Undecidability of Linear Inequalities Between Graph Homomorphism Densities

Hamed Hatami
joint work with Sergey Norin

School of Computer Science
McGill University

December 4, 2013
Introduction
Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).
Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).

Few techniques are very common (Induction, Cauchy-Schwarz, ...).

Discovery of rich algebraic structure underlying many of these techniques.

Neater proofs with no low-order terms.

Methods for applying these techniques in semi-automatic ways.
Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).

Few techniques are very common (Induction, Cauchy-Schwarz, ...).

Recently, there has been several developments explaining this: Freedman, Lovász, Schrijver, Szegedy, Razborov, Chayes, Borgs, Sös, Vesztergombi, ...
Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).

Few techniques are very common (Induction, Cauchy-Schwarz, ...).

Recently, there has been several developments explaining this: Freedman, Lovász, Schrijver, Szegedy, Razborov, Chayes, Borgs, Sös, Vesztergombi, ...

Discovery of rich algebraic structure underlying many of these techniques.
Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).

Few techniques are very common (Induction, Cauchy-Schwarz, . . .).

Recently, there has been several developments explaining this: Freedman, Lovász, Schrijver, Szegedy, Razborov, Chayes, Borgs, Sös, Vesztergombi, ...

Discovery of rich algebraic structure underlying many of these techniques.

Neater proofs with no low-order terms.
Asymptotic extremal graph theory has been studied for more than a century (Mantel 1908).

Few techniques are very common (Induction, Cauchy-Schwarz, ...).

Recently, there has been several developments explaining this: Freedman, Lovász, Schrijver, Szegedy, Razborov, Chayes, Borgs, Sös, Vesztergombi, ...

Discovery of rich algebraic structure underlying many of these techniques.

Neater proofs with no low-order terms.

Methods for applying these techniques in semi-automatic ways.
Density of H in G

\[
\frac{\text{number of copies of } H \text{ in } G}{\binom{|V(G)|}{|V(H)|}}.
\]

We can think of these densities as "moments" of the graph G. Many fundamental theorems in extremal graph theory can be expressed as algebraic inequalities between subgraph densities.
Density of H in G

\[
\frac{\text{number of copies of } H \text{ in } G}{\binom{|V(G)|}{|V(H)|}}.
\]

- We can think of these densities as “moments” of the graph G.
Density of H in G

$$\frac{\text{number of copies of } H \text{ in } G}{\binom{|V(G)|}{|V(H)|}}.$$

- We can think of these densities as “moments” of the graph G.
- Many fundamental theorems in extremal graph theory can be expressed as algebraic inequalities between subgraph densities.
Theorem (Freedman, Lovász, Schrijver 2007)

Every such inequality follows from the positive semi-definiteness of a certain infinite matrix.
Theorem (Freedman, Lovász, Schrijver 2007)

Every such inequality follows from the positive semi-definiteness of a certain infinite matrix.

- Equivalently (possibly infinitely many) applications of Cauchy-Schwarz.
Theorem (Freedman, Lovász, Schrijver 2007)

Every such inequality follows from the positive semi-definiteness of a certain infinite matrix.

- Equivalently (possibly infinitely many) applications of Cauchy-Schwarz.

Razborov’s flag algebras

A formal calculus capturing many standard arguments (induction, Cauchy-Schwarz,...) in the area.
Applications

Automatic methods for proving theorems (based on SDP):
Applications

Automatic methods for proving theorems (based on SDP):

- **Razborov**: Significant improvement over the known bounds on Turán’s Hypergraph Problem.
Applications

Automatic methods for proving theorems (based on SDP):

- **Razborov**: Significant improvement over the known bounds on Turán’s Hypergraph Problem.
- **HH, Hladky, Kral, Norin, Razborov**: A question of Sidorenko and Jagger, Šťovíček and Thomason.
Applications

Automatic methods for proving theorems (based on SDP):

- **Razborov**: Significant improvement over the known bounds on Turán’s Hypergraph Problem.
- **HH, Hladky, Kral, Norin, Razborov**: A question of Sidorenko and Jagger, Šťovíček and Thomason.
- **HH, Hladky, Kral, Norin, Razborov**: A conjecture of Erdős.
Applications

SDP methods + thinking:
Applications

SDP methods + thinking:

- Razborov: Minimal density of triangles, given an edge density.
Applications

SDP methods + thinking:

- **Razborov**: Minimal density of triangles, given an edge density.
- **Razborov**: Turán’s hypergraph problem under mild extra conditions.
Applications

SDP methods + thinking:

- **Razborov**: Minimal density of triangles, given an edge density.
- **Razborov**: Turán’s hypergraph problem under mild extra conditions.
- other conjectures of Erdös, crossing number of complete bipartite graphs, etc.
How far can we go?

