downarrow k$ in positions i,j,k resp.
- $A \cdot V = 0$

Incidence Theorems from Rank Bounds

• Given set of vectors V, find a matrix A s.t $A \cdot V = 0$

- Careful pruning of the matrix gives a design matrix!
- Want: Upper bound on rank of V
- How?: Lower bound on rank of A

Design Matrices

An m x n matrix is a (q,k,t)-design matrix if:

- Each row has at most q non-zeros
- Each column has at least k non-zeros
- The supports of every two columns intersect in at most t rows

Main Theorem: Rank Bound

Thm [BDWY11, DSW12]: Let A be an m x n complex (q,k,t)-design matrix then:

 $rank \ge n - ntq \uparrow 2 / k$

Main idea: Matrix scaling

Holds for any field of char=0 (or very large positive char)

Not true over fields of small characteristic!

Implies Kelly's theorem (SG over complex numbers)

Stable Sylvester-Gallai Theorem

Stable Sylvester Gallai Theorem

Not true in general ...

In points in andimensional space s.t for every two points there exists a third point that is c-collinear with them

Stable-SG Theorem [ADSW12]

All distances between 1 and B

```
Let v,t_1,v,t_2,...,v,t_n be a set of B-balanced points in C \cap d so that for each v,t_i,v,t_j there is a point v,t_k such that the triple is \epsilon-collinear.

Then

D \in \mathcal{C}(v,t_1,v,t_2,...,v,t_n) \leq O(B \cap b)
```

The High Dimensional Sylvester-Gallai Theorem

[Hansen 65], [Bonnice-Edelstein 67]

Given a finite set of points in R spanning at least 2k dimensions, there exists a k dimensional hyperplane which is spanned by and contains exactly k+1 points.

[BDWY11] [DSW12]

Extension to the complex numbers

Quantitative versions ...

(Bounds far from optimal)

Colorful Sylvester-Gallai [Edelestein-Kelly `66, Kayal-S `10]

Let S be a finite set of points, each colored one of k colors. If every hyperplane containing points of k-1 colors also contains the k^{th} color, then dim(S) < k^k

(Connections to structure of arithmetic circuits)

Dirac-Motzkin conjecture

Green-Tao 2012:

In any set of n noncollinear points in R12, there must be many ($\geq n/2$) "ordinary" lines

The Plan

- Extensions of the SG Theorem
 - Complexes
 - Quantitative versions
 - Stable versions
 - High dimensions

Connection to Locally Correctable Codes

New lower bounds for 3-query LCCs

(Linear) Locally Correctable Code

Equivalent Geometric Definition

- For each $P\!\!\downarrow\!\! i$, there are δn disjoint q-tuples spanning $P\!\!\downarrow\!\! i$
- Thus n different $matchings M \downarrow i$ of q-tuples

Locally correctable codes

- Central role in program testing, PCPs, IP = PSPACE...
- Only examples we know: Hadamard code, Reed Muller code
- Very weak lower bounds known
- [Dvir]: (even mild) lower bounds for polylog-query LCCs implies new lower bounds for *matrix rigidity*

2 Query LCCs

Only example known: Hadamard Code

- Lower Bounds:
 - [GKST02]: $n=2 \Omega(k)$ (over $F \downarrow 2$)
 - [BDSS11]: $n=p \uparrow \Omega(k)$ (Over $F \downarrow p$)
- [BDWY11]: over R they do not exist!

3 Query LCCs

- Best Upper bounds: Reed-Muller codes
 - $-F\downarrow 2: n=2\uparrow \sqrt{k}$
 - Over R: no examples
- Best Lower bounds [GKST02, Woo07, Woo10]:
 - Over any field: $n=\Omega(k12)$
- New result [Dvir-S-Wigderson 13]:

over
$$R$$
: $n=\Omega(k12+\epsilon)$

Rest of the talk

For 3 query LCCs over the real numbers, $n>k \uparrow (2+\epsilon)$

3 query LCCs over R:

Given n points $P \downarrow 1$, $P \downarrow 2$,..., $P \downarrow n \in R \uparrow k$

For each $P \downarrow i$, there is a "matching" $M \downarrow i$ of triples of size δn spanning $P \downarrow i$

- Woodruff 10: $k < \sqrt{n}$
- DSW13: $k < n \uparrow 0.499$
- Possible: $k < poly(1/\delta)$

Warmup: $k < O(\sqrt{n})$

- Set \sqrt{n} points at random to zero.
 - Dimension reduces by at most \sqrt{n}
 - For each $P \downarrow i$, some triple in $M \downarrow i$ becomes a single ton
 - $P \downarrow i$ gets identified with it
 - Set shrinks by a constant amount
- Repeat log(n) times ...

[Dvir-S-Wigderson 13]: $k < n \uparrow 0.499$

If possible k>n10.499

- 1) The triples in the LCC must be *structured*
- 2) Exploit structure to get *improved random* restriction

Structure theorem

If possible k>n10.499

- There is a *clustering* of points: $\approx \sqrt{n}$ points in $\approx \sqrt{n}$ clusters
- Every triple intersects some cluster in 2 points

Structure theorem: Main idea

Barthe '98

- Given n points in $R \uparrow k$ s.t. no large subset in a low dimension, then there exists an invertible linear transformation M st for $P \downarrow i \uparrow' = M$ $P \downarrow i \mid MP \downarrow i \mid$ the new points are "well spread"

For every unit $w \in R \uparrow k$ we have

(*)
$$\sum i=1 \uparrow \approx n / |w \cdot P' \downarrow i| \uparrow 2 \leq O(n/k) < n \uparrow 0.501$$

- No point correlates with too many other points
- But in a 3-LCC, many correlated pairs
 - Many dependent 4-tuples
 - For every dependent 4-tuple, there is some pair of points that has nontrivial correlation

Improved Random Restriction

- Totally $\approx n \uparrow 2$ triples.
- $\approx \sqrt{n}$ clusters thus typical cluster has $\approx \sqrt{n}$ edges per matching
- Pick random cluster and set random n1/4 points in it to zero
 - Dimension reduces by at most $n\uparrow 1/4$
 - For each $P \downarrow i$, some triple in $M \downarrow i$ becomes a singleton
 - $P \downarrow i$ gets identified with it
 - Size of set shrinks by a constant factor
- Repeat log n times

Summary

- Several variations of the SG thm
 - Many local linear dependencies => global dimension bound

Similar to Freiman-Ruzsa thm in additive combinatorics:

$$|A + A| < k |A| => structure$$

- (lots of additive triples implies structure/low dims)
- [BDSS11] optimal lower bounds for 2-query LCCS over $F \downarrow p$ (BSG +Ruzsa)

- Very little understood about high dimensional versions
 - Extremely interesting for lower bounds for LCCs

Future Directions

- Lower bounds for 3 query LCCs over $F \downarrow 2$?
 - Random restriction part still works
 - Clustering?
- Show that there are no 3 query LCCs over Reals
- Improved lower bounds for more queries?
 - Barthe, correlations etc still work
 - Strong enough lower bounds imply new lower bounds for matrix rigidity
- Improved bounds for stable SG?

Thanks!