Is asymptotic extremal graph theory trivial? Is lack of enough computational power the only barrier?
How far can we go?

Is asymptotic extremal graph theory trivial? Is lack of enough computational power the only barrier?

Question (Razborov)

Can every true algebraic inequality between subgraph densities be proved using a finite amount of manipulation with subgraph densities of finitely many graphs?
How far can we go?

Is asymptotic extremal graph theory trivial? Is lack of enough computational power the only barrier?

Question (Razborov)

Can every true algebraic inequality between subgraph densities be proved using a finite amount of manipulation with subgraph densities of finitely many graphs?

HH-Norine 2011

The answer is negative in a strong sense.
Formal definitions
Extremal graph theory

Studies the relations between the number of occurrences of different subgraphs in a graph G.
Extremal graph theory

Studies the relations between the number of occurrences of different subgraphs in a graph G.

Equivalently one can study the relations between the “homomorphism densities”.
Homomorphism Density

Definition

- Map the vertices of H to the vertices of G independently at random.
Homomorphism Density

Definition

- Map the vertices of H to the vertices of G independently at random.

$$t_H(G) := \Pr[\text{edges go to edges}].$$
Definition

A map $f : H \to G$ is called a homomorphism if it maps edges to edges.
Definition

A map $f : H \to G$ is called a homomorphism if it maps edges to edges.

$$t_H(G) = \Pr[f : H \to G \text{ is a homomorphism}].$$
Asymptotically $t_H(\cdot)$ and subgraph densities are equivalent.
Asymptotically $t_H(\cdot)$ and subgraph densities are equivalent.
The functions t_H have nice algebraic structures:

$$t_{H_1 \sqcup H_2}(G) = t_{H_1}(G)t_{H_2}(G).$$
Many fundamental theorems in extremal graph theory can be expressed as algebraic inequalities between homomorphism densities.
Many fundamental theorems in extremal graph theory can be expressed as algebraic inequalities between homomorphism densities.

Example (Goodman’s bound 1959)

\[t_{K_3}(G) \geq 2t_{K_2}(G)^2 - t_{K_2}(G). \]
Many fundamental theorems in extremal graph theory can be expressed as algebraic inequalities between homomorphism densities.

Example (Goodman’s bound 1959)

\[t_{K_3}(G) \geq 2t_{K_2}(G)^2 - t_{K_2}(G). \]

Every such inequality can be turned to a linear inequality:

\[a_1 t_{H_1}(G) + \ldots + a_m t_{H_m}(G) \geq 0. \]
Many fundamental theorems in extremal graph theory can be expressed as algebraic inequalities between homomorphism densities.

Example (Goodman’s bound 1959)

\[t_{K_3}(G) \geq 2t_{K_2}(G)^2 - t_{K_2}(G). \]

Every such inequality can be turned to a linear inequality:

\[a_1 t_{H_1}(G) + \ldots + a_m t_{H_m}(G) \geq 0. \]

Example (Goodman’s bound 1959)

\[t_{K_3}(G) - 2t_{K_2 \oplus K_2}(G) + t_{K_2}(G) \geq 0. \]
Algebra of Partially labeled graphs
Definition

A partially labeled graph is a graph in which some vertices are labeled by distinct natural numbers.

Example
Definition

A partially labeled graph is a graph in which some vertices are labeled by distinct natural numbers.

Recall

\[t_H(G) := \Pr \left[f : H \rightarrow G \text{ is a homomorphism} \right]. \]
Definition

A partially labeled graph is a graph in which some vertices are labeled by distinct natural numbers.

Recall

\[t_H(G) := \Pr[f : H \to G \text{ is a homomorphism}] . \]

Definition

Let \(H \) be partially labeled with labels \(L \). For \(\phi : L \to G \), define

\[t_{H,\phi}(G) := \Pr[f : H \to G \text{ is a hom.} \mid f|_L = \phi] . \]
Definition

Let H be partially labeled with labels L. For $\phi : L \rightarrow G$, define

$$t_{H,\phi}(G) := \Pr \left[f : H \rightarrow G \text{ is a hom.} \mid f|_L = \phi \right].$$

Example

$$t_{H,\phi}(G) = \frac{3}{6} = \frac{1}{2}.$$
Example

Definition

Let $[H]$ be H with no labels.
Example

Definition

Let $[H]$ be H with no labels.

$$E_{\phi} \left[t_{H,\phi}(G) \right] = t_{[H]}(G)$$
Recall that:

\[t_{H_1 \cup H_2}(G) = t_{H_1}(G)t_{H_2}(G). \]
Recall that:

\[t_{H_1 \sqcup H_2}(G) = t_{H_1}(G)t_{H_2}(G). \]

This motivates us to define \(H_1 \times H_2 := H_1 \sqcup H_2 \).
Definition

The product $H_1 \cdot H_2$ of partially labeled graphs H_1 and H_2: take their disjoint union, and then identify vertices with the same label. If multiple edges arise, only one copy is kept.
The product $H_1 \cdot H_2$ of partially labeled graphs H_1 and H_2:
- Take their disjoint union, and then identify vertices with the same label.
Definition

The product $H_1 \cdot H_2$ of partially labeled graphs H_1 and H_2:

- Take their disjoint union, and then identify vertices with the same label.
- If multiple edges arise, only one copy is kept.

Example

```
\begin{align*}
\begin{tikzpicture}[scale=0.8]
  \node[red] (1) at (0,0) {1};
  \node[red] (2) at (1,0) {2};
  \node[red] (3) at (0,1) {3};
  \node[red] (4) at (1,1) {4};
  \draw (1) -- (2);
  \draw (1) -- (3);
  \draw (1) -- (4);
  \draw (2) -- (3);
  \draw (2) -- (4);
  \draw (3) -- (4);
\end{tikzpicture}
\end{align*}
\times \begin{align*}
\begin{tikzpicture}[scale=0.8]
  \node[red] (1) at (0,0) {1};
  \node[red] (2) at (1,0) {2};
  \node[red] (3) at (0,1) {3};
  \node[red] (4) at (1,1) {4};
  \draw (1) -- (2);
  \draw (1) -- (3);
  \draw (1) -- (4);
  \draw (2) -- (3);
  \draw (2) -- (4);
  \draw (3) -- (4);
\end{tikzpicture}
= \begin{align*}
\begin{tikzpicture}[scale=0.8]
  \node[red] (1) at (0,0) {1};
  \node[red] (2) at (1,0) {2};
  \node[red] (3) at (0,1) {3};
  \node[red] (4) at (1,1) {4};
  \draw (1) -- (2);
  \draw (1) -- (3);
  \draw (1) -- (4);
  \draw (2) -- (3);
  \draw (2) -- (4);
  \draw (3) -- (4);
\end{tikzpicture}
\end{align*}
```

Hamed Hatami (McGill University)
Let H_1 and H_2 be partially labeled with labels L_1 and L_2.
Let H_1 and H_2 be partially labeled with labels L_1 and L_2.
Let $\phi : L_1 \cup L_2 \rightarrow G$.
Let \(H_1 \) and \(H_2 \) be partially labeled with labels \(L_1 \) and \(L_2 \).
Let \(\phi : L_1 \cup L_2 \to G \).
We have \(t_{H_1,\phi}(G)t_{H_2,\phi}(G) = t_{H_1 \times H_2,\phi}(G) \).

Example

\[\begin{align*}
H_1 & \times H_2 \\
G & \\
\phi & \\
1 & 2 & \times & 1 & 2
\end{align*} \]
We want to understand the set of all valid inequalities of the form: For all G \[a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0. \]
We want to understand the set of all valid inequalities of the form: For all G, $a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0$.

- Let H_1, \ldots, H_k be partially labeled graphs with the set of labels L.
We want to understand the set of all valid inequalities of the form: For all $G \quad a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0$.

- Let H_1, \ldots, H_k be partially labeled graphs with the set of labels L.
- Let b_1, \ldots, b_k be real numbers and $\phi : L \rightarrow G$.
We want to understand the set of all valid inequalities of the form: For all \(G \) \(a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0. \)

- Let \(H_1, \ldots, H_k \) be partially labeled graphs with the set of labels \(L \).
- Let \(b_1, \ldots, b_k \) be real numbers and \(\phi : L \rightarrow G \).

\[
0 \leq \left(\sum b_i t_{H_i,\phi}(G) \right)^2 = \sum b_i b_j t_{H_i,\phi}(G) t_{H_j,\phi}(G) = \sum b_i b_j t_{H_i \times H_j,\phi}(G)
\]
We want to understand the set of all valid inequalities of the form: For all G, $a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0$.

- Let H_1, \ldots, H_k be partially labeled graphs with the set of labels L.
- Let b_1, \ldots, b_k be real numbers and $\phi : L \rightarrow G$.

\[
\sum b_i b_j t_{H_i \times H_j, \phi}(G) \geq 0
\]
We want to understand the set of all valid inequalities of the form: For all G, $a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0$.

- Let H_1, \ldots, H_k be partially labeled graphs with the set of labels L.
- Let b_1, \ldots, b_k be real numbers and $\phi : L \rightarrow G$.

\[
\sum b_i b_j t_{H_i \times H_j, \phi}(G) \geq 0
\]

\[
\mathbb{E}_\phi \left[\sum b_i b_j t_{H_i \times H_j, \phi}(G) \right] \geq 0
\]
We want to understand the set of all valid inequalities of the form: For all \(G \) \(a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0. \)

- Let \(H_1, \ldots, H_k \) be partially labeled graphs with the set of labels \(L \).
- Let \(b_1, \ldots, b_k \) be real numbers and \(\phi : L \to G \).

\[
\sum b_i b_j t_{H_i \times H_j, \phi}(G) \geq 0
\]

\[
\mathbb{E}_{\phi} \left[\sum b_i b_j t_{H_i \times H_j, \phi}(G) \right] \geq 0
\]

\[
\sum b_i b_j t_{[H_i \times H_j]}(G) \geq 0
\]
Reflection positivity

$$\sum b_i b_j t_{[H_i \times H_j]}(G) \geq 0$$
Reflection positivity

\[\sum b_i b_j t_{[H_i \times H_j]}(G) \geq 0 \]

Let \(H_1, H_2, \ldots \) be all partially labeled graphs. For every \(G \):
Reflection positivity

\[\sum b_i b_j t_{[H_i \times H_j]}(G) \geq 0 \]

Let \(H_1, H_2, \ldots \) be all partially labeled graphs. For every \(G \):
- **Condition I:** \(t_{K_1}(G) = 1 \).
Reflection positivity

\[\sum b_i b_j t_{[H_i \times H_j]}(G) \geq 0 \]

Let \(H_1, H_2, \ldots \) be all partially labeled graphs. For every \(G \):

- **Condition I:** \(t_{K_1}(G) = 1 \).
- **Condition II:** \(t_{H \cup K_1}(G) = t_H(G) \) for all graph \(H \).
Let H_1, H_2, \ldots be all partially labeled graphs. For every G:

- **Condition I:** $t_{K_1}(G) = 1$.
- **Condition II:** $t_{H \sqcup K_1}(G) = t_H(G)$ for all graph H.
- **Condition III:** The infinite matrix whose ij-th entry is $t_{[H_i \times H_j]}(G)$ is positive semi-definite.
Reflection positivity

\[\sum b_i b_j t_{[H_i \times H_j]}(G) \geq 0 \]

Let \(H_1, H_2, \ldots \) be all partially labeled graphs. For every \(G \):

- **Condition I:** \(t_{K_1}(G) = 1 \).
- **Condition II:** \(t_{H \sqcup K_1}(G) = t_H(G) \) for all graph \(H \).
- **Condition III:** The infinite matrix whose \(ij \)-th entry is \(t_{[H_i \times H_j]}(G) \) is positive semi-definite.

Theorem (Freedman, Lovász, Shrijver 2007)

These conditions describe the closure of the set

\[\{(t_{F_1}(G), t_{F_2}(G), \ldots) : G \in [0, 1]^N \} \]
Quantum Graphs
A quantum graph is a formal linear combination of graphs:

\[a_1 H_1 + \ldots + a_k H_k. \]
A quantum graph is a formal linear combination of graphs:

\[a_1 H_1 + \ldots + a_k H_k. \]

A quantum graph \(a_1 H_1 + \ldots + a_k H_k \) is called positive, if for all \(G \),

\[a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0. \]
A quantum graph is a formal linear combination of graphs:

\[a_1 H_1 + \ldots + a_k H_k. \]

A quantum graph \(a_1 H_1 + \ldots + a_k H_k \) is called positive, if for all \(G \),

\[a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0. \]

Goodman:

\[K_3 - 2(K_2 \sqcup K_2) + K_2 \geq 0. \]
A quantum graph is a formal linear combination of graphs:

\[a_1 H_1 + \ldots + a_k H_k. \]

A quantum graph \(a_1 H_1 + \ldots + a_k H_k \) is called positive, if for all \(G \),

\[a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0. \]

Goodman:

\[K_3 - 2(K_2 \sqcup K_2) + K_2 \geq 0. \]

We want to understand the set of all positive quantum graphs.
A partially labeled quantum graph is a formal linear combination of partially labeled graphs:

\[a_1 H_1 + \ldots + a_k H_k. \]
A partially labeled quantum graph is a formal linear combination of partially labeled graphs:

\[a_1 H_1 + \ldots + a_k H_k. \]

Partially labeled quantum graphs form an algebra:

\[
(a_1 H_1 + \ldots + a_k H_k) \cdot (b_1 L_1 + \ldots + b_\ell L_\ell) = \sum a_i b_j H_i \cdot L_j.
\]
Unlabeling operator

\[\cdot : \text{partially labeled quantum graph} \mapsto \text{quantum graph} \]
Unlabeling operator

\[
\cdot : \text{partially labeled quantum graph} \rightarrow \text{quantum graph}
\]

Recall

\[
\left(\sum b_i H_i \right)^2 = \sum b_i b_j [H_i \times H_j] \geq 0
\]
Unlabeling operator

\[\cdot : \text{partially labeled quantum graph} \mapsto \text{quantum graph} \]

Recall

\[
\left(\sum b_i H_i \right)^2 = \sum b_i b_j [H_i \times H_j] \geq 0
\]

Equivalently

For every partially labeled quantum graph \(g \) we have \([g^2] \geq 0 \).
Unlabeling operator

\[\cdot : \text{partially labeled quantum graph} \mapsto \text{quantum graph} \]

Recall

\[
\left[(\sum b_i H_i)^2 \right] = \sum b_i b_j [H_i \times H_j] \geq 0
\]

Equivalently

For every partially labeled quantum graph \(g \) we have \([g^2] \geq 0 \).

Corollary

Always

\[
\left[g_1^2 + \ldots + g_k^2 \right] \geq 0.
\]
Question (Lovász’s 17th Problem, Lovász-Szegedy, Razborov)

Is it true that every $f \geq 0$ is of the form

$$f = \left[g_1^2 + g_2^2 + \ldots + g_k^2 \right]$$
Question (Lovász’s 17th Problem, Lovász-Szegedy, Razborov)

Is it true that every \(f \geq 0 \) is of the form

\[
f = \left[g_1^2 + g_2^2 + \ldots + g_k^2 \right]
\]

Observation (Lovasz-Szegedy and Razborov)

If \(f \geq 0 \) and \(\epsilon > 0 \), there exists a positive integer \(k \) and quantum labeled graphs \(g_1, g_2, \ldots, g_k \) such that

\[
-\epsilon \leq f - \left[g_1^2 + g_2^2 + \ldots + g_k^2 \right] \leq \epsilon.
\]
Question (Lovász’s 17th Problem, Lovász-Szegedy, Razborov)

Is it true that every $f \geq 0$ is of the form

$$f = \left[g_1^2 + g_2^2 + \ldots + g_k^2 \right]$$

Observation (Lovasz-Szegedy and Razborov)

If $f \geq 0$ and $\epsilon > 0$, there exists a positive integer k and quantum labeled graphs g_1, g_2, \ldots, g_k such that

$$-\epsilon \leq f - \left[g_1^2 + g_2^2 + \ldots + g_k^2 \right] \leq \epsilon.$$

Theorem (HH and Norin)

The answer to the above question is negative.
positive polynomials
Polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ is called positive if it takes only non-negative values.
Polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ is called positive if it takes only non-negative values.

$p_1^2 + \ldots + p_k^2$ is always positive.
Polynomial \(p \in \mathbb{R}[x_1, \ldots, x_n] \) is called positive if it takes only non-negative values.

\[p_1^2 + \ldots + p_k^2 \] is always positive.

Theorem (Hilbert 1888)

There exist 3-variable positive homogenous polynomials which are not sums of squares of polynomials.
 Polynomial \(p \in \mathbb{R}[x_1, \ldots, x_n] \) is called positive if it takes only non-negative values.

\(p_1^2 + \ldots + p_k^2 \) is always positive.

Theorem (Hilbert 1888)

There exist 3-variable positive homogenous polynomials which are not sums of squares of polynomials.

Example (Motzkin’s polynomial)

\[x^4 y^2 + y^4 z^2 + z^4 x^2 - 6x^2 y^2 z^2 \geq 0. \]
Extending to quantum graphs
Theorem (HH and Norin)

There are positive quantum graphs f which are not sums of squares. That is, always $f \neq \left[g_1^2 + \ldots + g_k^2 \right]$.

Theorem (HH and Norin)

There are positive quantum graphs \(f \) which are not sums of squares. That is, always \(f \neq [g_1^2 + \ldots + g_k^2] \).

- The proof is based on converting \(x^4 y^2 + y^4 z^2 + z^4 x^2 - 6x^2 y^2 z^2 \) to a quantum graph.
Theorem (Artin 1927, Solution to Hilbert’s 17th Problem)

Every positive polynomial is of the form

\[(p_1/q_1)^2 + \ldots + (p_k/q_k)^2.\]
Theorem (Artin 1927, Solution to Hilbert’s 17th Problem)

Every positive polynomial is of the form

\[(p_1/q_1)^2 + \ldots + (p_k/q_k)^2. \]

Corollary

The problem of checking the positivity of a polynomial is decidable.
Theorem (Artin 1927, Solution to Hilbert’s 17th Problem)

Every positive polynomial is of the form

\[(p_1/q_1)^2 + \ldots + (p_k/q_k)^2.\]

Corollary

The problem of checking the positivity of a polynomial is decidable.

- Co-recursively enumerable: Try to find a point that makes \(p \) negative.
Theorem (Artin 1927, Solution to Hilbert’s 17th Problem)

Every positive polynomial is of the form

\[(p_1/q_1)^2 + \ldots + (p_k/q_k)^2.\]

Corollary

The problem of checking the positivity of a polynomial is decidable.

- Co-recursively enumerable: Try to find a point that makes \(p \) negative.
- recursively enumerable: Try to write \(p = \sum (p_i/q_i)^2 \).
Our solution to Lovász’s 17th problem was based on an analogy to polynomials.
Our solution to Lovász’s 17th problem was based on an analogy to polynomials.

Since there are polynomials which are positive but not sums of squares, our theorem was expected.
Our solution to Lovász’s 17th problem was based on an analogy to polynomials.

Since there are polynomials which are positive but not sums of squares, our theorem was expected.

Lovász: Does Artin’s theorem (sums of rational functions) hold for graph homomorphisms?
Our solution to Lovász’s 17th problem was based on an analogy to polynomials.

Since there are polynomials which are positive but not sums of squares, our theorem was expected.

Lovász: Does Artin’s theorem (sums of rational functions) hold for graph homomorphisms?

Maybe at least the decidability? (A 10th problem)
Our solution to Lovász’s 17th problem was based on an analogy to polynomials.

Since there are polynomials which are positive but not sums of squares, our theorem was expected.

Lovász: Does Artin’s theorem (sums of rational functions) hold for graph homomorphisms?

Maybe at least the decidability? (A 10th problem)

Theorem (HH and Norin)

The following problem is undecidable.

QUESTION: Does the inequality \(a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0\) hold for every graph \(G\)?
Proof
Theorem (HH and Norin)

The following problem is undecidable.

QUESTION: Does the inequality $a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0$ hold for every graph G?
Theorem (HH and Norin)

The following problem is undecidable.

QUESTION: Does the inequality \(a_1 t_{H_1}(G) + \ldots + a_k t_{H_k}(G) \geq 0 \) hold for every graph \(G \)?

Equivalently

Theorem (HH and Norin)

The following problem is undecidable.

INSTANCE: A polynomial \(p(x_1, \ldots, x_k) \) and graphs \(H_1, \ldots, H_k \).

QUESTION: Does the inequality \(p(t_{H_1}(G), \ldots, t_{H_k}(G)) \geq 0 \) hold for every graph \(G \)?
Theorem (HH and Norin)

The following problem is undecidable.

- **INSTANCE**: A polynomial \(p(x_1, \ldots, x_k) \) and graphs \(H_1, \ldots, H_k \).
- **QUESTION**: Does the inequality \(p(t_{H_1}(G), \ldots, t_{H_k}(G)) \geq 0 \) hold for every graph \(G \)?
Theorem (HH and Norin)

The following problem is undecidable.

- **INSTANCE:** A polynomial $p(x_1, \ldots, x_k)$ and graphs H_1, \ldots, H_k.
- **QUESTION:** Does the inequality $p(t_{H_1}(G), \ldots, t_{H_k}(G)) \geq 0$ hold for every graph G?

Instead I will prove the following theorem:

Theorem

The following problem is undecidable.

- **INSTANCE:** A polynomial $p(x_1, \ldots, x_k, y_1, \ldots, y_k)$.
- **QUESTION:** Does the inequality $p(t_{K_2}(G_1), \ldots, t_{K_2}(G_k), t_{K_3}(G_1), \ldots, t_{K_3}(G_k)) \geq 0$ hold for every G_1, \ldots, G_k?
Matiyasevich 1970 Solution to Hilbert’s 10th problem: Checking the positivity of \(p \in \mathbb{R}[x_1, \ldots, x_k] \) on \(\{1 - \frac{1}{n} : n \in \mathbb{Z}\}^k \) is undecidable.
- Matiyasevich 1970 Solution to Hilbert’s 10th problem: Checking the positivity of $p \in \mathbb{R}[x_1, \ldots, x_k]$ on $\{1 - \frac{1}{n} : n \in \mathbb{Z}\}^k$ is undecidable.

- Bollobás, Razborov: Goodman’s bound is achieved only when $t_{K_2}(G) \in \{1 - \frac{1}{n} : n \in \mathbb{Z}\}$.

![Graph showing the relationship between $t(K_2; G)$ and $t(K_3; G)$ with annotations for Kruskal-Katona, Goodman, and Razborov.]
Let S be the grey area and $g(x) = 2x^2 - x$. (Goodman: $t_{K_3}(G) \geq 2t_{K_2}(G)^2 - t_{K_2}(G)$.)

\[t_{K_2}(G) \]
Let S be the grey area and $g(x) = 2x^2 - x$. (Goodman: $t_{K_3}(G) \geq 2t_{K_2}(G)^2 - t_{K_2}(G)$.)

Lemma

Let $p \in \mathbb{R}[x_1, \ldots, x_k]$. Define $q(x_1, \ldots, x_k, y_1, \ldots, y_k)$ as

$$q := p \prod_{i=1}^{k} (1 - x_i)^6 + C_p \times \left(\sum_{i=1}^{k} y_i - g(x_i) \right).$$

T.F.A.E.
Let S be the grey area and $g(x) = 2x^2 - x$. (Goodman: $t_{K_3}(G) \geq 2t_{K_2}(G)^2 - t_{K_2}(G)$.)

Lemma

Let $p \in \mathbb{R}[x_1, \ldots, x_k]$. Define $q(x_1, \ldots, x_k, y_1, \ldots, y_k)$ as

$$q := p \prod_{i=1}^{k} (1 - x_i)^6 + C_p \times \left(\sum_{i=1}^{k} y_i - g(x_i) \right).$$

T.F.A.E.
- $p < 0$ for some $x_1, \ldots, x_k \in \{1 - 1/n : n \in \mathbb{N}\}$. (undecidable)
Let S be the grey area and $g(x) = 2x^2 - x$. (Goodman: $t_{K_3}(G) \geq 2t_{K_2}(G)^2 - t_{K_2}(G)$.)

Lemma

Let $p \in \mathbb{R}[x_1, \ldots, x_k]$. Define $q(x_1, \ldots, x_k, y_1, \ldots, y_k)$ as

$$q := p \prod_{i=1}^{k} (1 - x_i)^6 + C_p \times \left(\sum_{i=1}^{k} y_i - g(x_i) \right).$$

T.F.A.E.

- $p < 0$ for some $x_1, \ldots, x_k \in \{1 - 1/n : n \in \mathbb{N}\}$. *(undecidable)*
- $q < 0$ for some $(x_i, y_i) \in S$'s.
Let S be the grey area and $g(x) = 2x^2 - x$. (Goodman: $t_{K_3}(G) \geq 2t_{K_2}(G)^2 - t_{K_2}(G)$.)

Lemma

Let $p \in \mathbb{R}[x_1, \ldots, x_k]$. Define $q(x_1, \ldots, x_k, y_1, \ldots, y_k)$ as

$$q := p \prod_{i=1}^{k} (1 - x_i)^6 + C_p \times \left(\sum_{i=1}^{k} y_i - g(x_i) \right).$$

T.F.A.E.

- $p < 0$ for some $x_1, \ldots, x_k \in \{1 - 1/n : n \in \mathbb{N}\}$. *(undecidable)*
- $q < 0$ for some $(x_i, y_i) \in S$’s.
- $q < 0$ for some $x_i = t_{K_2}(G_i)$ and $y_i = t_{K_3}(G_i)$. *(reduction)*
Where do we go from here?
On can hope decidability for restricted classes of graphs.
On can hope decidability for restricted classes of graphs.

Bollobas: Linear inequalities $a_1 K_{n_1} + \ldots + a_k K_{n_k} \geq 0$ is decidable.
On can hope decidability for restricted classes of graphs.
Bollobas: Linear inequalities $a_1 K_{n_1} + \ldots + a_k K_{n_k} \geq 0$ is decidable.
Question: What about unions of cliques?
Let R denote the closure of $\{ (t_{H_1}(G), t_{H_2}(G), \ldots) : G \} \subset [0, 1]^\mathbb{N}$.
Graphons: The points in R (graph limits) can be represented by symmetric measurable $W : [0,1]^2 \rightarrow [0,1]$.

Finitely Forcible: A point in R is finitely forcible if a finite number of coordinates uniquely determine it.

Lovász's Conjecture: Every feasible inequality $a_1 t_{H_1}(W) + \ldots + a_k t_{H_k}(W) < 0$ has a finitely forcible solution W.

Lovász-Szegedy's Conjecture: Finitely forcible graphons have simple structures (finite dimensional).

There are finitely forcible W's such that \{ $W(x, \cdot)$: $x \in [0,1]$ \} with the L^1 distance contains a subset homeomorphic to $[0,1]$.

Hamed Hatami (McGill University)
Graphons: The points in R (graph limits) can be represented by symmetric measurable $W : [0,1]^2 \to [0,1]$.

Finitely Forcible: A point in R is finitely forcible if a finite number of coordinates uniquely determine it.
Graphons: The points in R (graph limits) can be represented by symmetric measurable $W : [0, 1]^2 \to [0, 1]$.

Finitely Forcible: A point in R is finitely forcible if a finite number of coordinates uniquely determine it.

Lovász’s Conjecture: Every feasible inequality
$$a_1 t_{H_1}(W) + \ldots + a_k t_{H_k}(W) < 0$$
has a finitely forcible solution W.

Lovász-Szegedy’s Conjecture: Finitely forcible graphons have simple structures (finite dimensional).
Graphons: The points in R (graph limits) can be represented by symmetric measurable $W : [0, 1]^2 \rightarrow [0, 1]$.

Finitely Forcible: A point in R is finitely forcible if a finite number of coordinates uniquely determine it.

Lovász’s Conjecture: Every feasible inequality $a_1 t_{H_1}(W) + \ldots + a_k t_{H_k}(W) < 0$ has a finitely forcible solution W.

Lovász-Szegedy’s Conjecture: Finitely forcible graphons have simple structures (finite dimensional).
Graphons: The points in R (graph limits) can be represented by symmetric measurable $W : [0,1]^2 \rightarrow [0,1]$.

Finitely Forcible: A point in R is finitely forcible if a finite number of coordinates uniquely determine it.

Lovász’s Conjecture: Every feasible inequality $a_1 t_{H_1}(W) + \ldots + a_k t_{H_k}(W) < 0$ has a finitely forcible solution W.

Lovász-Szegedy’s Conjecture: Finitely forcible graphons have simple structures (finite dimensional).

[Glebov, Klimošová, Král 2013+]

There are finitely forcible W’s such that $\{ W(x, \cdot) : x \in [0,1] \}$ with the L_1 distance contains a subset homeomorphic to $[0,1]^\infty$.

Hamed Hatami (McGill University)

December 4, 2013 43 / 43